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Introduction: 
 

●​ In RAID systems, early detection of potential slowdowns or failures is crucial for 
minimizing their impact on system performance. Fail-slow conditions, where a 
system continues operating but with significantly reduced performance, are 
challenging to detect in storage systems due to their gradual onset (“silent failure”) 
and the variability of normal system performance. 
 

●​ To tackle the fail-slow issue, various strategies have been developed, but their 
effectiveness and wide applicability are still under concern. Specifically, the 
precision and ability to pinpoint the problematic disk may not often perform well. 
 

●​ Our methodology enhances the detection of fail-slow conditions by integrating 
Large Language Models (LLMs) such as ChatGPT-4 or the locally implemented 
LLaMA-2. We assess the effectiveness of these innovative approaches by 
benchmarking them against existing methods, aiming to improve both accuracy and 
issue localization. 

 
Project Goals: 
 

●​ Objectives: 
○​ To develop a reliable method for detecting fail-slow conditions in RAID 

systems using LLMs. 
○​ Enhance the efficiency and accuracy of identifying fail-slow faults to reduce 

the time and resources required for problem resolution. 
○​ Implementing LLMs in fail-slow detection processes could revolutionize how 

storage systems manage and mitigate performance degradation, offering a 
novel, effective approach to a persistent and complex issue.  



 
●​ Expected Deliverables: 

○​ An enhanced fail-slow detection algorithm incorporating LLM analysis. 
■​ A Google Colab notebook for quick replay 

○​ A comprehensive evaluation of the algorithm’s performance in real-world 
RAID system environments. 

■​ A GitHub repository hosting the complete evaluation results. 
 

●​ Future Work: 
○​ Building on this project's findings, future research should consider 

integrating more sophisticated LLMs or customizing the LLM specifically for 
the target system to enhance detection accuracy and address limitations. 

 
Implementation Plan: 
 

●​ Project Methodology: 
○​ We will adopt a structured approach to the project, segmenting it into 

manageable phases. Regular progress reports will be provided during each 
meeting, with a biweekly presentation to showcase completed tasks and 
ensure alignment with the project's objectives. Communication with mentors 
will be Zoom meetings. For interactions with members of the open-source 
community, we will utilize email for collaborating and engaging in 
discussions, also slack channels for chatting. 
 

●​ Technical Elements: 
○​ Deployment of LLM:  

■​ Integrate a Large Language Model (LLM) into our pipeline, 
transforming it into an expert storage agent capable of analyzing and 
diagnosing RAID system behaviors. 

○​ Pipeline Optimization:  
■​ Refine the agent’s pipeline to enhance its relevance and accuracy in 

identifying fail-slow conditions within the storage system. 
○​ Data Preprocessing and Automation:  

■​ Utilize Python for effective data preprocessing and Bash scripts to 
automate routine tasks. 

○​ Prompt Engineering 
■​ Refine the prompt template to better accommodate extensive time 

series data, and improve the accuracy of the analysis by employing 
methods like few-shot learning. 

 



●​ Challenges and Solutions: 
○​ Challenge: The proficiency of Large Language Models (LLMs) in handling 

time-series data is inadequate. 
○​ Proposed Solution: Enhance the pipeline at every stage using optimization 

methods, such as Retrieval-Augmented Generation (RAG), or by modify the 
model to improve its effectiveness in processing time-series data, for 
example, using LSTM to deal with the Time Series before passing into LLMs . 

 
Project Timeline: 

 
●​ Duration:  

○​ The project is planned for the summer quarter, lasting approximately 10 
weeks (working 350 hours) . 
 

●​ Weekly Commitment:  
○​ An estimated 30-40 hours per week will be dedicated to the project. 

 
●​ Project Plan: 

 
○​ First Half: 

■​ Weeks 1-2:  
●​ Complete the implementation of the LLM pipeline to obtain 

viable results. 
■​ Weeks 3-4:  

●​ Integrate advanced optimizations to enhance system 
robustness and conduct tests using the test data set to finalize 
the implementation. 

○​ Mid-Project: 
■​ Week 5:  

●​ Post-initial setup and testing, focus on evaluating and refining 
the system to ensure its effectiveness. 

○​ Second Half: 
■​ Weeks 6-8: 

●​ Evaluate and summarize the accuracy and benefits of the 
previously implemented methodologies. 

●​ Begin by implementing these methodologies to identify and 
understand any challenges. 

●​ Conduct a comparative analysis between these methodologies 
and our LLM approach. 

■​ Weeks 9-10: 



●​ Optimize our LLM agent based on the gathered data and 
insights. 

●​ Conclude the project by preparing a Google Colab notebook 
and a report on RAID system tests in the cloud. 
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