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Abstract

Maintaining genetic diversity is a crucial component in conserving threatened species. For
the iconic Australian koala, there is little genetic information on wild populations that is not
either skewed by biased sampling methods (e.g., sampling effort skewed toward urban areas)
or of limited usefulness due to low numbers of microsatellites used. The ability to genotype
DNA extracted from koala scats using next-generation sequencing technology will not only
help resolve location sample bias but also improve the accuracy and scope of genetic analyses
(e.g., neutral vs. adaptive genetic diversity, inbreeding, and effective population size). Here,
we present the successful SNP genotyping (1272 SNP loci) of koala DNA extracted from
scat, using a proprietary DArTseq" protocol. We compare genotype results from
two-day-old scat DNA and 14-day-old scat DNA to a blood DNA template, to test accuracy
of scat genotyping. We find that DNA from fresher scat results in fewer loci with missing
information than DNA from older scat; however, 14-day-old scat can still provide useful
genetic information, depending on the research question. We also find that a subset of 209
conserved loci can accurately identify individual koalas, even from older scat samples. In
addition, we find that DNA sequences identified from scat samples through the DArTseq™
process can provide genetic identification of koala diet species, bacterial and viral pathogens,
and parasitic organisms.
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1. INTRODUCTION
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Challenges to the conservation and management of rare, endangered, or cryptic species are
compounded in part by the difficulty of gathering baseline population data (Boakes, Fuller,
McGowan, & Mace, 2016). A lack of robust data on population size, distribution, and genetic
diversity (Phillips, 2000; Sherwin, Timms, Wilcken, & Houlden, 2000) increases the
uncertainty associated with management decisions, and the trade-off between investing
resources in data collection versus applied management is a complex issue (Grantham,
Wilson, Moilanen, Rebelo, & Possingham, 2009; Jaramillo-Legorreta et al., 2007; Knight
et al., 2008; Whitten, Holmes, & MacKinnon, 2001). This is particularly true for rare and
endangered species, which are generally characterized by small, reproductively isolated
populations in fragmented landscapes (Channell & Lomolino, 2000; Drury, 1974; Gaston,
1994). Small, isolated populations are known to reduce individual fitness and heighten
extinction risk (Lynch & Lande, 1993; Willi & Hoffmann, 2009; Willi, Van Buskirk, &
Hoffmann, 2006), as increased inbreeding and genetic drift decrease standing genetic
diversity (Keller & Waller, 2002; Spielman, Brook, & Frankham, 2004; Willi, Van Buskirk,
Schmid, & Fischer, 2007).

As a result, the [UCN (International Union for Conservation of Nature) identifies genetic
diversity as one of the key forms of biodiversity requiring conservation (McNeely, Miller,
Reid, Mittermeier, & Werner, 1990). Traditional conservation planning for maintaining
species biodiversity requires knowledge of habitat type, species assemblages, and ecological
processes (Margules & Pressey, 2000; Pressey, Cabeza, Watts, Cowling, & Wilson, 2007).
Similarly, management planning for the conservation of genetic diversity in wild populations
requires accurate measurement of population genetic parameters. Specifically, conservation
decision makers require reliable data on patterns of individual genetic diversity, dispersal,
gene flow, population-level diversity, levels of inbreeding, and effective population size (N

o)-

Patterns of connectivity and gene flow can be successfully investigated using both
microsatellite markers (Hodel et al., 2016; Morin, Luikart, & Wayne, 2004) and SNP
(single-nucleotide polymorphism) markers (Van Inghelandt, Melchinger, Lebreton, & Stich,
2010). However, measuring inbreeding coefficients and effective population sizes is more
suited to genome-wide markers, for which SNPs are an increasingly popular choice (e.g.,
Bjelland, Weigel, Vukasinovic, & Nkrumah, 2013; Luikart, Ryman, Tallmon, Schwartz, &
Allendorf, 2010; Saura et al., 2015). In addition, the higher resolution provided by SNP
genotyping can also give less biased measures of genetic diversity than microsatellites (e.g.,
Munshi-South & Kharchenko, 2010; Munshi-South, Zolnik, & Harris, 2016). Generally, two
to three SNPs are expected to provide the same power as one microsatellite, across a range of
analyses (Fernandez et al., 2013; Glover et al., 2010; Sellars et al., 2014). SNPs are also
significantly more effective in species with low genetic diversity (Tokarska et al., 2009). It is,
however, in the ability to genotype thousands of SNPs across the genome of a target species,
that the power of SNPs over microsatellites lies (Davey et al., 2011).

Inbreeding and heterozygosity analysis comparisons have found that the addition of SNPs to
microsatellite panels can increase accuracy, but adding microsatellites to SNP panels has little
impact (Santure et al., 2010; Smouse, 2010). Effective population size estimation using SNPs
has been successful across a range of species (The Bovine Hapmap Consortium, 2009;
Corbin et al., 2010; McEachern, Eadie, & Van Vuren, 2007; Uimari & Tapio, 2011). For use
in population and conservation genetic studies, SNPs can generally provide broader genome
cover than microsatellites and mtDNA with equivalent statistical power (Morin et al., 2004).
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Koalas (Phascolarctos cinereus) are cryptic, arboreal marsupials, with patchy distribution
down the east coast of Australia, and listed as threatened in the northern parts of their range
(Commonwealth 2012; DSEWPC 2013). Threats to koala populations include habitat loss
and fragmentation, dog attacks, car strikes, wild fires, and Chlamydia pecorum-related
disease (Lunney, Gresser, Mahon, & Matthews, 2004; Lunney, Matthews, Moon, & Ferrier,
2000; Matthews, Lunney, Gresser, & Maitz, 2007; Melzer, Carrick, Menkhorst, Lunney, &
John, 2000; Melzer, Cristescu, Ellis, FitzGibbon, & Manno, 2014; Polkinghorne, Hanger, &
Timms, 2013). While there are no national-scale studies of koala population statuses, studies
in the northern parts of the koala's range suggest that habitat fragmentation has produced
small, reproductively isolated populations which exhibit rapid genetic differentiation (Lee
et al., 2010). Populations monitored in this region have declined by up to 80% over the last
two decades, adding urgency to our understanding of koala genetic health (Rhodes, Beyer,
Preece, & McAlpine, 2015).

Genetic studies of koala populations have traditionally relied on tissue or blood samples,
either collected by capturing wild koalas (e.g., Fowler, Houlden, Hoeben, & Timms, 2000),
or collecting samples from ill or injured animals bought into veterinary hospitals (e.g.,
Dudaniec et al., 2013). These studies have, for the most part, relied on microsatellites for
genotyping and measuring diversity, using between 6 and 15 microsatellite loci (Cristescu

et al., 2009; Dennison et al., 2017; Houlden, England, & Sherwin, 1996; Ruiz-Rodriguez,
Ishida, Greenwood, & Roca, 2014). This results in greatly reduced genetic comparability
between studies, which for a low density, difficult to sample species, is a lost opportunity.
Finding, capturing, and sampling wild koalas is costly in both time and money, while
sampling sick or injured animals may bias sampling toward areas of increased human
presence. However, the increasing use of noninvasive sampling has allowed for cheaper,
easier genetic sampling across a range of species (e.g., okapi (Okapia johnstoni) (Stanton

et al., 2016), wolves (Canis lupus) (Scandura, 2005; Stenglein, Waits, Ausband, Zager, &
Mack, 2011), Spanish imperial eagles (Aquila adalberti) (Horvéath, Martinez-Cruz, Negro,
Kalmar, & Godoy, 2005)), and more recently koalas (Wedrowicz, Karsa, Mosse, & Hogan,
2013). Scat sampling in particular, coupled with novel collection methods such as detection
dog use, allows for widespread, unbiased sampling of koala genetic material. Microsatellite
genotyping from koala scat is already available (Wedrowicz et al., 2013), albeit without a
tissue DNA sample with which to compare the genotyping accuracy. While DNA isolated
from tissue or blood is also likely to have low levels of error associated with them, a
comparison of the error rates between blood/tissue DNA and scat DNA would prove a useful
tool for assessing the practicality of using DNA from scat. A SNP panel has been developed
for koalas (Kjeldsen et al., 2015), although thus far it has only been applied to tissue samples.
SNP genotyping of noninvasively collected samples has been effective across a range of wild
species including wolves (Kraus et al., 2015), river otters (Lutra canadensis) (Stetz et al.,
2016), and European wildcats (Felis silvestris silvestris) (Nussberger, Wandeler, &
Camenisch, 2014). With regard to koalas, while we know that DNA can be extracted from
scats, we do not know whether this is sufficient to reliably genotype thousands of SNP
markers, or at what scat ages this might be possible.

This is important as efficient, unbiased sampling of scat, and successful SNP analysis of the
DNA contained therein would allow researchers to gather fine-scale individual,
population-level, and landscape-level data accurately and efficiently. Utilizing scat detection
dogs, as previously mentioned, would be one way of accomplishing widespread scat
sampling for such genetic analyses. This will provide enough high-resolution genetic
information to enable a comprehensive evaluation of koala genetic measures, specifically
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those mentioned above (N ., inbreeding, population diversity, and interpopulation diversity
patterns). With a greater depth of genetic information, we will be far more able to plan
conservation programmes and interventions to best maintain koala genetic diversity, which
until now has been very difficult to assess.

Here, we used DArTseq " to test the feasibility of SNP genotyping using DNA extracted from
koala scats. In order to assess the effect of scat age on genotyping results, we extracted DNA
from scats of different ages. In particular, and in addition to previous studies, we compared
results from fecal DNA samples to DNA from blood to test fecal genotyping accuracy.
DArTseq™ technology was chosen for this analysis in part due to its high repeatability and
standardization of SNP loci used for genotyping. Multiple samples across multiple analyses
can be genotyped using the same complexity reduction method, allowing for maximum
comparability across studies and individuals.

Go to:

2. MATERIALS AND METHODS

Fresh scats (<6 hr old) were collected from five captive koalas (three females and two males)
by watching koalas as they defecated and retrieving the pellets from the ground. Sampled
koalas were resident at Wildlife HQ Zoo in Woombye, Queensland. Whole blood samples

(2 ml) were taken from each animal during regular veterinarian examinations. Based on zoo
records, these five animals are all from different areas in Queensland, and two individuals are
related (a father and daughter).

To establish the effectiveness of SNP genotyping from scat extractions, two scats per
individual were stored on toothpicks stuck in a Styrofoam board in the laboratory, under
ambient light and temperature (approximately 28°C). Scats were aged under these conditions
over the course of two weeks. Scats were harvested for DNA isolation on day two and day 14
postcollection. At both sampling points, DNA was isolated from two scats per individual.
Due to koalas sharing enclosure space, there was a misidentification of a scat which was only
discovered through genotyping results. One of the two-day-old scats from Koala 4 was
actually from Koala 2 and was renamed as such.

2.1. DNA isolation—blood

DNA was isolated from each koala blood sample using the Wizard® Genomic DNA
Purification Kit (Promega) following the manufacturer's “Isolating Genomic DNA from
Whole Blood (300 pul sample volume)” protocol. Isolates were stored at —80°C.

2.2. DNA isolation—scat

Koala DNA was isolated from intestinal epithelial cells on sampled scats. Epithelial cells
from the surface of each scat were collected by slicing off the outer-most layer of the scat
using a scalpel. These surface slices were then used to extract koala DNA using the QIAamp
DNA Stool Mini Kit (Qiagen), following an adapted version of the manufacturer's protocol
“Isolation of DNA from Stool for Human DNA Analysis,” as follows: At cell lysis stage,

1.8 ml Buffer ASL was added, vortexed for one minute, and centrifuged at full speed for two
minutes. For each isolate, 2 ul (100 ng/ml) RNase A (Qiagen) was added and incubated at
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37° C for 30 min. The quantity of total DNA in each scat isolate was measured using a
Thermo-Scientific Nanodrop 2000 Spectrometer. DNA isolates were stored at —80° C.

Koala dietary species are known to contain volatile compounds and phenolics, which are
subsequently excreted in scats (Eberhard, Mcnamara, Pearse, & Southwell, 1975). Some of
these compounds (including 1,8 -cineole and terpinene-4-ol) have been shown to contribute
to cell membrane damage (Carson, Hammer, & Riley, 2006). Additionally, phenolics are
known to contribute to accelerated DNA degradation (Khan & Hadi, 1998) and may also
inhibit PCR processes (Kreader, 1996). QlAamp DNA Stool Mini Kit (Qiagen) specifically
includes InhibitEx tablets specifically designed to remove such PCR inhibitors during DNA
extraction.

2.3. SNP genotyping

Two DNA isolates for each individual, for each sampling point, were used for SNP
genotyping. SNP genotyping was conducted by Diversity Arrays Technology, Canberra,
using proprietary DArTseq"" technology. DArTseq™ technology has been tested and used
successfully for a wide range of genomic studies across a variety of vertebrate species
(Melville et al., 2017). Examples of this include Cunningham's skinks (Egernia cunninghami)
(Ofori, Beaumont, & Stow, 2017), North American green frog (Rana clamitans) (Lambert,
Skelly, & Ezaz, 2016), trout cod (Maccullochella macquariensis) and Murray cod
(Maccullochella peelii) (Couch, Unmack, Dyer, & Lintermans, 2016), yellowfin tuna
(Thunnus albacares) (Grewe et al., 2015), eastern yellow robin (Eopsaltria australis)
(Morales et al., 2017), and southern fiddler rays (7rygonrrhina dumerilii) (Donnellan et al.,
2015).

DArTseq™ represents a combination of DArT complexity reduction methods and
next-generation sequencing platforms (Courtois et al. 2013; Cruz, Kilian, & Dierig, 2013;
Kilian et al., 2012; Raman et al., 2014). Similar to DArT methods based on array
hybridizations, the technology is optimized for the specific organism and application by
selecting the most appropriate complexity reduction method. In this study, the combination of
Pstl and Sphl restriction enzymes (RE) performed better in polymorphism detection
efficiency. When genome complexity reduction methods are compared, those showing
increased percentages of repetitive elements, skewed size ranges, or nonideal numbers of
fragments are avoided.

DNA samples were processed in digestion/ligation reactions (Kilian et al., 2012), ligating two
adaptors corresponding to the combination of RE overhangs. The Pstl-compatible adapter
includes the barcode. The barcodes are of different length varying between 4 and 8 bp, this
was designed to stagger the sequencing start position, similar to the method reported by
Elshire et al. (2011). The reverse adapter contained the Sphl-compatible overhang sequence.

The Pstl-Sphl fragments were amplified by adapter-mediated PCR as follows: initial
denaturation of 94° C for 1 min, followed by 30 cycles of denaturation (94° C for 20 s),
annealing (58° C for 30 s), and extension (72° C for 45 s), with final extension phase of 72°
C for 7 min. The PCR primers were designed to add the required sequences for enabling
sequencing in a single-read Illumina flowcell. Equimolar amounts of amplification products
from each sample were bulked and applied to c-Bot (Illumina) bridge PCR followed by 77
cycles of single-read sequencing on Illumina Hiseq2500 (Illumina).


https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5869377/#ece33765-bib-0023
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5869377/#ece33765-bib-0005
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5869377/#ece33765-bib-0039
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5869377/#ece33765-bib-0044
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5869377/#ece33765-bib-0061
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5869377/#ece33765-bib-0070
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5869377/#ece33765-bib-0047
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5869377/#ece33765-bib-0011
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5869377/#ece33765-bib-0033
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5869377/#ece33765-bib-0065
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5869377/#ece33765-bib-0019
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5869377/#ece33765-bib-0500
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5869377/#ece33765-bib-0016
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5869377/#ece33765-bib-0040
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5869377/#ece33765-bib-0076
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5869377/#ece33765-bib-0040
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5869377/#ece33765-bib-0024

The resulting sequences generated were processed using proprietary DArT analytical
pipelines. The primary pipeline filtered out poor quality sequences, while applying more
stringent selection criteria to the barcode region. In this way, assignment of sequences to
specific samples was very reliable. Identical sequences were then collapsed into “fastqcol”
files for use in secondary pipeline analysis, using DArT PL's proprietary SNP and
SilicoDATT (presence/absence of restriction fragments in representation) calling algorithms
(DArTsoft14).

For SNP calling, all tags from all libraries included in the DArTsoft14 analysis are clustered
using DArT PL's C++ algorithm at the threshold distance of 3, followed by parsing of the
clusters into separate SNP loci using a range of technical parameters, especially the balance
of read counts for the allelic pairs. Additional selection criteria were added to the algorithm
based on analysis of approximately 1,000 controlled cross populations. Testing for Mendelian
distribution of alleles in these populations facilitated selection of technical parameters
discriminating well true allelic variants from paralogous sequences. In addition, multiple
samples were processed from DNA to allelic calls as technical replicates, and scoring
consistency was used as the main selection criteria for high quality/low error rate markers.
Calling quality was assured by high average read depth per locus. This process is similar to
that used in published literature using DArTseq" SNPs from animal genetic samples (e.g.,
Couch et al., 2016; Donnellan et al., 2015).

Sequences identified during the DArTseq " process were run through the National Center for
Biotechnology Information's (NCBI) BLAST (basic local alignment search tool) (Altschul,
Gish, Miller, Myers, & Lipman, 1990) to investigate possible dietary or disease-related DNA
that was included in scats.

2.4. Assessing error, descriptive analysis, and potential sexing loci

For each genotyped sample, percentage missing data were calculated, and genotype
comparison between blood DNA results and scat DNA results for both scat ages was used to
assess allelic dropout and false alleles. SNP loci overlap between blood DNA genotypes and
scat genotypes were calculated, as well as loci overlap across all blood samples (population
loci overlap). In this context, overlap refers to the percentage of SNP loci with successful
genotype reads across all specified samples. Thus, high overlap between samples suggests
that a high percentage of the 1272 SNP loci produced genotype reads across all the specified
samples being compared. As the sex of all koala individuals was known for this study,
putative sex-linked SNP loci were also identified.

Sequencing depths for both reference and SNP alleles, for each locus, for each sample were
investigated, and average sequencing depth for blood DNA, two-day-old, and 14-day-old
scat samples were calculated.

2.5. Genetic analyses and visualization

Analyses of allelic frequency and genetic distance between all samples were conducted in
GenAlEx 6.503 (Peakall & Smouse, 2006, 2012). To assess whether individuals could be
accurately identified using genotypes from scat DNA extractions, neighbor-joining trees
were constructed for a variety of loci subsets, based on error rates (i.e., missing data, scat
genotype different to blood genotype), sequencing depth, overlap between two-day-old and
14-day-old samples, and excluding homozygous SNP loci. This enabled us to identify a suite
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of accurate SNP loci appropriate for successful individual identification from scat samples.
Neighbor-joining trees were constructed using FAMD (Fingerprint Analysis with Missing
Data) software (Schliiter & Harris, 2006) and visualized in MEGA 7 (Kumar, Nei, Dudley, &
Tamura, 2008; Kumar, Stecher, & Tamura, 2016).

To further test the utility of the 209 SNP panel selected for individual identification, we
calculated the probability of identity for unrelated individuals (P ) and the more
conservative probability of identity for full siblings (P pps)- The probability of identity
measures the probability that two individuals drawn randomly from the population will have
identical genotypes across a given marker panel (Lorenzini, Posillico, Lovari, & Petrella,
2004; Mills, Citta, Lair, Schwartz, & Tallmon, 2000; Waits, Luikart, & Taberlet, 2001). We
used GenAlex 6.503 (Peakall & Smouse, 2006, 2012) and included all samples used in
neighbor-joining tree analysis (n = 19).
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3. RESULTS

While 100% of the two-day-old scat samples were successful, only 70% of 14-day-old
samples provided high enough quality DNA for successful library construction. The
low-quality samples were therefore excluded from subsequent analyses. DNA concentrations
from scat samples in this study were found to be comparable to a similar study in which koala
fecal DNA was isolated for microsatellite genotyping (Wedrowicz et al., 2013), suggesting
that the DNA isolation methods utilized in this study provide comparable results to extraction
methods used in other studies. The average DNA concentration for two-day-old scat in this
study was similar to that found in the comparison study (two-day-old-scat average:

10.94 ng/ul; <30-hr-old scat in comparison study: 11 ng/ul), while the average for
14-day-old scat in this study was found to be higher than that of 28-day-old scat in the
comparison study (14-day-old scat average: 3.2 ng/ul; 28-day-old scat in comparison study:
2.2 ng/ul). DNA concentrations for each two-day-old and 14-day-old scat samples are
reported in Table 1. The estimated size ranges for the amplified fragments were between

20 bp and 700 bp, with a peak between 120 bp and 200 bp. Additionally, having access to the
koala genome (when published) will allow for better mapping and calculation of fragment
lengths.

Table 1

SNP loci overlap between scat DNA and blood DNA samples, percentage of missing
genotype data for all samples, percentage of null alleles read in scat samples in comparison
with blood DNA template, percentage of incorrect genotype reads in scat samples in
comparison with blood DNA reads, and total DNA concentrations from scat extraction
reactions. Null allele percentages and incorrect genotype read percentages are a percentage of
total loci with no missing data. DNA concentration readings include all DNA extracted
during reaction and so will also include nontarget DNA
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Sample Sample Locioverlap Missing Null alleles Incorrect Total DNA

type with blood data (%) in scat genotype reads concentration
DNA sample samples in scat samples (ng/pl)
(%) (%) (%)
Koalal Blood 0.24
Koala2 Blood 0.31
Koala3 Blood 0.16
Koala4 Blood 0.08
Koala5 Blood 1.89
Koala 1 Scat 94.6 8.81 10.17 5.95 5.65
Day2a
Koala 1
Day2b Scat 93.6 24.92 11.31 7.75 30.3
Koala 1 Scat 72.3 27.75 21.98 1.63 9.6
Dayl4a
Koala 1
Day14b Scat 34.5 65.64 27 2.29 7.25
Koala2 " geat 995 4921 2353 1.39 16.3
Day2a
Koala 2
Day2b Scat 13.3 8.88 17.26 0.78 6.85
Koala 2 Scat 99 5 0.47 18.88 26.22 8.35
Day2c
Koala3 ¢ . 943 5.66 10.67 1.17 5.7
Day2a
Koala 3
Day2b Scat 75.2 24.84 19.77 2.62 6.9
Dayl4a
Koala 3
Day14b Scat 91.1 86.71 26.04 14.2 0.25
Koala 4 Scat 99.8 0.16 2.91 1.65 5.6
Day2a
Koalad g .0 975 252 911 1.69 2.25
Dayl4a
Koala 4
Day14b Scat 99.8 0.24 2.99 1.81 1.93
Koala5 ¢ . 954 464 7175 2.97 134
Day2a
Koala 5
Day2b Scat 97.3 2.67 5.49 4.04 10.35
KoalaSgoar 156 8443 197 111 0.6
Dayl4a

Open in a separate window

3.1. SNP loci from blood DNA
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DArTseq " technology identified 1272 SNP loci. As koalas are a nonmodel species, reference
alleles and SNP alleles for each locus were assigned arbitrarily—in most cases, reference
alleles were indicated as the allele that was most frequent across all samples for that locus. Of
the 1272 loci identified, 1247 loci (98.0%) were found to overlap across blood DNA samples
from all five individuals. One hundred and sixty-nine loci (13.6%) were found to be
homozygous across all individuals and so are uninformative for this sample size.

3.2. Potential sexing loci

Of the 1272 loci identified, 26 potentially sex-linked candidate loci were found. That is, loci
which were present across all individuals, and varied consistently in genotype between males
and females. For example, locus ID #12495936 (Appendix S2: Table S1) showed alleles TG

for both male individuals and alleles TT for all female individuals during genotype calling.

3.3. Blood genotyping to scat genotyping analysis

In comparison with DNA extracted from blood, two-day-old scat DNA had higher, and more
consistent SNP loci overlap (maximum overlap: 99.8%; minimum overlap: 13.3%; median
overlap: 95.0%) than 14-day-old scat DNA samples (maximum overlap: 99.8%; minimum
overlap: 15.6%, median overlap: 72.3%) (Table 1). High overlap percentage means more loci
were successfully genotyped in both blood DNA and scat DNA, suggesting that fresher scats
provided an average genotyping picture closer to that of blood DNA than older scats.

When comparing error rates and types between fresher and older scats, two-day-old scat
DNA samples had on average less missing data, and less variability in missing data, than
14-day-old scat DNA samples (Figure 1, Table 1). Interestingly, among loci that do provide
data, the difference in read error rates or null allele rate between two-day-old and
14-day-old scat samples was low, suggesting that differences in genotyping results between
scat ages were driven by missing data over other error types.
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Figure 1

Two-day-old versus 14-day-old scat DNA (a) missing data and (b) genotyping error, when
compared to template genotype from blood. Missing data (a) shows percentage of loci
(n=1272) which do not provide any read data in scat samples. Read error and null allele (b)
show percentage of remaining loci which do not match blood template genotype due to
incorrect read or allelic dropout. Sample size: two-day-old samples: n = 10; 14-day-old
samples: n =7

3.4. Average read depths

Read depth refers to the number of times a SNP locus has been sequenced and mapped during
the genotyping process (Fumagalli, 2013). Genotypes are then called from these reads, where
sites with higher numbers of reads are likely to have higher accuracy in genotype calling.
Conversely, loci with lower numbers of reads are likely to exhibit non-negligible errors in
genotype calling (Crawford & Lazzaro, 2012). Read depth is then an important measure of
SNP quality when assessing the likely accuracy of genotype calling. The average read depth
for all 1272 loci differed greatly between blood DNA samples and scat DNA samples
(Figure 2), with blood samples having on average nine times greater read depth per locus.
Fourteen-day-old samples showed on average slightly higher (Reference allele—6.1.X; SNP
allele—3.8X) read depths than two-day-old (Reference allele—4.3.X; SNP allele—3.2X)
samples. However, for all (n = 7) 14-day-old samples, there were 206 loci present which did
not provide genotype reads in any samples. In comparison, for two-day-old scat samples,
there were only nine loci which contained missing information across all samples.
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Figure 2

Distribution of reference allele sequencing depths of 1272 SNP loci for blood DNA
extractions, two-day-old scat DNA extractions, and 14-day-old scat DNA extractions.
Average sequence depth across all loci: Blood: Ref allele—49.X, SNP allele—31.X;
Two-day-old scat: Ref allele—4.3.X, SNP allele—3.2X; 14-day-old scat: Ref allele—6.1.X,
SNP allele—3.8X

3.5. Allele frequency

For 1272 SNP loci across five individuals, 559 loci (44%) had a minor allele frequency of
either 0% or 10%. This may be an artifact of our small sample size (Appendix S1: Figure S1).

3.6. Genetic distance

To identify a panel of SNP loci useful for identifying individual koalas from scat-extracted
DNA, loci were selected based on high sequencing depth, low error rates (i.e., missing data,
null alleles, and false allele reads), loci overlap between two-day-old and 14-day-old scat
samples, and homozygous loci. For two-day-old scat samples (z = 10) and 14-day-old scat
samples (n = 7), SNP loci were excluded if genotypes were homozygous across samples,
sequencing depth for reference allele was <5.X, missing data were found in more than three
samples, and if scat genotype did not match blood genotype in more than three samples.
These subsets of loci were then compared between scat ages, and only those loci common to
both scat age subsets were included in the neighbor-joining tree. Furthermore, scat DNA
samples missing more than 50% data across the selected 209 loci were also excluded,
regardless of age.

The resulting neighbor-joining tree (Figure 3) showed greater genetic difference between
individuals than within individuals. This suggests that the 209 loci panel identified could be


https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5869377/figure/ece33765-fig-0002/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5869377/figure/ece33765-fig-0002/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5869377/figure/ece33765-fig-0002/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5869377/#ece33765-sup-0001
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5869377/figure/ece33765-fig-0003/

used to differentiate between individual koalas at a genetic level, even when scats are 14 days
old prior to sampling. Interestingly, Koala 5 is the daughter of Koala 3, which cluster together
on the joining tree, suggesting that first-degree relatedness between individuals may also be
identifiable from using SNP markers on DNA from scat. The specific loci included in this
panel are identified in the DRYAD online data repository submission.

Koala 4 Blood
Koala 4 Day 14
Koala 4 Day 2

Koala 4 Day 14

Koala 2 Day 2

Koala 2 Day 2

‘F Koala 2 Blood
Koala 2 Day 2

Koala 5 Blood
Koala 5 Day 2
-L Koala 5 Day 2
Koala 3 Day 2
Koala 3 Day 2
Koala 3 Blood

Koala 3 Day 14

Koala 1 Day 2
Koala 1 Day 14
L Koala 1 Blood
Koala 1 Day 2
20
Figure 3

Neighbor-joining tree of genetic distances using 209 highly conserved SNP loci for blood
and scat DNA samples. Loci selected for genetic distance calculation was based on sorting
for sequencing depth, error rates, and homozygous loci. Scat DNA samples with missing
information at more than 50% of loci were excluded from this analysis

Average P, and P |, measures were calculated for the 19 samples used in the final
neighbor-joining tree, using the 209 loci panel selected for individual identification. Average
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P p, was 3.5 x 1072, while the more conservative P pq,, was 1.3 x 1072, These values are
considered low for probability of identity calculations (<0.0001) and suggest a very low
probability of two individuals with identical multilocus genotypes being drawn randomly
from the population. Conversely, then, individuals with identical genotypes found in the
population would be assumed to be resampling of the same individual. Using the subsetted
SNP marker panel of 209 loci for P, we require only ten loci to reach a 1 in 100 chance of
randomly drawing two individuals with the same genotype by chance, and 20 loci to reach a
1 in 10,000 chance of drawing the same. For the more conservative P g, measure, we
require twenty loci and thirty -nine loci, respectively. Hence, we expect our 209 loci marker
set to have adequate discriminatory power in accurately identifying individuals.

3.7. BLAST results

Running DNA sequences identified during the DArTseq " process through BLAST revealed
dietary and disease information (see Appendix S2: Table S2). In relation to diet, we identified
multiple BLAST hits for Eucalyptus grandis (41 predictive BLAST hits) in scats (a common
food tree known to be provided by zoo staff for koalas, J. Schenk, Wildlife HQ CEO, pers.
comm. 2017). This is a known koala food tree (Lunney et al., 2000) and suggests that
individual-specific dietary information may be accessible through genetic analysis of scats.
From a disease perspective, BLAST results turned up multiple complete sequences of koala
retrovirus (KoRV) isolates (four BLAST hits). Evidence of KoRV was most noticeable in
blood samples, although there were also positive hits in scat samples. In addition, there were
BLAST hits for the parasitic nematode Parastrongyloides trichosuri (four BLAST hits),
whose natural hosts are possums of the Trichosurus genus (Grant et al., 2006). We also found
evidence of Pseudomonas aeruginosa bacteria (13 BLAST hits). This is a known pathogen
which has been associated with pneumonia in wild koalas (McKenzie, 1981). These results
indicate that the process of genotyping koalas from scat DNA may also allow for much
greater information on diet and disease (bacterial, viral, and parasitic) presence than
previously thought.
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4. DISCUSSION

DNA extracted from a single koala scat can provide enough high-quality DNA to
successfully genotype individuals using 1272 SNP markers, without the multitube approach
required in many noninvasive studies (Regnaut, Lucas, & Fumagalli, 2006). Additionally, this
is the first time that koala fecal DNA has been compared to blood DNA to test genotyping
accuracy. We demonstrate that powerful next-generation population genetics approaches are
possible for koala fecal DNA, allowing for a greater variety of genetic analyses based on
noninvasive samples taken from wild koalas.

While genotyping errors, mostly due to missing data at underperforming loci, varied greatly
between two-day-old and 14-day-old scat, average sequencing depth did not. Sequencing
depth from fecal DNA was greatly reduced when compared to that of blood DNA samples,
but average depth across all scat samples was still 4.6X (reference allele average: 5.6.X; SNP
allele average: 3.6X). Next-generation sequencing data simulation by Fumagalli (2013)
suggest that highly precise detection of polymorphic sites can be achieved by genotyping
small sample sizes at high sequencing depth (n = 20, depth = 50X, precision = 1). However,
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genotyping larger sample sizes at lower sequencing depths can provide comparable results
(>75% precision). For example, a sample size of 500 individuals sequenced at 2X depth can
maintain precision of 0.778 + 0.0641, similar to a sample size of 100 individuals sequenced at
10X depth (precision = 0.779 £+ 0.0441).

Sampling larger sample sizes at lower depth may be particularly well suited to scat DNA
analysis. For example, detection dog scat sampling allows to greatly increase our sample size
across the target landscape (Cristescu et al., 2015), wherein the lower average sequencing
depths we see in fecal DNA analyses can still provide precise polymorphic reads. For
analyses investigating population-level genetic trends (e.g., population structure,
interpopulation genetic diversity, and gene flow), we can therefore utilize all 1272 loci
identified here, as larger sample sizes will balance out lower sequencing depths.

For analyses which require accurate individual identification, we can then focus on the
smaller sample sizes and higher sequencing depths recommended by Fumagalli (2013).

Here, we have excluded SNP loci with low sequencing depths and high error rates, to identify
a suite of loci that perform well on scats up to 14 days old, allowing for accurate

individual -level analysis for samples that may have partially deteriorated. This panel of 209
SNP loci can be used in individual -based genetic analyses, such as determining inbreeding
coefficients and effective population sizes, which are of particular importance to the
conservation of genetic diversity. Additionally, the use of SNP genotyping in repeatedly
identifying individual animals opens the door for mark—recapture studies to estimate koala
population sizes—one of the most difficult ecological metrics to assess in koalas, and one of
the most crucial for making informed conservation decisions (Lurz, 2008; Phillips, 2000;
Shaffer, 1981). Using this panel, we are able to confirm the first-degree relatedness of two
koalas in this study, identifying Koala 3 as the father of Koala 5. Additionally, by removing
samples with high levels of missing data (higher than 50% missing data, invariably
14-day-old samples), we can ensure that the individual identification results are accurate
across all individuals. By utilizing blood DNA as a template in this study, we could assess
how age may influence the effectiveness of genotyping and also established a threshold for
excluding samples from analyses that require individual -level accuracy. Furthermore, the
utility of this 209 loci marker panel was reinforced by the P, and P g, results. The very
low probability (<0.0001) of incorrectly identifying two independent individuals as the same
individual using this marker panel attests to its strong discriminatory power. Given that only
thirty -nine loci were needed to achieve satisfactory discrimination between individual
samples (i.e., <0.0001) for the P ., measure, we feel confident that this panel can reliably
identify individuals in the typically larger sample sizes used in analyses of wild populations.

With regard to other information captured during the genotyping process, the presence of
dietary information (E. grandis) provides evidence that individual koala diet could be
assessed alongside genotyping. As koalas are known to spend time in nonfood trees (Briscoe
et al., 2014), simple presence in a tree is not always indicative of diet, and researchers
currently have to rely on time-consuming leaf cuticle analyses (Melzer et al., 2014). A
tailored approach to identifying the food tree preferences of individual koalas across a
landscape could provide large-scale ecological information currently unavailable to
researchers. Testing of the sensitivity of genetic approaches to changes in diet may be the
next step in this research, but these results are the first evidence we know of, of koala dietary
indicators being genetically identified in scat. Furthermore, the addition of information on
disease presence for bacteria, viruses, and parasitic invertebrates adds yet another layer of
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information on koala health that is currently difficult and costly to assess. Obviously, BLAST
searches will only register sequences already in the NCBI databases, and so the BLAST hits
for Parastrongyloides trichosuri, the parasitic possum nematode, are possibly identifying a
koala-specific nematode from the same genus, which has not yet been described. It is
interesting to note that there is no evidence of C. pecorum in any extracted DNA, but given
that the five individuals assessed in this study are animals bred in captivity, it should not be
surprising that they are C. pecorum-free. That multiple BLAST hits for each of these
organisms were detected adds strength to our proposal that these are accurate identifications,
supported by biological rationale for their presence. Further study into the relationship
between the presence of such pathogens in blood and scat and the health of the individual
koala is obviously required. However, the fact that such wide-ranging bacterial, viral, and
parasitic organisms can be detected through the DArTseq " process is encouraging for
assessing the health of wild koalas.

While there is no doubt that fresh is best when it comes to noninvasive scat sampling for
genetic analyses, the limitations of collecting scat from wild populations, even with the
advances in speed and accuracy introduced by detection dogs, means that it may not always
be possible to sample scats within the first two days. Our research, however, shows that older
scats can still be useful, depending on the research question and project design. It is also
important to remember that while some 14-day-old scats provided enough high-quality
DNA for individual identification in this study, scats were aged under laboratory conditions,
and so an upper limit of 14 days may not be realistic for scats collected from wild koalas.
Ultraviolet light, rain, ground cover vegetation, and phenolics and volatile organic
compounds released from koala scats as they decompose may all lead to rapid koala fecal
DNA degradation. Indeed, this may result in faster DNA degradation in koala scats than is
often found in other noninvasively sampled species, and so under ideal circumstances, the
freshest scat should be sought wherever possible (Cristescu, Goethals, Banks, Carrick, &
Frere, 2012; Wedrowicz et al., 2013). While very fresh koala scat is obviously ideal for
genotyping, there is most likely a good compromise in practicality of sampling and quality of
results somewhere between two-day-old scat and 14-day-old scat. Fortunately, koala scat
age can be estimated by sight with a degree of accuracy, with pellets <14 days old
recognizable by their shiny, uncracked patina, and strong eucalypt smell (Sullivan, Norris, &
Baxter, 2002).

Across different scat ages, it is also important to consider the two possible causes of poor
genotyping results. Firstly, that insufficient high-quality DNA is extracted from scat samples
to allow for library construction. In these cases, as seen with 30% of 14-day -old scat
samples in this study, no information can be produced from such samples. When this occurs,
optimization of the DNA extraction process, and inclusion of PCR facilitators such as BSA
(bovine serum albumin), may yield improved results. Other alternatives might include
extracting DNA from replicate scats for older samples, to ensure higher DNA yield. Despite
this, our study shows that 70% of 14 day old scats contained sufficient DNA to construct
libraries for DArTseq " SNP genotyping, thus validating the DArTseq™ technology for use in
this application.

The second problem may arise whereby extracted DNA is already degraded (due to
environmental factors, scat contents, volatile compounds etc.). This can result in the presence
of missing data (null alleles and allelic dropout), as evidenced in the successfully amplified
14-day-old scat samples in this study. That this missing genotype data is due to DNA
degradation rather than inefficiencies in the extraction process is further supported by the
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favorable comparison of DNA concentrations between the 14-day-old samples in this study
and older samples in a similar study (Wedrowicz et al., 2013). Furthermore, these DNA
concentration results point to the utility of the DNA extraction process used in this study,
suggesting most errors are due to degraded DNA. As this DNA degradation will most likely
have occurred prior to extraction, optimization of the amplification and genotyping processes
may be necessary to achieve optimal results. Possible options here include targeting smaller
fragments from amplification. Further study into which factors are most likely to introduce
error into genotyping results, and how to specifically target them, would also allow for better
future project design.

With regard to collecting scat from wild populations, detection dogs are increasingly used in
koala conservation (Cristescu et al., 2015). While dogs trained to find scat of all ages are
useful for identifying koala habitat, scats older than two weeks are not as suitable for genetic
analysis using the methods outlined in this study. Thus, dogs trained specifically to find
fresher scat may be a useful addition to conservation research and could greatly increase the
number of genetic samples collected from wild koala populations. To this end, the authors are
currently training a detection dog to prioritize finding fresh (<1-week-old) koala scat. This,
coupled with growing citizen science programs whereby members of the public collect and
freeze fresh scat for researchers, can provide high-quality DNA samples for SNP genotyping
and subsequent analysis. These novel sources of genetic samples can allow for large enough
sample sizes to study important aspects of wild koala population genetics, which have been
previously unavailable to researchers. Additionally, the potential to gather not only koala
genetic information, but also dietary and disease information using this same process makes
the use of koala scat for next-generation genetic analyses an increasingly powerful tool.

When it comes to testing novel applications of genotyping methods, the question of sample
size is always an important consideration. While more is invariably better, in this case, the
sample size of five individuals is sufficient as a proof of concept for the application of this
methodology. There are a number of reasons for this: Firstly, the DArTseq " protocol utilized
in this study is a well-documented methodology. It has been used effectively across a range
of species and specifically recommended for vertebrate studies (Melville et al., 2017). In
particular, the standardization of loci genotyped across samples, and the repeatable
complexity reduction methods provide a reliable and widely applicable methodology. This
holds true regardless of samples size. Secondly, the highly conserved 209 loci used for
individual identification perform well for both individual identification analyses conducted.
In neighbor-joining tree analysis, all samples from the same individual group together in
neighbor-joining tree analyses. Furthermore, there was accurate discrimination between scat
DNA samples from the father—daughter pairing. The probability of identity analyses runs in
this study also support these results. Thus, we are confident of the power of the 209 SNP loci
panel to determine identity in larger populations.

As with applying published methodologies to any new context, it is always valuable to
consider the possible limitations of the application and the conditions under which it has been
tested. Regardless of this, this study provides sufficient evidence that high-quality koala
DNA can be extracted from scats to facilitate SNP genotyping using the DArTseq™
methodology. The increased power provided by SNP genotyping for genetic analysis ensures
that important aspects of koala population ecology and genetics can be adequately assessed
before conservation decisions are made, allowing for more accurate interventions and
management strategies.
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