the code performs text preprocessing and analysis on BBC News articles
using Natural Language Processing (NLP) techniques.
It:

Fetches news data from an RSS feed,
Extracts and cleans the article text,
Tokenizes and analyzes words and sentences,
Removes stop words,

Applies stemming and lemmatization,
Generates bigrams and trigrams.

SIS

* Importing Libraries

import feedparser

import re

from urllib.request import urlopen
import nltk

from bs4 import BeautifulSoup

e feedparser: reads and parses RSS feeds (used to get news articles).

e re: provides regular expressions for text cleaning (not used much here
but helpful).

e urllib.request.urlopen: opens URLs to fetch web pages.

nltk: Natural Language Toolkit — used for tokenization, tagging, etc.

o BeautifulSoup: extracts readable text from HTML web pages.

* Downloading NLTK Resources

nltk.download ("punkt")
nltk.download ("averaged perceptron tagger eng")
nltk.download ("stopwords")

nltk.download ("wordnet")

nltk.download ("punkt tab")

These lines download essential NLP datasets:

e punkt — for sentence and word tokenization.

e averaged perceptron_tagger eng — for part-of-speech tagging
(POS).

e stopwords — list of common words like “the”, “is”, etc.

e wordnet — for lemmatization (getting base word forms).

e punkt tab — updated tokenizer resource.

* Tokenizers, Stopwords, and Stemmers

from
from
from
from

nltk.tokenize import sent tokenize, word tokenize
nltk.corpus import stopwords
nltk.stem import PorterStemmer, WordNetLemmatizer
nltk import bigrams, trigrams

Imports specific NLP tools:

sent_tokenize — splits text into sentences.

word_tokenize — splits text into words.

stopwords — provides English stopwords list.

PorterStemmer — reduces words to root form (e.g., running — run).
WordNetLemmatizer — returns meaningful base form (e.g., better —
good).

bigrams, trigrams — creates pairs or triples of consecutive words.

* Step 1: Read RSS Feed

rss_url = "http://feeds.bbci.co.uk/news/uk/rss.xml"

feed

= feedparser.parse(rss_url)

print ("Number of articles:", len(feed.entries))

rss_url — BBC UK news RSS feed link.

feedparser.parse() — fetches and parses the feed.

feed.entries — list of articles (each entry has title, link, summary,
etc.).

len(feed.entries) — number of articles retrieved.

* Step 2: Display First Article Info

first entry = feed.entries[O0]

print ("\nArticle Title:", first entry.title)
print ("Link:", first entry.link)
e Takes the first article and prints its title and link.

* Step 3: Extract Full Article Text

url =

first entry.link

html = urlopen(url) .read() .decode ("utf-8")
e QOpens the article link and reads its HTML source code.

Then:

soup = BeautifulSoup (html, 'html.parser')
paragraphs = soup.find all('p'")

clean text = ' '.join([p.get text() for p in paragraphs])
o BeautifulSoup parses the HTML.
e find_all('p') — finds all <p> paragraph elements.
e get text() — extracts only the text from each paragraph.
)

join(...) — merges all paragraphs into a single string.

print ("\nOriginal Text (first 500 characters) :\n",
clean text[:500])

e Prints only the first 500 characters for preview.

* Step 4: Tokenization

sentences = sent tokenize (clean text)
words = word tokenize (clean text)

e sent_tokenize — splits the text into sentences.
e word_tokenize — splits text into words and punctuation.

print ("\nNumber of sentences:", len(sentences))
print ("Number of words:", len(words))

e Shows how many sentences and words were found.

* Step 5: Part-of-Speech (POS) Tagging

pos_tags = nltk.pos tag(words)
print ("\nPOS tagging (first 20):", pos tags[:20])

o nltk.pos_tag(words) — assigns a grammatical label (noun, verb,

adjective, etc.) to each word.
Example: [('The', 'DT'), ('cat', 'NN'), ('sat',

'"VBD')]

*+ Step 6: Stop Words Removal

stop words = set (stopwords.words ("english"))
filtered words = [w for w in words if w.lower() not in
stop words and w.isalpha/()]

e stop_words — creates a set of common words to ignore.

e w.isalpha() — keeps only alphabetic words (removes punctuation and
numbers).

o filtered words — the cleaned list of meaningful words.

print ("\nAfter Stop Words Removal (first 20):",
filtered words[:20])

* Step 7: Stemming & Lemmatization

stemmer = PorterStemmer ()
lemmatizer = WordNetLemmatizer ()

stems = [stemmer.stem(w) for w in filtered words[:20]]
lemmas = [lemmatizer.lemmatize (w) for w in filtered words[:20]]

e Stemming — cuts words to their root form (e.g., connected —
connect).

e Lemmatization — finds base dictionary form using grammar (e.g.,
better — good).

e Applies both methods on the first 20 filtered words.

print ("\nStemming (first 20):"™, stems)
print ("Lemmatization (first 20):", lemmas)

* Step 8: Generate N-grams

print ("\nBigrams (first 10):",
list (bigrams (filtered words)) [:10])
print ("Trigrams (first 10):",
list (trigrams (filtered words)) [:1

01)

e Bigrams — pairs of consecutive words (e.g., ("mental™,
"health")).

e Trigrams — triples of consecutive words (e.g., ("machine",
"learning", "model"))

e Useful for finding common word patterns.

_I In summary:

Step Process Purpose

1 Read RSS Feed Fetch BBC articles

2 Extract HTML Text Get article content

3 Tokenization Split into sentences/words

4 POS Tagging Identify grammatical roles

5 Stopword Removal Keep meaningful words

6 Stemming & Lemmatization Normalize word forms

7 N-grams Detect word pair/triple patterns

Output

[nltk data] Downloading package punkt to /root/nltk data...
[nltk data] Package punkt is already up-to-date!

[nltk data] Downloading package averaged perceptron tagger eng
to

[nltk data] /root/nltk data...

[nltk datal] Package averaged perceptron tagger eng is already
up—-to-—
[nltk data] date!

[nltk data] Downloading package stopwords to /root/nltk data...
[nltk datal Package stopwords is already up-to-date!

[nltk data] Downloading package wordnet to /root/nltk data...
[nltk data] Package wordnet is already up-to-date!

[nltk data] Downloading package punkt tab to /root/nltk data...
[nltk datal Package punkt tab is already up-to-date!

[Number of articles: 28

Article Title: New digital ID will be mandatory to work in the
UK, Starmer says

Link:

https://www.bbc.com/news/articles/cn832v43gl5o?2at medium=RSSé&at

Original Text (first 500 characters):

Digital ID will be mandatory in order to work in the UK, as
part of plans to tackle illegal migration. Sir Keir Starmer said
the new digital ID scheme would make it tougher to work in the
UK illegally and offer "countless benefits" to citizens, while
his senior minister Darren Jones said it could be "the bedrock
of the modern state". However, opposition parties argued the
proposals would not stop people crossing the Channel in small
boats. The prime minister set out his plans in a broader speec

Number of sentences: 60
Number of words: 1506

POS tagging (first 20): [('Digital', 'NNP'), ('ID', 'NNP'),
('will', 'MD'), ('be', 'VB'), ('mandatory', 'JJ'), ('in', 'IN'),
('order', 'NN'), ('to', 'TO'), ('work', 'VB'), ('in', 'IN'),

('the', 'DT'), (lUKI, VNNPI), (v,v’ vlv), (‘as‘, 'INI)’ ('part',

https://www.bbc.com/news/articles/cn832y43ql5o?at_medium=RSS&at_campaign=rss
https://www.bbc.com/news/articles/cn832y43ql5o?at_medium=RSS&at_campaign=rss

'NN'"), ('of', 'IN'), ('plans', 'NNS'), ('to', 'TO"), ('tackle',
'VB'), ('illegal', 'JJ'")]

After Stop Words Removal (first 20): ['Digital', 'ID',
'mandatory', 'order', 'work', 'UK', 'part', 'plans', 'tackle',
'illegal', 'migration', 'Sir', 'Keir', 'Starmer', 'said', 'new',
'digital', 'ID', 'scheme', 'would']

(first 20): ['digit', 'id', 'mandatori', 'order',
'uk', 'part', 'plan', 'tackl', 'illeg', 'migrat', 'sir',
'starmer', 'said', 'new', 'digit', 'id', 'scheme',

Lemmatization (first 20): ['Digital', 'ID', 'mandatory',

'order', 'work', 'UK', 'part', 'plan', 'tackle', 'illegal',
'migration', 'Sir', 'Keir', 'Starmer', 'said', 'new', 'digital',
'ID', 'scheme', 'would']

Bigrams (first 10): [('Digital', 'ID'), ('ID', 'mandatory'),

('mandatory', 'order'), ('order', 'work'), ('work', 'UK'),
('UK', 'part'), ('part', 'plans'), ('plans', 'tackle'),
('tackle', 'illegal'), ('illegal', 'migration')]

Trigrams (first 10): [('Digital', 'ID', 'mandatory'), ('ID',
'mandatory', 'order'), ('mandatory', 'order', 'work'), ('order',
'work', 'UK'), ('work', 'UK', 'part'), ('UK', 'part', 'plans'),
('part', 'plans', 'tackle'), ('plans', 'tackle', 'illegal'),
('tackle', 'illegal', 'migration'), ('illegal', 'migration',
'Sir')]

