Engaging in Math Concepts Concrete –Representational (Pictorial) - Abstract

Purpose

The purpose of teaching through a concrete-to-representational-to-abstract sequence of instruction is to ensure students truly have a thorough understanding of the math concepts/skills they are learning. When students first develop a concrete understanding of the math concept/skill, then they are much more likely to perform that math skill and truly understand math concepts at the abstract level.

What is it?

- Each math concept/skill is first modeled with concrete materials (e.g. chips, unifix cubes, base ten blocks, beans and bean sticks, pattern blocks).
- Students are provided many opportunities to practice and demonstrate mastery using concrete materials.
- The math concept/skill is next modeled at the representational (semi-concrete) level which involves drawing pictures that represent the concrete objects previously used (e.g. tallies, dots, circles, stamps that imprint pictures for counting).
- Students are provided many opportunities to practice and demonstrate mastery by drawing solutions.
- The math concept/skill is finally modeled at the abstract level (using only numbers and mathematical symbols).
- Students are provided many opportunities to practice and demonstrate mastery at the abstract level before moving to a new math concept/skill.
- As a teacher moves through a concrete-to-representational-to-abstract sequence of instruction, the abstract numbers and/or symbols should be used in conjunction with the concrete materials and representational drawings (promotes association of abstract symbols with concrete & representational understanding).

What are the critical elements of this strategy?

- Use appropriate concrete objects to teach particular math concept/skill. Teach concrete understanding first.
- Use appropriate drawing techniques or appropriate picture representations of concrete objects.
- Use appropriate strategies for assisting students to move to the abstract level of understanding for a particular math concept/skill.
- When teaching at each level of understanding, use explicit teaching methods.

Resource: http://fcit.usf.edu/mathvids/strategies/cra.html

How do I implement the strategy?

- 1. When initially teaching a math concept/skill, describe & model it using concrete objects (concrete level of understanding).
- 2. Provide students many practice opportunities using concrete objects.
- 3. When students demonstrate mastery of skill by using concrete objects, describe & model how to perform the skill by drawing or with pictures that represent concrete objects (representational level of understanding).
- 4. Provide many practice opportunities where students draw their solutions or use pictures to problem-solve.
- 5. When students demonstrate mastery drawing solutions, describe and model how to perform the skill using only numbers and math symbols (abstract level of understanding).
- 6. Provide many opportunities for students to practice performing the skill using only numbers and symbols.
- 7. After students master performing the skill at the abstract level of understanding, ensure students maintain their skill level by providing periodic practice opportunities for the math skills.
- 8. Be sure to make connections between the 3 representations.

How does this instructional strategy positively impact students?

- Helps passive learners to make meaningful connections.
- Teaches conceptual understanding by connecting concrete understanding to abstract math processes.
- By linking learning experiences from concrete-to-representational-to-abstract levels of understanding, the teacher provides a graduated framework for students to make meaningful connections.
- Blends conceptual and procedural understanding in a structured way.

It is important for students to understand the WHY rather than just knowing how to "get through the procedures of math".

Resource: http://fcit.usf.edu/mathvids/strategies/cra.html