

CONTENTS

​

S.NO

NAME OF THE TITLE

PAGE NO

1

SYNOPSIS

2

COMPANY PROFILE

3

INTRODUCTION

4

MODULAR DESCRIPTION

5 SYSTEM REQUIREMENTS

 4.1 Software requirements
 4.2 Minimum Hardware Requirements
 4.3 System Analysis
 4.4 System Design

6 SYSTEM TESTING AND IMPLEMENTATION

 5.1 System Testing
 5.2 Implementation

7 ABOUT THE SOFTWARE

 6.1 Software Architecture
 6.2 HTML
 6.3 Java Servlets
 6.4 JDBC
 6.5 ODBC
 6.6 MS Access

8

DATA FLOW DIAGRAMS

9

DATABASE DESIGN

10

SOURCE CODE

11

SCREEN LAYOUTS

12

CONCLUSION

13

BIBLIOGRAPHY

COMPANY PROFILE

HIDUSTAN SOFTWARE LIMITED

 Hindustan software limited established in 1995, has been actively involved
in development of customized software for various clients since its inception and also
has its presence strongly felt in the areas of Training & consulting. Market Leadership
through customer satisfaction, a commitment to excellence & high growth rate, these
have characterized HSL in its rapid climb in Information Technology Industry.

DEVELOPMENT

 Our software development team strives to develop innovative software that
meets customer needs. A team of developers with exclusive educational background
and excellent computing skills exert their maximum efforts and endeavor to satisfy
the specialized requirement of our esteemed clients. Our expertise and vast exposure
qualifies us in developing software’s in Information systems, Web Based Applications,
Internet Solution, Web page Design and Hosting. Our team consists of expertise in
Java, VC++, VB, Oracle and all Internet Application Development Tools.

TRAINING

 Hindustan has trained more than 1000 professionals so far in the area of
JAVA and VC++. All the students have launched in a very good career path both in
India & abroad. The curriculum matches latest trends and make the students to
compete in the IT industry.

SKILLSET AVAILABLE

C, C++, VC++, JAVA, ASP, XML, JSP, EJB-Web Logic, VISUAL BASIC -MS-ACCESS,
RMI, COM, CORBA, SCRIPTS, EMBEDDED SYSTEM, ETC.,

CONSULTING

 The training division gives us an opportunity to meet variety of candidates
with various skill sets. Our database consists of details regarding more than 1000
professionals. So we are fit to assist all sort of IT Human resource consultancies and
IT companies in India and abroad.
 Excellence through “TEAM WORK” The Philosophy of Total Quality Management
is inculcated in every HSL employee through intensive training programs. Our
investment on a highly skilled and motivated manpower constitutes towards
establishing HSL as a truly quality conscious company, continually striving to bring
the finest solutions to the discerning customers.

SYNOPSIS

 Human Resource Management System is aimed to integrate the

activities of Human Resource Department of Hindustan Software Limited (HSL).

The Human Resource Management System maintains the following core

activities and core processes of HSL.

1.​ Personal Information Management

2.​ Personal Training Management

3.​ Recruitment Process Management

4.​ Project Management

The information collected through the above activities will be maintained in a

centralized server and could be accessed through the Internet. The company has

decided to create a corporate intranetwork to connect all offices and their network

would also be utilized in case of implementation. The information collected through

this management and process related activities are maintained as folios.

Personal Information Management

This Management process is to maintain the details of employees who are

working at HSL as well as employees who are working in various client concerns. The

information will be maintained by HR Managers of all HSL and its units. Employee

details that would be sent abroad and other concerns other than clients of HSL would

also be managed.

Personal Training Management

Employee will be given regular training on need in the latest advanced areas.

The training management maintains a folio on the various topics on which the

training is provided. It is also maintains the details of the employee who

underwent/is undergoing /will be undergone training. The training has been classified

into three categories.

​ In-house training

​ Offshore training​

The training management also maintains information about the guest lectures

as well as lecturers.

Recruitment Process Management

It creates a folio relating to Recruitment Process. There are three different

methods to recruit employees. They are

​ Through direct recruitment

​ Through campus interviews and

​ Absorbing project trainees

Direct Recruitment

Direct Recruitment is done on the net. Resumes of candidates are received as

either directly or by mail/e-mail/fax/courier. If they found eligible for interview they

would be mailed indicating a user name, password and date of interview. The

candidate has to log on into the HSL server and he will be given a set of questions

(mostly of objective type). He has to answer those questions and the HR Manager

will process his papers. The process may include further interviews, direct

appointment.

Campus Interviews

Employees are appointed by conducting interviews at college campus. The

profile of the students who are interviewed is maintained. Is also maintains the

details of the college. The selected candidates will first be given training in their

respective areas and then they are put up in anyone of its developing unit.

Absorbing Project Trainees

The Project Trainees could also be hired by the HSL concern, if their project

performance is well.

Project Management

The details of all projects done by HSL are maintained. The projects are

classified into two categories.

�​ Offshore Projects

�​ Onsite Projects

In case of onsite project employees will be sent to the client concern. Offshore

projects are developed in any one of the developing units. All project-related

information is maintained.

It also maintains the details of the clients who have consulted for their project

work. It includes the client organization and nature of consultancy.

The information belonging to the students who request to work as project

trainees are also maintained. That includes the profile of the student as well as the

project to which he is sent. It also maintains the student’s college information.

MODULAR DESCRIPTION

The Human Resource Management System comprises of a login screen and 2

modules

 There are basically 2 modules

�​ User module

�​ Administration module

User module exits for

�​ Recruitment process

�​ Company details

Recruitment process

�​ Direct interview

�​ Campus interview

�​ Absorbing trainee

Administration module exits for

�​ Project maintenance

�​ Company details

�​ Employee details

�​ Recruitment process

 Reports generated for

�​ Employee details

�​ Project training

�​ Recruitment report

�​ Online exam report

�​ Company details

SYSTEM REQUIREMENTS

Software Requirements

 ​ OPERATING SYSTEM : WINDOWS’98

FRONT END​ : JAVA SERVLET, HTML 4.0

 ​ BACK END​ : MS ACCESS

 ​ SERVER​ : JAVA WEB SERVER 2.0

Hardware Requirements

 CPU TYPE ​: Pentium III

 ​​ MEMORY ​ : 128 MB RAM

 HARD DISK ​ : 20 GB HDD

 ​ KEY BOARD ​ ​ : 110 KEYS

Drive Summary

 FLOPPY DRIVE ​: 1.44 MB FDD

 ​ CDROM ​ : 52X

 MONITER ​ : 15”COLOR MONITOR

SYSTEM ANALYSIS

Introduction to System Analysis

​ ​ System analysis is a process of gathering interpreting facts, diagnosing

problems, and using facts to improve the system. The objective of the system

analysis is to understand the important facts of current system by studying it in

detail. To accomplish this objective the following have to be done.

●​ Learn the details of the system as well as procedures currently in practice.

●​ Develop insight into future demands of the organization on its growth; hike in

Competition, evolving new financial structures, introduction of new

technology, and changes in the customer needs.

●​ Documentation details of the current system for discussion and review by

others.

●​ Evaluate effectiveness and efficiency of the current system and procedure

taking into account the impact of anticipating future demands.

●​ Recommend any revisions and enhancements to the current system,

indicating how they are justified. If appropriate, an entire new system may be

purposed.

●​ Document the new system features at a level of details that allows others to

understand its components and manage the new system developed.

SYSTEM DESIGN

​ ​ The design of a system produces the details that state how a system

meet the requirements identified during system analysis. System specialists often

refer to this stage as logical design, in contrast to the process of developing

program software, which is referred to as physical design.

​ ​ Data Flow Diagrams have been used in the design of the system. Data

Flow Diagram is a graphical tool used to describe and analyze the movement of

data. The transformation of data from input to output, through processes may be

described logically using these Data Flow Diagrams.

​ ​ The DFD shown to the user must represent only the major functions

being performed by the system. This is called Top Level DFD. If this process is

complex enough, it can be broken further into different levels. This process can

be continued till the process is simple. This is called the leveling of DFD’s.

SYSTEM TESTING

​ ​ Theoretically, a new designed system should have all the pieces in

working order, but in reality, each piece works independently. Now is the time to

put all pieces into one system and test it to determine whether it meets the

user’s requirements. The purpose of the system is to consider all the likely

variations to which it will be subjected and then push the system to its limits. It is

tedious but necessary step in system development. One needs to be familiar with

the following basic terms.

●​ UNIT TESTING: Unit Testing is testing changes made in an existing or a new

program.

●​ SEQUENTIAL OR SERIES TESTING: Sequential or Series Testing is

checking the logic of one or more programs in the candidate system, where

the output of one program will affect the processing done by another

program.

●​ SYSTEM TESTING: System Testing is executing a program to check logic

changes made in it and with the intention of finding errors making the

program fail.

●​ ACCEPTANCE TESTING: Acceptance Testing is running the system with live

data by the actual user of the system.

 Testing is vital to the success of the system. System testing

makes a logical assumption that if all the parts of the system are correct, the

goal will be successfully achieved. In adequate testing or no-testing leads to

errors that may not appear until months later. Another reason for system testing

is its utility as a user-oriented vehicle before implementation. The best program

and the user have communication barriers due to different backgrounds. The

system tester (designer, programmer, or user) who has developed some

computer mastery can bridge this barrier.

(i)​ Unit Testing:

 This focuses on the smallest unit of software design. The

module using the details design description as a guide; important control paths

are tested to uncover errors within the boundary of the module.

Unit test consideration:

​ ​ ​ The module interface id tested to ensure that information

properly flows into and out of the program unit under test. The local data

structures are examined to ensure that the data stored temporarily maintains it

integrity during all steps in an algorithm execution. Boundary conditions are

tested to ensure that the module operates properly at boundaries established to

limit or restrict processing. The test of data flow across a module interface is

required before any other test. If data do not enter and exit properly, all other

tests are moot.

Unit Procedure:

●​ Unit test is normally considered adjunct to the coding style.

●​ After source level code has been developed, reviewed and verified for

correct syntax, unit test case design begins. Each test case should be

coupled with a set of expected results.

●​ Normally, a driver is a “main program” that accepts test case data,

passes such data to the module to be tested and prints the relevant

results. Stubs serve to replace modules that are subroutines called by

the module to be tested. A Stub or ‘dummy stub program’ uses the

subroutine module’s interface to do minimal data manipulation and

returns.

 Unit testing is simplified when a module with high

cohesion is designed. When a module addresses only one function, the number of

test cases is reduced and errors can be more easily predicted and uncovered.

 ​ ​

(ii) Integration Testing:

​ ​ Integration is a systematic technique for constructing the

program structure, while at the same time conducting tests to uncover errors

associated with interfacing. The objective is to make unit-tested modules and

build a program structure that has been dictated by design. Incremental

integration is the program that is the program that is constructed and tested in

small segments where errors are easier to isolate and correct.

Top down Integration:

​ ​ ​ Top-down integration is an incremental approach to the

construction of program structure. Modules are integrated by moving downward

through the control hierarchy, beginning with the main control module. Module

subroutine to the main control module is incorporated into the structure either in

a depth-first manner is engaged for this system. Breadth-first incorporates all

modules directly subroutine at each level, moving across the structure

horizontally.

The integration process is performed in a series of five steps:

a.​ The main control module is used as a test driver and stubs are substituted for

all modules directly subroutine to the main control module.

b.​ Depending on the integration approach selected (depth or breadth first)

subroutine stub are replaced one at a time with actual modules.

c.​ Tests are conducted as each module is integrated.

d.​ On the completion of each set of test, another stub is replaced with the real

module.

e.​ Registration testing is conducted to ensure that new errors have not been

introduced.

(iii) Validation testing:

 ​​ At the end of integration testing, the system is completely assembled

as a package with interfacing errors corrected after which a final series of

software tests namely validation testing begins. Validation succeeds when the

software functions in a manner that can be reasonably expected by the user.

Criteria:

​ ​ Software validation is achieved through black box tests that

demonstrates conformity with requirements.

(iv) System Testing:

​ ​ System testing is actually a series of different tests whose primary

purpose is to fully exercise the computer-based system. Although each test has a

different purpose, all work should verify that all system elements have been

properly integrated and perform allocated functions. Being the most important

test, the performance test is covered briefly below:

a.​ Performance Testing: For real-time systems, software that provides

required function but does not conform to performance requirement is

unacceptable. Performance testing is designed to test the run-time

performance of software within the context of an integrated system.

Performance testing occurs throughout all steps in the testing process. Even

at the unit level, the performance of an individual module may be accessed as

tests are conducted. However, it is not until all system elements are fully

integrated that the true performance of a system can be ascertained.

Debugging:

​ ​ Debugging is not testing not occurs as a consequence of testing, that

is when a test case uncovers an error, debugging is the process that results in the

removal of the error.

Normally three categories for debugging approaches are proposed:

a.​ Brute force

b.​ Back-tracking

c.​ Cause-elimination

a.​ Brute force:

 This is the most common and least efficient method for isolating the

cost of a software error. Brute-force debugging method is usually applied when all

else fails. Using a “let the computer finding the error” philosophy, memory-dumps

are taken, runtime traces are invoked and the program is loaded with WRITE (in

this case message box) statements. In the information that is produced, a clue is

found leading to the cause of the error.

b.​ Back-tracking:

 This is fairly common debugging approach that can be used

successfully in small programs. Beginning at the site where a symptom has been

uncovered, the source code is traced backwards (manually) until the site of the

cost is found.

c.​ Cause-Elimination:

 This approach is manifested by induction/deduction and

introduces the concept of ‘binary partition’. A ‘cause hypothesis’ is devised and

the error related data are used to prove or disprove the hypothesis. Alternatively,

a list of all possible causes is developed, and tests are conducted to eliminate

each. If initial tests indicate that a particular cause hypothesis shows promise,

that data are refined in an attempt to isolate the path.

 Each of the debugging approaches can be supplemented with

debugging tools. A wide variety of debugging compilers, dynamic debugging aids

(tracers), automatic test case generators, memory dumps and cross-reference

maps can be applied. However, tools are not a substitute for careful evaluation,

based on a complete software design document and clear source code.

SYSTEM IMPLEMENTATION

​ ​ After proper testing and validation, the question arises whether the

system can be implemented or not. Implementation includes all those activities

that take place to convert from the old system to the new. The new system may

be totally new, replacing an existing module or automated system, or it may be

major modification to an existing system. In either case proper implementation is

essential to provide a reliable to provide a reliable system to meet organization

requirements.

​ ​ All planing has now, be completed and the transformation to a fully

operational system can commence. The first job will be writing, debugging

documenting of all computer programs and their integration into a total system.

The master and transaction files are decided, and this general processing of the

system is established. Programming is complete when the programs conformed

to the detailed specification.

​ ​ When the system is ready for implementation, emphasis switches to

communicate with the finance department staff. Open discussion with the staff is

important form the beginning of the project. Staff can be expected to the

concerned about the effect of the automation on their jobs and the fear of

redundancy or loss of status must be allayed immediately. During the

implementation phase it is important that all staff concerned be apprised of the

objectives of overall operation of the system. They will need shinning on how

computerization will change their duties and need to understand how their role

relates to the system as a whole. An organization-training program is advisable;

this can include demonstrations, newsletters, seminars etc.

​ ​ The department should allocate a member of staff, who understands

the system and the equipment, and should be made responsible for the smooth

operation of the system. An administrator should coordinate the users to the

system.

​ ​

Users should be informed about new aspects of the system that will, affect them.

The features of the system explained with the adequate documentation. New

services such as security, on-line application from the back-ups must be advertise

on the staff when the time is ripe.

​ ​ Existing documents such as employee loan details should be entered

into the new system. Since these files are very large, conversion of these may

continue long after the system based on current files has been implemented.

Hence we need to assign responsibility for each activity.

​ ​ The system may come into full operation via number of possible

routes. Complete change over at one point time is conceptually the most tidy. But

this approach requires careful planning and coordination, particularly during the

changeover. A phased approach, possible implementing the system of the section

relating to one operation or procedure first and processing to more novel or

complex subsystems in the fullness of time. These likely to be less traumatic. A

phased approach gives the staff time to adjust to the new system. But depends

on being able to split the system, without reliance on it. Thus approach is

sensible when the consequences of failure are disastrous, but will require extra

staff time. The fourth angle, is pilot operation permits any problems to be tackled

on a smaller scale operation. Pilot operation generally means the implementation

of the complete system, but at one location or branch only.

SOFTWARE ARCHITECTURE

 The following diagram illustrates the links between various

components involved in this system:

 CLIENT​ SERVER

 In the following sections the salient features of each of their

components are discussed:

●​ Java

●​ JavaScript

●​ HTML

●​ Servlets

●​ JDBC

●​ MS Access

JAVA

WHAT IS JAVA?

 Java ha two things: a programming language and a platform.

 Java is a high-level programming language that is all of the following

​ ​ ​ Simple​​ ​ Architecture-neutral

​ ​ ​ Object-oriented​ Portable

​ ​ ​ Distributed ​ ​ High-performance

​ ​ ​ Interpreted​ ​ multithreaded

​ ​ ​ Robust​​ ​ Dynamic

​ ​ ​ Secure

​ ​

Java is also unusual in that each Java program is both compiled and

interpreted. With a compile, you translate a Java program into an

intermediate language called Java bytecodes the platform-independent

code instruction is passed and run on the computer.

Compilation happens just once; interpretation occurs each time the

program is executed. The figure illustrates how this works.

You can think of Java byte codes as the machine code instructions for

the Java Virtual Machine (Java VM). Every Java interpreter, whether it’s a

Java development tool or a Web browser that can run Java applets, is an

implementation of the Java VM. The Java VM can also be implemented in

hardware.

Java byte codes help make “write once, run anywhere” possible. You

can compile your Java program into byte codes on my platform that has a

Java compiler. The byte codes can then be run any implementation of the

Java VM. For example, the same Java program can run Windows NT,

Solaris, and Macintosh.

JAVA PLATFORM

 A platform is the hardware of software environment in which a

program runs. The Java platform differs from most other platforms in that it’s a

software only platform that runs on the top of other, hardware-based platform.

Most other platforms are described as a combination of hardware and operating

system.

​ ​

​ ​

The Java platform has two components:

1)​ The Java Virtual Machine (Java VM)

2)​ The Java Application Programming Interface (Java API)

 You have already been introduced to the Java VM. It’s the base for

the Java platform and is ported onto various hardware-based platforms.

​ ​ The Java API is a large collection of ready-made software components

that provide many useful capabilities, such as graphical user interface (GUI)

widgets.

​ ​ The Java API is grouped into libraries (package) of related

components. The next sections, what can Java do? Highlights each area of

functionally provided by the package in the Java API.

​ ​ The following figure depicts a Java program, such as an application or

applet, that’s running on the Java platform. A special kind of application known as

a server serves and supports clients on a network. Examples of the servers

include Web Servers, proxy servers, and mail servers, print servers, and boot

servers. Another specialized program is a Servlet. Servlets are similar to applets

in that they are runtime extensions of the application. Instead of working in

browsers, though, Servlets run with in Java Web Servers, configuring of tailoring

the server.

​ ​ How does the Java API support all of these kinds of programs? With

packages of software components, that provides a wide range of functionality.

The API is the API included in every full implementation of the platform.

​ ​

The core API gives you the following features:

1)​ The Essentials: Objects, Strings, threads, numbers, input

and output, datastructures, system properties, date and

time, and so on.

2)​ Applets: The set of conventions used by Java applets.

3)​ Networking URL’s TCP and UDP sockets and IP addresses.

4)​ Internationalization: Help for writing programs that can be

localized for users.

 Worldwide programs can automatically adept to specific locates and

be displayed in the appropriate language.

JAVA PROGRAM

●​ Java API

●​ Java Virtual Machine

●​ Java Program

●​ Hard Ware

 API and Virtual Machine insulates the Java program from

hardware dependencies. As a platform-independent environment, Java can be a

bit slower than native code. However, smart compilers, well-tuned interpreters,

and Just-in-time-byte-code compilers can bring Java’s performance close to the

native code without threatening portability.

WHAT CAN JAVA DO?

 However, Java is not just for writing cut, entertaining

applets for the World Wide Web (WWW). Java is a general purpose, high-level

programming language and a powerful software platform. Using the fineries Java

API, you can write many types of programs.

​ ​ ​

​ ​ ​ The most common types of program are probably applets and

application, where a Java application is a standalone program that runs directly

on the Java platform.

Security:

​ ​ Both low-level and high-level, including electronic signatures,

public/private key management, accesses control, and certificate.

JavaScript OVERVIEW

INTRODUCTION

​ ​ JavaScript is an interpreted, object-based scripting language. Although

it has fewer capabilities that full-fledged object-oriented like C++ and Java,

JavaScript is more than sufficiently powerful for its intended purposes. JavaScript

is not a cut-down version of any other language; it is not a simplification of

anything. It is, however, limited. You cannot write standalone application in it,

and it has little capability for reading or writing files. Moreover, JavaScript script

can run only in the presence of an interpreter, in either a web server or a web

browser.

​ ​ JavaScript is loosely typed language. That means you do not have to

declare those data types of variables explicitly.

​ ​ It is scripting language used to develop Internet applications mostly

for client side validations. It has the features of windows, frames, buttons, forms,

images, list boxes, applets and so on.

MAIN FEATURES:

​ ​ Most of the browsers support JavaScript. It has all the functionality’s of

a high level language. It supports OOPS.

JavaScript IN VB SCRIPT:

​ ​ Microsoft Visual Basic Scripting Edition, the newest member of the

Visual Basic family of programming languages, brings active scripting to a wide

variety of environments, including web client scripting to a wide variety of

environments, including web client scripting in Microsoft Internet Explorer and

Web server scripting in Microsoft Internet Information Server.

​ ​ VBScript talks with host applications using ActiveX scripting. With

ActiveX, scripting, browsers and host applications do not require special

integration code for each scripting component. ActiveX scripting enables a host to

compile scripts, obtain and call entry points, and manage the namespace

available to the developer.

HYPERTEXT MARKUP LANGUAGE (HTML)

INTRODUCTION

​ ​ HTML is a major language of the Internet’s World Wide Web. Web sites

and web pages are written in HTML. HTML files are plain-text files so they can be

edited on any type of Computer IBM, Mac, UNIX, Intel etc. The World Wide Web

is a collection of linked documents or pages on millions of computers spread over

the entire internet. HTML which defines their appearance and layout and more

importantly creates the links to other documents.

​ ​ A set of instructions embedded in a document is called MarkUp

Language. These instructions describe what the document text means and how it

should look in a display. The language also tells you how to make a document

with other document on your local system, the World Wide Web and other

Internet resources such as FTP.

Brief History of HTML:

​ ​ HTML was originally developed by time Berners lee which at CERN, and

popularized by the mosaic browser developed at NCASA. During of the course of

the 1990’s it has blossomed with the explosive growth of the Web. During this

time, HTML has been extended in a number of ways. The Web depends on Web

page authors and vendors sharing the same conversions for HTML. This has

motivated the join work on specifications for HTML. HTML 2.0 was developed

under the aegis of the Internet Engineering Task Force (IETF) to codify common

practice in late 1994. HTML has been developed with the version that all manners

of devices should be able to use information on the Web. Computers with high or

low and bandwidth.

Document Structure Elements:

​ HTML documents are composed of four parts:

​ ​

●​ A HTML document begins with a line declaring which version of

HTML is being used to create the document.

●​ A HTML document that describes the documents as a HTML

document.

●​ A declarative header section which is enclosed in the <HEAD>

element

●​ The main body of the document that contains the actual

document content. The body can be contained within either the

<BODY> elements.

 The “head” section is opened and closed by <HEAD> and </HEAD>

tags. Information about the document such as the title, indexing information and

ownership. The “body” section is opened and closed by <BODY> and </BODY>

tags. The text and images of the document itself to be displayed by the Web

browser.

Model HTML document:

<HTML>

<HEAD>

<TITLE>

​ ​ <SAMPLE HTML Document>

</TITLE>

</HEAD>

<BODY>……………………………….</BODY>

</HTML>

SERVLETS OVERVIEW

INTRODUCTION

​ ​ Servlets extend the request-response-oriented servers, such as

Java-enabled Web servers. For example, a Servlet can retrieve data from an

HTML form and applying the business logic used to update Product database.

​ ​ Applets used in browsers. Similarly Servlets for server.

​ ​ The Servlet API assumes nothing about the server’s environment or

protocol. Therefore, Servlet can be embedded in many different servers.

Uses of Other Servlets:

​ ​ There are many applications for Servlets:

 ​ ​ ​

●​ A Servlet can handle multiple requests concurrently, it

allows Servlets to support systems and concurrently

requests.

●​ Servlets can be used to balance load among several

servers that mirror the same content, and to partition a

single logical service over several servers, thus Servlets

can forward requests.

Web Servers:

​ ​ A Web server receives the request it then springs into action.

Depending on the type of request, the webserver might look for a web page or it

might execute program on the server, usually, as discussed earlier, CGI script or an

advanced server-side program.

The Servlet API:

​ ​ The two packages contains the code to build the Servlets:

javax.servlet and javax.servlet.http

The javax.servlet package:

​ ​ The javax.servlet package contains a number of interfaces and classes

that establish the framework in which Servlets operate. The ServletRequest and

ServletResponse are also very important.

●​ The ServletRequest interface is used to read data from a client

request.

●​ The ServletResponse interface is used to write data to a client

response.

The Servlet Interface:

​ ​ All Servlets must implement the Servlet interface. Generic Servlet

must implements the Servlet and Servletconfig interface. HttpServlet extends

GenericServlet. It is commonly used to Servlets that receives and process HTTP

requests.

The ServletRequest Interface:

​ ​ The server implements the ServletRequest interface. It enables to

obtain about a client request:

●​ The parameter of the names passed by the client, and the names of

the remote host that made the request.

●​ Servlets use to get data from clients that use application protocols

such as the HTTP POST and PUT methods in an InputStream such as

ServletInputStream.

●​ The HttpServletRequest interface contains methods for accessing

HTTP-specific header information.

The ServletResponse Interface:

​ ​ The ServletResponse interface is implemented by the server. It enables

to obtain about a client response:

●​ It allows the Servlet to set the content length.

●​ Servlet can send the reply data which writer through n output

stream such as ServletOutputStream.

●​ The HttpResponse interface contains allow the Servlet to

manipulate HTTP-specific header information.

Hypertext Transfer Protocol (HTTP):

​

​ ​ The Hypertext Transfer Protocol (HTTP) is used an application-level

protocol for distributed, collaborative, hypermedia information systems. A feature

of HTTP is the typing and negotiation of data representation, allowing systems to

be built independently of the data being transferred. The HTTP protocol is a

request/response protocol.

The javax.servlet.http Package:

​ ​ The javax.servlet.http package contains several interfaces and classes

that are commonly used by Servlet developers.

Http Request and Responses:

​ ​ The Http Requests and Responses contains in two arguments:

●​ An HttpServletRequest is used to enables Servlets to

read data from an HTTP request.

●​ An HttpServletResponse is used to enables Servlets to

write data to an HTTP response.

HttpServletRequest Object:

​ ​ An HttpServletRequest Object provides to access the data from the

client:

●​ The getParameter method returns the value of a named

parameter and similarly the getParameterValues method

returns an array of values for the named parameter.

●​ The getReader method returns the BufferedReader to

use to read the data.

●​ The getInputStream method returns the

ServletInputStream to use to read the data.

HttpServletResponse Objects:

​ ​ An HttpServletResponse object provides the HTTP method. To access

the data from the user:

●​ The getWriter method returns a Writer.

●​ The getOutputStream method returns the

ServletOutputStream.

HTTP Header Data:

​ ​ The HTTP header data means to access Writer or OutputStream. For

example, the GET and POST for HTTP requests to which the service method

includes:

●​ The handling for GET requests returns to doGet, Conditional GET and

HEAD requests.

●​ The handling for POST requests returns to doPost.

●​ The handling for PUT requests returns to doPut.

●​ The handling for DELETE requests returns to doDelete.

Servlets Features:

​ ​ Servlets are efficient when compared to any other server-side

programs. They allow persistence of data to be maintained. More important is the

fact they are portable, robust security features.

Servlets Better than CGI:

​ ​ Servlets offer advantages over CGI in the areas of performance,

portability and security. Each of these advantages will be discussed in turn:

1.​ Performance is perhaps the most visible difference between Servlets and

CGI. Since most Servlets run in the same process space as the server

and are loaded only once, they are able to respond much more quickly

and efficiently to client requests. In contrast, CGI must create a new

process to service each new request. The overhead involved with

creating a new process incurs a significant performance penalty. Unlike

Servlets, CGI cannot share a single database connection across multiple

requests.

2.​ Portability is another strong advantage for Servlets. Unlike many CGI

applications, Servlets can be run on different servers and platforms

without modifications. This characteristic can be extremely important

when building enterprise-wide distributed applications.

3.​ Servlets are much more secure than CGI. Though CGI scripts can be

written in Java, they are often written in more error-prone language such

as C, since C programs can inadvertently or maliciously access invalid

memory locations, CGI programs are less secure. Of course, these

restrictions can be lifted according to the security policies set by the Java

Security Manager.

Life Cycle of Servlet:

​ Each Servlet has the same life cycle:​ ​

●​ Sever loads and initializes the servlets calls the init () method.

●​ The sever handles zero or more client requests calls the service

() method.

●​ The server removes the servlets calls the destroy () method.

(Some servers do this step only when they shutdown Destroy ())

Initialization Parameters of Servlets:

​ ​ Initialize the Servlet before client requests are handled and before the

Servlet is destroyed. The Servlet runs the init method. The Servlet calls the init

method when the server loads the Servlet, and similarly will not call the init

method again unless the server is reloading the Servlet. After initialization, the

Servlet able to handle client requests. Initialization can be accessed in two ways:

●​ The init method declared by the Servlet interface receives

ServletConfig object as its argument. This object provides

methods that enable you to read the initialization parameters.

●​ The getServletConfig method declared by the Servlet interface

returns a ServletConfig object.

Destroying Servlets:

​ ​ Destroys the Servlet runs the servlet’s destroy method. The method is

run once; similarly the server will not run the destroy method, when the server

calls the destroy method, another thread might be running a service request.

Servlets run until the server destroys them.

Communication of Servlets:

​ ​ To communicate Servlets sometimes need to access network

resources. HTML pages, objects shared among Servlets at the same server and

other Servlets:

●​ The Request Dispatcher Object with other Server Resources

(JSDK 2.1) such as other Servlets with HTML pages and so on.

●​ The resource is an object in the JAVA programming language

such as Sharing Resources among Servlets (JSDK2.1).

●​ The other servlet’s Servlet object and calling its public such as

Calling Servlet from Servlets (JSDK2.0).

Utilities For Running Servlets:

​ ​ The JSDK2.0 has a utility called Servletrunner. If you can test it with

the utility included in the JSDK, while JSDK2.1 comes with a small utility server.

Properties of Servlets:

The Servlet requires initialization parameters, if you set this data before starting

the JSDK process that runs your Servlet.

JAVA DATABASE CONNECTIVITY (JDBC)

JDBC AND ODBC IN JAVA:

​ ​ Most popular and widely accepted database connectivity called Open

Database Connectivity (ODBC) is used to access the relational databases. It

offers the ability to connect to almost all the databases on almost all platforms.

Java applications can also use this ODBC to communicate with a database. Then

we need JDBC why? There are several reasons:

●​ ODBC API was completely written in C language and it makes an

extensive use of pointers. Calls from Java to native C code have a

number of drawbacks in the security, implementation, robustness and

automatic portability of applications.

●​ ODBC is hard to learn. It mixes simple and advanced features

together, and it has complex options even for simple queries.

●​ ODBC drivers must be installed on client’s machine.

Architecture of JDBC:

​ ​ JDBC Architecture contains three layers:

1.​ Application Layer: Java program wants to get a connection to a database.

It needs the information from the database to display on the screen or to

modify the existing data or to insert the data into the table.

2.​ Driver Manager: The layer is the backbone of the JDBC architecture.

When it receives a connection-request form.

3.​ The JDBC Application Layer: It tries to find the appropriate driver by

iterating through all the available drivers, which are currently registered

with Device Manager. After finding out the right driver, it connects the

application to appropriate database.

4.​ JDBC Driver layers: This layer accepts the SQL calls from the application

and converts them into native calls to the database and vice-versa. A

JDBC Driver is responsible for ensuring that an application has consistent

and uniform m access to any database.

When a request received by the application, the JDBC driver passes the

request to the ODBC driver, the ODBC driver communicates with the

database, sends the request, and gets the results. The results will be passed

to the JDBC driver and in turn to the application. So, the JDBC driver has no

knowledge about the actual database, it knows how to pass the application

request o the ODBC and get the results from the ODBC.

​ The JDBC and ODBC interact with each other, how? The reason is both

the JDBC API and ODBC are built on an interface called “Call Level Interface”

(CLI). Because of this reason, the JDBC driver translates the request to an

ODBC call. The ODBC then converts the request again and presents it to the

database. The results of the request are then fed back through the same

channel in reverse.

Structured Query Language (SQL):

​ ​ SQL (Pronounced Sequel) is the programming language that

defines and manipulates the database. SQL databases are relational

databases; this means simply the data is store in a set of simple relations. A

database can have one or more table. You can define and manipulate data in

a table with SQL commands. You use the data definition language (DDL)

commands to creating and altering databases and tables.

​ ​ You can update, delete or retrieve data in a table with data

manipulation commands (DML). DML commands include commands to alter

and fetch data.

​ ​ The most common SQL commands include commands is the

SELECT command, which allows you to retrieve data from the database.

​ ​ In addition to SQL commands, the oracle server has a

procedural language called PL/SQL. PL/SQL enables the programmer to

program SQL statement. It allows you to control the flow of a SQL program,

to use variables, and to write error-handling procedures​

​ ​

Data Flow Diagrams

Definition:​ ​

A data flow diagram is a graphical technique that depicts information flow and

the transforms that applied as data move from input to output. The Data flow

diagram used to represent a system or software at any level of abstraction. In fact

DFDs may be portioned into levels.

A level of DFD, also called a context model, represents the entire software

elements as a single bubble with input and output by arrow. A level of DFD is

portioned into several bubbles with inter connecting arrows. Each of the process

represented at level one is sub function of the over all depicted in the context model.

The DFD Notations:

Hardware person and other program.

​ ​

 ​ ​ ​ ​ ​ ​ Information of the system to be modeled.

​ ​

Data Item(s): Arrowhead indicates the

direction of flow

 ​ ​ ​ ​ ​ Stored Information that is used by the s/w

Level 0:

DATA FLOW DIAGRAM FOR OVERALL SYSTEM

Level 1:

USERS MODULE FLOW PROCESS

ADMINISTRATIVE MODULE FLOW PROCESS

PROJECT MAINTENANCE FLOW PROCESS

EMPLOYEE DETAILS FLOW PROCESS

TRAINING EMPLOYEE’S FLOW PROCESS

RECRUITMENT FLOW PROCESS

REPORTS FLOW PROCESS

DATABASE DESIGN

Admin Table :
Field Name Data Type
Adminname Text
Adminpwd Text

Answer Table :
Field Name Data Type
No Number
a1 Text
a2 Text
a3 Text
a4 Text
a5 Text
a6 Text
a7 Text

Campus Table :
Field name Data type
Recode Text
Name Text
Cname Text
Caddress Text
Doi Text
Perfor Text
Parea Text
Aot Text
Refby Text

Choice Table :
Field name Data type
Qno Number
c1 Memo
c2 Memo
c3 Memo
c4 Memo

Company Table :
Field name Data type
Cname Text

Address Text
Country Text
City Text
Area Text
Phone Number
Email Text
url Text
Mname Text
Yos Text

Employee table :
Field name Data type
Ecode Number
Ename Text
Email Text
Quali Text
Ccexp Text
Pcexp Text
Bgroup Text
Dob Text
Jcode Number
Jnature Text
Mstatus Text
Ref Text
Paddress Text
Peradd Text

Projectm :
Field name Data type
Pcode Number
Pcat Text
Pplace Text
Cname Text
Cnature Text
Pname Text
Parea Text
Psdate Text
Pedate Text

Questions :​
Field name Data type
Sno Number
q1 Memo
q2 Memo
q3 Memo
q4 Memo
q5 Memo

q6 Memo
q7 Memo

Rdirect :​
Field name Data type
Rcode Number
Name Text
Passwd Text
Marks Number

Rproject :
Field name Data type
reccode Text
Name Text
Ptitle Text
Plang Text
Pplace Text
Pfdate Text
Ptdate Text
Doi Text
Email Text
Address Text
Quali Text

Temployee :
Field name Data type
Ecode Number
Ename Text
Email Text
Jcode Number
Tcategory Text
Tplace Text
Tsdate Text
Tedate Text
Tperson Text

Userreg :
Field name Data type
Userid Text
Passwd Text
Sex Text
Dob Text
Address Text
City Text
Country Text

Quali Text
Skills Text
Phone Number
email1 Text
email2 Text

SOURCE CODE

Program

No
Program Name Program Description

1 New User Sign This program helps to get the Personnel
Information Details (i.e.) getting the
information of Customer’s name, his
password, sex, contact address etc.

2 User Login Selects the name and password from the
stored details of the database using SQL
query.

3 Online Test All Users must Attend the Online Test and
who qualified in this test, which one
selected for the direct interview.

4 Results We know about the Online test’s Results
5 Company Details Here view about all project Company’s

Details
6 Employee Details Here enter the working employee’s

details. i.e., empname, Address etc.,
7 Training Employee’s Details Here enter the Training employee’s

details.
i.e., train area, train place etc.,

8 Recruitment Process Here Recruit all students and publics.
Here all of them should attend the online
test.

9 Recruit Reports Here should view about all the recruit
reports. I.e., direct interview, campus
inter view, absorbing trainee.

10 Employee Report Let the option to proceed further details
about employee and training employees

11 Project Report Let the option to proceed further details
about the onshore or the off shore
projects

12 Campus Interview Who one had selected in online test that
person should attend the Campus
interview. Here those people details are
stored.

1.New users Login Java Servlet:

import javax.servlet.http.*;
import javax.servlet.*;
import java.sql.*;
import java.io.*;

public class usersreg extends HttpServlet
{
 Connection c;
 public void doGet(HttpServletRequest re,HttpServletResponse rs) throws
ServletException,IOException
 {
 rs.setContentType("text/html");
 PrintWriter out=rs.getWriter();
 String name=re.getParameter("t1");
 String passwd=re.getParameter("t2");
 String sex=re.getParameter("t3");
 String date=re.getParameter("date");
 String mon=re.getParameter("mon");
 String year=re.getParameter("year");
 String address=re.getParameter("t5");
 String city=re.getParameter("t6");
 String country=re.getParameter("t7");
 String pin=re.getParameter("pin");
 long pincode=Long.parseLong(pin);
 String quali=re.getParameter("t8");
 String skill=re.getParameter("t9");
 String phone1=re.getParameter("t10");
 long phone=Long.parseLong(phone1);
 String e1=re.getParameter("t11");
 String e2=re.getParameter("t12");
 String dob=date+"/"+mon+"/"+year;

try
 {
 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
 c=DriverManager.getConnection("jdbc:odbc:hrms");

 Statement s=c.createStatement();
 ResultSet r;
 r=s.executeQuery("select username from userreg");
 int temp=0;
 while(r.next())
 {
 if(name.equals(r.getString(1)))
 {
 temp=1;
 break;
 }
 }
 if(temp==1)
 {
 out.println("<html><body bgcolor=skyblue><center>");
 out.println("

<pre align=center>");
 out.println("<h3>Sorry,UserName Already Exist, Please Try
Again</h3>

");
 out.println("Back");
 out.println("</center></body></html>");
 }
 else
 {
 String str="insert into userreg
values('"+name+"','"+passwd+"','"+sex+"','"+dob+"','"+address+"','"+city+"','"+co
untry+"',"+pincode+",'"+quali+"','"+skill+"',"+phone+",'"+e1+"','"+e2+"')";
 //out.println(str);
 s.executeUpdate(str);
 out.println("<html><body bgcolor=skyblue><center>");
 out.println("

<pre align=center>");
 out.println("<h3>YOUR DETAILS ARE STORED</h3>

");
 out.println("Proceed
Further");
 out.println("</center></body></html>");
 }
 }
 catch(SQLException sqle)
 {
 out.println(sqle);
 }
 catch(ClassNotFoundException cnfe)
 {
 out.println(cnfe);
 }
 }
}

2. Users Login in Java Servlet:

import javax.servlet.http.*;
import javax.servlet.*;
import java.sql.*;
import java.io.*;
public class userslogin extends HttpServlet
{
 public void doGet(HttpServletRequest re,HttpServletResponse rs) throws
ServletException,IOException
 {
 rs.setContentType("text/html");
 PrintWriter out=rs.getWriter();
 out.println("<html>");
 out.println("<head>");
 out.println("<title></title>");
 out.println("<style>a{color:black}</style></head>");
 out.println("<body bgcolor=skyblue text=black>");
 out.println("<form name=per method=post
action='http://localhost:8080/servlet/userslogin'>");
 out.println("");
 out.println("<h2 align=center>");
 out.println("​Users Login Module");
 out.println("</h2>

<table align=center><tr>");
 out.println("<td>User
name</td>");
 out.println("<td><input type=text name=uname></td></tr><tr>");
 out.println("<td>Password</td>");
 out.println("<td><input type=password name=upass>
</td></tr></table>

");
 out.println("<center><input type=submit name=sub1 value=Submit>");
 out.println("<input type=reset name=can value=Cancel></center>
");
 out.println("<center> <font
size=-1>Back");
 out.println("​ New
User");
 out.println("</center>");

 out.println("</form></body></html>");
 }
 public void doPost(HttpServletRequest re,HttpServletResponse rs) throws
ServletException,IOException
 {
 rs.setContentType("text/html");
 PrintWriter out=rs.getWriter();
 HttpSession hp=re.getSession(true);
 String name=re.getParameter("uname");

String pass=re.getParameter("upass");
 hp.putValue("username",name);
 hp.putValue("password",pass);
 Connection con;
 try
 {
 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
 con=DriverManager.getConnection("jdbc:odbc:hrms");
 Statement s=con.createStatement();
 ResultSet r=s.executeQuery("select *from userreg");
 int temp=0;
 while(r.next())
 {
 if(name.equals(r.getString(1)) && pass.equals(r.getString(2)))
 {
 temp=1;
 }
 }
 if(temp==1)
 {
 out.println("<HTML>");
 out.println("<HEAD><center><META NAME='GENERATOR' Content='Microsoft
Developer Studio'>");
 out.println("<META HTTP-EQUIV='Content-Type' content='text/html'
charset=iso-8859-1>");
 out.println("<TITLE>Document
Title</TITLE><style>a{color:blue}</style></HEAD>");
 out.println("<BODY bgcolor=skyblue>

<p align=center>");
 out.println(" Hello,<u><font
color=red></u>");
 out.println("

");
 out.println("<h3><a href='http://localhost:8080/servlet/testing' style='color:
rgb(0,0,255)'>Click here for Online Test</h3>");

 out.println("

");
 out.println("Back ");
 out.println("Home
Page</center></BODY></HTML>");
 }

else
 {
 out.println("<body bgcolor=skyblue><center>

");
 out.println("<h2 align=center>");
 out.println("YOU ARE NOT A VALID USER");
 out.println("</h2>

<font
size=-1>Back</center>");
 }

 }
 catch(SQLException sqle)
 {
 out.println(sqle);
 }
 catch(ClassNotFoundException cnfe)
 {
 out.println(cnfe);
 }
 }
 }

4.Online Test in Java Servlet:

import javax.servlet.http.*;
import javax.servlet.*;
import java.sql.*;
import java.io.*;
public class testing extends HttpServlet
{
 Connection con;
 public void doGet(HttpServletRequest re,HttpServletResponse rs) throws
IOException,ServletException
 {
 rs.setContentType("text/html");
 PrintWriter out=rs.getWriter();
 Statement s=null,s1=null;
 ResultSet r=null,r2=null;
 double a1;
 a1=java.lang.Math.random();
 a1=a1*1000;
 int a2=(int)a1;
 int a3=a2%4;
 a3=a3+1;
 Integer a4=new Integer(a3);
 HttpSession hs=re.getSession(true);
 hs.putValue("key",a4);
 try
 {
 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
 con=DriverManager.getConnection("jdbc:odbc:hrms");
 s=con.createStatement();
 s1=con.createStatement();
 r=s.executeQuery("select * from questions where [sno]="+a3);
 r2=s1.executeQuery("select * from choice where [qno]="+a3);​
 /* while(r2.next())
 {
 out.println(r2.getString(2));
 out.println(r2.getString(3));
 out.println(r2.getString(4));

 out.println(r2.getString(5));
 }

 while(r.next())
 {
 out.println(r.getString(2));
 out.println(r.getString(3));
 out.println(r.getString(4));
 out.println(r.getString(5));
 out.println(r.getString(6));
 out.println(r.getString(7));
 out.println(r.getString(8));

 }*/
 r.next();
 r2.next();
 out.println("<html><body
bgcolor=skyblue>
<h2><center>QUESTIONS</center></h2>");
 out.println("<form method=post
action='http://localhost:8080/servlet/results'>");

 String c1,c2,c3,c4;
 c1=r2.getString(2);
 //out.println(c1);
 c2=r2.getString(3);
 c3=r2.getString(4);
 c4=r2.getString(5);
 out.println("

<h3>1."+r.getString(2)+"</h3>");
 out.println("<input type=radio name=q1 value="+"'"+c1+"'"+">"+c1);
 out.println("<input type=radio name=q1 value="+"'"+c2+"'"+">"+c2);
 out.println("<input type=radio name=q1 value="+"'"+c3+"'"+">"+c3);
 out.println("<input type=radio name=q1 value="+"'"+c4+"'"+">"+c4);
 r2.next();

 c1=r2.getString(2);
 c2=r2.getString(3);
 c3=r2.getString(4);
 c4=r2.getString(5);
 out.println("

<h3>2."+r.getString(3)+"</h3>");
 out.println("<input type=radio name=q2 value="+"'"+c1+"'"+">"+c1);
 out.println("<input type=radio name=q2 value="+"'"+c2+"'"+">"+c2);
 out.println("<input type=radio name=q2 value="+"'"+c3+"'"+">"+c3);
 out.println("<input type=radio name=q2 value="+"'"+c4+"'"+">"+c4);
 r2.next();

 c1=r2.getString(2);
 c2=r2.getString(3);
 c3=r2.getString(4);
 c4=r2.getString(5);
 out.println("

<h3>3."+r.getString(4)+"</h3>");
 out.println("<input type=radio name=q3 value="+"'"+c1+"'"+">"+c1);
 out.println("<input type=radio name=q3 value="+"'"+c2+"'"+">"+c2);
 out.println("<input type=radio name=q3 value="+"'"+c3+"'"+">"+c3);

 out.println("<input type=radio name=q3 value="+"'"+c4+"'"+">"+c4);
 r2.next();
 c1=r2.getString(2);
 c2=r2.getString(3);
 c3=r2.getString(4);
 c4=r2.getString(5);
 out.println("

<h3>4."+r.getString(5)+"</h3>");
 out.println("<input type=radio name=q4 value="+"'"+c1+"'"+">"+c1);
 out.println("<input type=radio name=q4 value="+"'"+c2+"'"+">"+c2);
 out.println("<input type=radio name=q4 value="+"'"+c3+"'"+">"+c3);
 out.println("<input type=radio name=q4 value="+"'"+c4+"'"+">"+c4);
 r2.next();
 c1=r2.getString(2);
 c2=r2.getString(3);
 c3=r2.getString(4);
 c4=r2.getString(5);
 out.println("

<h3>5."+r.getString(6)+"</h3>");
 out.println("<input type=radio name=q5 value="+"'"+c1+"'"+">"+c1);
 out.println("<input type=radio name=q5 value="+"'"+c2+"'"+">"+c2);
 out.println("<input type=radio name=q5 value="+"'"+c3+"'"+">"+c3);
 out.println("<input type=radio name=q5 value="+"'"+c4+"'"+">"+c4);
 r2.next();
 c1=r2.getString(2);
 c2=r2.getString(3);
 c3=r2.getString(4);
 c4=r2.getString(5);
 out.println("

<h3>6."+r.getString(7)+"</h3>");
 out.println("<input type=radio name=q6 value="+"'"+c1+"'"+">"+c1);
 out.println("<input type=radio name=q6 value="+"'"+c2+"'"+">"+c2);
 out.println("<input type=radio name=q6 value="+"'"+c3+"'"+">"+c3);
 out.println("<input type=radio name=q6 value="+"'"+c4+"'"+">"+c4);
 r2.next();
 c1=r2.getString(2);
 c2=r2.getString(3);
 c3=r2.getString(4);
 c4=r2.getString(5);
 out.println("

<h3>7."+r.getString(8)+"</h3>");
 out.println("<input type=radio name=q7 value="+"'"+c1+"'"+">"+c1);
 out.println("<input type=radio name=q7 value="+"'"+c2+"'"+">"+c2);
 out.println("<input type=radio name=q7 value="+"'"+c3+"'"+">"+c3);
 out.println("<input type=radio name=q7 value="+"'"+c4+"'"+">"+c4);
 out.println("

<center><input type=submit
value=send></center>");
 out.println("</form></body></html>");
 }
 catch(SQLException sqle)
 {
 out.println(sqle);
 }
 catch(ClassNotFoundException cnfe)
 {
 out.println(cnfe);
 }

 try
 {
 s.close();s1.close();r2.close();r.close();
 }
 catch(SQLException sqle1)
 {
 out.println(sqle1);
 }
 }
}

4.​ Results in Java Servlet:

import javax.servlet.http.*;
import javax.servlet.*;
import java.sql.*;
import java.io.*;
public class results extends HttpServlet
{
 Connection c=null;
 int rcode1;
 public void doPost(HttpServletRequest re,HttpServletResponse rs) throws
IOException,ServletException
 {
 rs.setContentType("text/html");
 PrintWriter out=rs.getWriter();
 int mark=0,temp=0,rcode;
 try
 {
 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
 c=DriverManager.getConnection("jdbc:odbc:hrms");
 Statement s=c.createStatement();
 Statement s1=c.createStatement();
 Statement st1=c.createStatement();
 Statement st=c.createStatement();
 HttpSession hp=re.getSession(true);
 Integer in=(Integer)hp.getValue("key");
 int no=in.intValue();
 // String a="SELECT answers.[no], answers.a1, answers.a2, answers.a3,
answers.a4, answers.a5, answers.a6, answers.a7 FROM answers WHERE
(((answers.[no])="+no+"))";
 String a="select *from answers where [no]="+no;
 //out.println(a);
 ResultSet r=st.executeQuery(a);
 //out.println(r.next());
 /* while(r.next())
 {
 out.println(r.getString(2));
 out.println(r.getString(3));

 out.println(r.getString(4));
 out.println(r.getString(5));
 out.println(r.getString(6));
 out.println(r.getString(7));
 out.println(r.getString(8));
 }*/
 HttpSession hs=re.getSession(true);
 String a1=re.getParameter("q1");
 //out.println(a1);
 String a2=re.getParameter("q2");
 //out.println(a2);
 String a3=re.getParameter("q3");
 //out.println(a3);
 String a4=re.getParameter("q4");
 //out.println(a4);
 String a5=re.getParameter("q5");
 //out.println(a5);
 String a6=re.getParameter("q6");
 //out.println(a6);
 String a7=re.getParameter("q7");
 //out.println(a7);
 while(r.next())
 {
 if(a1.equalsIgnoreCase(r.getString(2)))
 mark=mark+1;
 if(a2.equalsIgnoreCase(r.getString(3)))
 mark=mark+1;
 if(a3.equalsIgnoreCase(r.getString(4)))
 mark=mark+1;
 if(a4.equalsIgnoreCase(r.getString(5)))
 mark=mark+1;
 if(a5.equalsIgnoreCase(r.getString(6)))
 mark=mark+1;
 if(a6.equalsIgnoreCase(r.getString(7)))
 mark=mark+1;
 if(a7.equalsIgnoreCase(r.getString(8)))
 mark=mark+1;
 }
 // out.println(mark);
 if(mark>5)
 {
 String name=(String)hs.getValue("username");
 String pass=(String)hs.getValue("password");
 ResultSet rs1=st.executeQuery("select * from rdirect");
 while(rs1.next())
 {
 temp=1;
 break;
 }
 if(temp==1)
 {
 rs1=st1.executeQuery("select max(rcode) from rdirect");
 while(rs1.next())

 {
 rcode1=rs1.getInt(1);
 rcode1=rcode1+1;
 }
 }
 else
 {
 rcode1=1;
 }
 s1.executeUpdate("insert into rdirect
values("+rcode1+",'"+name+"','"+pass+"',"+mark+")");
 out.println("<html>");
 out.println("<center><body
bgcolor=skyblue><center>

");
 out.println("<h3>CONGRATS! YOU ARE
SELECTED</h3></body></center>");
 out.println("

Please contact us in the following
address
");
 out.println("
Hindustan Software Limited
");
 out.println("No.120 Wallajah Road,
");
 out.println("Triplicane, Chennai-2");
 out.println("

<h4>BACK</h4></center>"
);
 }
 else
 {
 out.println("<html>");
 out.println("<center><body
bgcolor=skyblue><center>

");
 //out.println("<h2 align=center>");
 out.println("<h3>SORRY YOU ARE NOT SELECTED. BETTER LUCK NEXT
TIME</h3></body></center>");
 out.println("

<h4>BACK</h4></center>"
);
 }

 }
 catch(SQLException sqle)
 {
 out.println(sqle);
 }
 catch(ClassNotFoundException cnfe)
 {
 out.println(cnfe);
 }
 }
}

5.​ Company Details in Java Servlet:

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;
import java.sql.*;
public class compview extends HttpServlet {

 Connection c4;
 Statement st;
 ResultSet rs;
 String s1="";
 String ss1="";

 public void init(ServletConfig sc) throws ServletException
 {
 try
 {

 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
 c4=DriverManager.getConnection("jdbc:odbc:hrms","","");
 }
 catch(Exception ee4){}
 }

 public void doGet(HttpServletRequest req,HttpServletResponse res)
 throws ServletException,IOException {

 PrintWriter pw=res.getWriter();

 //s1=req.getParameter("s1");
 int temp=0;
 try{

 st=c4.createStatement();

 ss1="select * from company";

 rs=st.executeQuery(ss1);
 pw.println("<html><body
bgcolor=skyblue><style>a{color:black}</style><center><h3>COMPANY
DETAILS</h3>

");
 pw.println("<table border=2 align=center>");
 pw.println("<tr><th>Company name
</th><th>Address</th><th>country</th><th>city</th><th>area</th><t
h>phone</th><th>email</th><th>url</th><th>Manager
name</th><th>Year of origin</th></tr>");

 while(rs.next())
 {

 pw.println("<tr><td>" +rs.getString(1) +"</td><td>"
+rs.getString(2) +"</td><td>" +rs.getString(3) +"</td><td>"
+rs.getString(4) +"</td><td>" +rs.getString(5) +"</td><td>"
+rs.getInt(6) +"</td><td>" +rs.getString(7) +"</td><td>"
+rs.getString(8) +"</td><td>" +rs.getString(9) +"</td><td>"
+rs.getString(10) +"</td></tr>");
 temp=1;
 }

 pw.println("</table>");
 pw.println("

");

 pw.println("

");
 pw.println("BACK</center>");
 if(temp==0)
 pw.println("NO DATA FOUND");

 }catch(SQLException ee1) {pw.println(ee1);}

}
}

7.Employee details in Java Servlet:

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;
import java.sql.*;
public class empview extends HttpServlet {

 Connection c4;
 Statement st;
 ResultSet rs;
 String s1="";
 String ss1="";

 public void init(ServletConfig sc) throws ServletException
 {
 try
 {

 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
 c4=DriverManager.getConnection("jdbc:odbc:hrms","","");
 }
 catch(Exception ee4){}
 }

 public void doGet(HttpServletRequest req,HttpServletResponse res)
 throws ServletException,IOException {

 PrintWriter pw=res.getWriter();

 //s1=req.getParameter("s1");

 try{

 st=c4.createStatement();

 ss1="select * from employee";

 rs=st.executeQuery(ss1);

 pw.println("<html><body
bgcolor=skyblue><h4><style>a{color:black}</style></h4>
<center><h2>E
mployee Details</h2></center>
");
 pw.println("<table border=2 align=center>");
 pw.println("<tr><th>Employee No</th><th>E
name</th><th>Email</th><th>Quali</th><th>Ccexp</th><th>Pcexp</th><th>
Bgroup</th><th>DOB</th><th>JobCode
</th><th>JobNature</th><th>Mstatus</th><th>Reference</th><th>Paddress</
th><th>Peradd</th></tr>");
 int temp=0;
 while(rs.next())
 {
 temp=1;
 pw.println("<tr><td>" +rs.getInt(1) +"</td><td>"
+rs.getString(2)+"</td><td>" +rs.getString(3) +"</td><td>" +rs.getString(4)
+"</td><td>" +rs.getString(5) +"</td><td>" +rs.getString(6) +"</td><td>"
+rs.getString(7) +"</td><td>" +rs.getString(8) +"</td><td>" +rs.getInt(9)
+"</td><td>" +rs.getString(10) +"</td><td>" +rs.getString(11) +"</td><td>"
+rs.getString(12) +"</td><td>" +rs.getString(13) +"</td><td>"
+rs.getString(14) +"</td></tr>");
 }

 pw.println("</table>");
 pw.println("

");
 pw.println("

<center>BACK</center>

");
 if(temp==0)
 pw.println("NO DATA FOUND");

 }catch(SQLException ee1) {pw.println(ee1);}

}
}

8. Training Employee Details:

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;
import java.sql.*;
public class tempview extends HttpServlet {

 Connection c4;
 Statement st;
 ResultSet rs;
 String s1="";
 String ss1="";

 public void init(ServletConfig sc) throws ServletException
 {
 try
 {

 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
 c4=DriverManager.getConnection("jdbc:odbc:hrms","","");
 }
 catch(Exception ee4){}
 }

 public void doGet(HttpServletRequest req,HttpServletResponse res)
 throws ServletException,IOException {

 PrintWriter pw=res.getWriter();

 //s1=req.getParameter("s1");

 try{

 st=c4.createStatement();

 ss1="select * from temployee";

 rs=st.executeQuery(ss1);

 pw.println("<html><body bgcolor=skyblue>
<center><h2>Trainee
Details</h2></center>
");
 pw.println("<table border=1 align=center>");
 pw.println("<tr><th>Employee No</th><th>Employee
name</th><th>Email</th><th>JobCode</th><th>Training
Category</th><th>Training
Place</th><th>TSDate</th><th>TEDate</th><th>Train Person</th></tr>");
 int temp=0;
 while(rs.next())

 {
 temp=1;
 pw.println("<tr><td>" +rs.getInt(1) +"</td><td>"
+rs.getString(2)+"</td><td>" +rs.getString(3) +"</td><td>" +rs.getInt(4)
+"</td><td>" +rs.getString(5) +"</td><td>" +rs.getString(6) +"</td><td>"
+rs.getString(7) +"</td><td>" +rs.getString(8)
+"</td><td>"+rs.getString(9)+"</td></tr>");
 }

 pw.println("</table>");
 pw.println("

");
 pw.println("

<center>BACK</center>

");
 if(temp==0)
 pw.println("NO DATA FOUND");

 }catch(SQLException ee1) {pw.println(ee1);}

}
}

9.Recruitment Process in Java Servlet:

import javax.servlet.http.*;
import javax.servlet.*;
import java.sql.*;
import java.io.*;

public class rectproject extends HttpServlet
{
 Connection c;
 public void doPost(HttpServletRequest re,HttpServletResponse rs) throws
ServletException,IOException
 {
 rs.setContentType("text/html");
 PrintWriter out=rs.getWriter();
 String rcode=re.getParameter("t1");
 String name=re.getParameter("t2");
 String ptitle=re.getParameter("t3");
 String plang=re.getParameter("t4");
 String pplace=re.getParameter("t5");
 String sdate=re.getParameter("sdate");
 String smon=re.getParameter("smon");
 String syear=re.getParameter("syear");
 String edate=re.getParameter("edate");
 String emon=re.getParameter("emon");
 String eyear=re.getParameter("eyear");
 String idate=re.getParameter("idate");
 String imon=re.getParameter("imon");
 String iyear=re.getParameter("iyear");
 String email=re.getParameter("t9");
 String address=re.getParameter("t10");
 String quali=re.getParameter("t11");

String pfd=sdate+"/"+smon+"/"+syear;
String ptd=edate+"/"+emon+"/"+eyear;
String doi=idate+"/"+imon+"/"+iyear;

 try
 {
 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
 c=DriverManager.getConnection("jdbc:odbc:hrms");
 Statement s=c.createStatement();
 ResultSet r;
 r=s.executeQuery("select reccode from rproject");
 int temp=0;
 while(r.next())
 {
 if(rcode.equals(r.getString(1)))
 {
 temp=1;
 break;
 }
 }
 if(temp==1)
 {
 out.println("<html><body bgcolor=skyblue><center>");
 out.println("

<h3>Recruitment Code Already Exist, Please Try
Again</h3>");
 out.println("

Back");
 out.println("</center></body></html>");
 }
 else
 {

 String str="insert into rproject
values('"+rcode+"','"+name+"','"+ptitle+"','"+plang+"','"+pplace+"','"+pfd+"','"+pt
d+"','"+doi+"','"+email+"','"+address+"','"+quali+"')";
 //out.println(str);

 s.executeUpdate(str);
 out.println("<html><body bgcolor=skyblue><center>");
 out.println("

<h3>DETAILS ARE STORED</h3>");
 // out.println("Proceed
Further");
 out.println("

Back");
 out.println("</center></body></html>");

 }
 }
 catch(SQLException sqle)
 {
 out.println(sqle);
 }
 catch(ClassNotFoundException cnfe)

 {
 out.println(cnfe);
 }
 }
}

10.Employee Report in Java Servlet:

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;
import java.sql.*;
public class empreport extends HttpServlet {

 Connection c4;
 Statement st;
 ResultSet rs;
 String s1="";
 String ss1="";

 public void init(ServletConfig sc) throws ServletException
 {
 try
 {

 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
 c4=DriverManager.getConnection("jdbc:odbc:hrms","","");
 }
 catch(Exception ee4){}
 }
 public void doGet(HttpServletRequest req,HttpServletResponse res) throws
ServletException,IOException
 {
 res.setContentType("text/html");
 PrintWriter pw=res.getWriter();
 pw.println("<html><body bgcolor=skyblue>");
 pw.println("<form method=post
action='http://localhost:8080/servlet/empreport'>");
 pw.println("<center>

<h3><input type=radio name=t
value=emp> Employee Report
");
 pw.println("
<input type=radio name=t value=tra> Trainee Report</h3>");
 pw.println("

<input type=submit value=Display></center>");

 pw.println("

<center>BACK</center>

");
 pw.println("</form></body></html>");
 }

 public void doPost(HttpServletRequest req,HttpServletResponse res) throws
ServletException,IOException
 {

 res.setContentType("text/html");
 PrintWriter pw=res.getWriter();
 String str=req.getParameter("t");
 if(str.equals("emp"))
 {
 try{

 st=c4.createStatement();

 ss1="select * from employee";

 rs=st.executeQuery(ss1);

 pw.println("<html><body bgcolor=skyblue><center><h3>EMPLOYEE
REPORT</h3>

");
 pw.println("<table border=2 align=center>");
 pw.println("<tr><th>Employee No</th><th>E
name</th><th>Email</th><th>Quali</th><th>Ccexp</th><th>Pcexp</th><th>
Bgroup</th><th>DOB</th><th>JobCode
</th><th>JobNature</th><th>Mstatus</th><th>Reference</th><th>Paddress</
th><th>Peradd</th></tr>");
 int temp=0;
 while(rs.next())
 {
 temp=1;
 pw.println("<tr><td>" +rs.getInt(1) +"</td><td>"
+rs.getString(2)+"</td><td>" +rs.getString(3) +"</td><td>" +rs.getString(4)
+"</td><td>" +rs.getString(5) +"</td><td>" +rs.getString(6) +"</td><td>"
+rs.getString(7) +"</td><td>" +rs.getString(8) +"</td><td>" +rs.getInt(9)
+"</td><td>" +rs.getString(10) +"</td><td>" +rs.getString(11) +"</td><td>"
+rs.getString(12) +"</td><td>" +rs.getString(13) +"</td><td>"
+rs.getString(14) +"</td></tr>");
 }

 pw.println("</table>");
 pw.println("

");
 pw.println("BACK</center></body></htm
l>");
 if(temp==0)
 pw.println("NO DATA FOUND");

 }catch(SQLException ee1) {pw.println(ee1);}

 }

 if(str.equals("tra"))
 {
 try{

 st=c4.createStatement();

 ss1="select * from temployee";

 rs=st.executeQuery(ss1);

 pw.println("<html><body bgcolor=skyblue>
<center><h2>Trainee
Details</h2></center>
");
 pw.println("<table border=1 align=center>");
 pw.println("<tr><th>Employee No</th><th>Employee
name</th><th>Email</th><th>JobCode</th><th>Training
Category</th><th>Training
Place</th><th>TSDate</th><th>TEDate</th><th>Train Person</th></tr>");
 int temp=0;
 while(rs.next())
 {
 temp=1;
 pw.println("<tr><td>" +rs.getInt(1) +"</td><td>"
+rs.getString(2)+"</td><td>" +rs.getString(3) +"</td><td>" +rs.getInt(4)
+"</td><td>" +rs.getString(5) +"</td><td>" +rs.getString(6) +"</td><td>"
+rs.getString(7) +"</td><td>" +rs.getString(8)
+"</td><td>"+rs.getString(9)+"</td></tr>");
 }

 pw.println("</table>");
 pw.println("

");
 pw.println("

<center>BACK</center>

");
 if(temp==0)
 pw.println("NO DATA FOUND");

 }catch(SQLException ee1) {pw.println(ee1);}
 }

}
}

11.Project Report in Java Servlet:

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;
import java.sql.*;
public class projreport extends HttpServlet {

 Connection c4;
 Statement st;
 ResultSet rs;
 String s1="";
 String ss1="";

 public void init(ServletConfig sc) throws ServletException
 {
 try
 {

 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
 c4=DriverManager.getConnection("jdbc:odbc:hrms","","");
 }
 catch(Exception ee4){}
 }
 public void doGet(HttpServletRequest req,HttpServletResponse res) throws
ServletException,IOException
 {
 res.setContentType("text/html");
 PrintWriter pw=res.getWriter();
 pw.println("<html><body bgcolor=skyblue><center>

");
 pw.println("<form method=post
action='http://localhost:8080/servlet/projreport'>");
 pw.println("<h3><input type=radio name=t value=offs> OffShore Projects
Report");

 pw.println("

<input type=radio name=t value=ons> OnShore Project
Report Report</h3>");
 pw.println("

<input type=submit value=Display><center>");
 pw.println("

BACK");​
 pw.println("</form></body></html>");
 }

 public void doPost(HttpServletRequest req,HttpServletResponse res) throws
ServletException,IOException
 {

 res.setContentType("text/html");
 PrintWriter pw=res.getWriter();
 String str=req.getParameter("t");
 if(str.equals("offs"))

 {
 try{

 st=c4.createStatement();

 ss1="select * from projectm where pplace='offshore'";

 rs=st.executeQuery(ss1);

 pw.println("<html><body bgcolor=skyblue><center><h3>OFFSHORE
PROJECT DETAILS</h3>

");
 pw.println("<table border=2 align=center>");
 pw.println("<tr><th>Project No</th><th>Project Type</th><th>Project
place</th><th>Client name</th><th>Client nature</th><th>Project
name</th><th>Project area</th><th>Project sdate</th><th>Project
edate</th></tr>");
 int temp=0;
 while(rs.next())
 {
 temp=1;
 pw.println("<tr><td>" +rs.getInt(1) +"</td><td>"
+rs.getString(2)+"</td><td>" +rs.getString(3) +"</td><td>" +rs.getString(4)
+"</td><td>" +rs.getString(5) +"</td><td>" +rs.getString(6) +"</td><td>"
+rs.getString(7) +"</td><td>" +rs.getString(8) +"</td><td>" +rs.getString(9)
+"</td></tr>");
 }

 pw.println("</table>");
 pw.println("

");
 pw.println("BACK</center></body></html
>");
 if(temp==0)
 pw.println("NO DATA FOUND");

 }catch(SQLException ee1) {pw.println(ee1);}
 }
 if(str.equals("ons"))
 {
 try{

 st=c4.createStatement();

 ss1="select * from projectm where pplace='onshore'";

 rs=st.executeQuery(ss1);

 pw.println("<html><body bgcolor=skyblue><center><h3>ONSHORE
PROJECT DETAILS</h3>

");
 pw.println("<table border=2 align=center>");

 pw.println("<tr><th>Project No</th><th>Project Type</th><th>Project
place</th><th>Client name</th><th>Client nature</th><th>Project
name</th><th>Project area</th><th>Project sdate</th><th>Project
edate</th></tr>");
 int temp=0;
 while(rs.next())
 {
 temp=1;
 pw.println("<tr><td>" +rs.getInt(1) +"</td><td>"
+rs.getString(2)+"</td><td>" +rs.getString(3) +"</td><td>" +rs.getString(4)
+"</td><td>" +rs.getString(5) +"</td><td>" +rs.getString(6) +"</td><td>"
+rs.getString(7) +"</td><td>" +rs.getString(8) +"</td><td>" +rs.getString(9)
+"</td></tr>");
 }

 pw.println("</table>");
 pw.println("

");
 pw.println("BACK</center></body></html
>");
 if(temp==0)
 pw.println("NO DATA FOUND");

 }catch(SQLException ee1) {pw.println(ee1);}
 }
}
}

12.Campus Interview in Java Servlet:
import javax.servlet.http.*;
import javax.servlet.*;
import java.sql.*;
import java.io.*;

public class campinter extends HttpServlet
{
 Connection c;
 public void doPost(HttpServletRequest re,HttpServletResponse rs) throws
ServletException,IOException
 {
 rs.setContentType("text/html");
 PrintWriter out=rs.getWriter();
 String rcode=re.getParameter("t1");
 String name=re.getParameter("t2");
 String cname=re.getParameter("t3");
 String caddress=re.getParameter("t4");
 String date=re.getParameter("date");
 String mon=re.getParameter("mon");
 String year=re.getParameter("year");
 String perfor=re.getParameter("t6");
 String parea=re.getParameter("t7");
 String aot=re.getParameter("t8");
 String refby=re.getParameter("t9");

 String doi=date+"/"+mon+"/"+year;
 try
 {
 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
 c=DriverManager.getConnection("jdbc:odbc:hrms");
 Statement s=c.createStatement();
 ResultSet r;
 r=s.executeQuery("select reccode from campus");

 int temp=0;
 while(r.next())
 {
 if(rcode.equals(r.getString(1)))
 {
 temp=1;
 break;
 }
 }
 if(temp==1)
 {
 out.println("<html><body bgcolor=skyblue>

<center>");
 out.println("<h3>Recruitment Code Already Exist, Please Try Again</h3>");
 out.println("

Back");
 out.println("</center></body></html>");

 }
 else
 {

 String str="insert into campus
values('"+rcode+"','"+name+"','"+cname+"','"+caddress+"','"+doi+"','"+perfor+"','"
+parea+"','"+aot+"','"+refby+"')";
 //out.println(str);
 if(perfor.equals("Very Good") || perfor.equals("Good"))
 {
 s.executeUpdate(str);
 out.println("<html><body
bgcolor=skyblue>

<center>");
 out.println("<h3>DETAILS ARE STORED</h3>");
 // out.println("Proceed
Further");
 out.println("

Back");
 out.println("</center></body></html>");
 }
 else
 rs.sendRedirect("http://localhost:8080/servlet/campinter1");
 }
 }
 catch(SQLException sqle)
 {
 out.println(sqle);
 }
 catch(ClassNotFoundException cnfe)
 {
 out.println(cnfe);
 }
 }

}

CONCLUSION

This HRMS Project should satisfy all the needs of the Human Resource

Manager. The Administration work mainly on Interviews conducted by the

consultant. And the project module give the information about the project details

from the User and service and updating may be done for user’s satisfaction. This

Project has Online test for the Users. It is used to know the result quickly. So the is

very short to know about their results. Who one is selected in online test that user

only attend the direct interview quickly. HRManager should insert any values is easy

and quickly. The HRM should maintain the Employee Details, Training Employee’s

Details, Project Details, Recruitment Process i.e., Direct interview, campus interview

and absorbing trainee very easy and the time should be concession.

The few years before this Human Resource Management were maintained by

manually. So they maintains their data very difficulty. And the work processes are

very large and make tensions. So they need an easiest way to solve this problem.

And Time is very long to select a Trainee, Employee, Project Trainee and Recruit

Process.

The above problems should solve by this Human Resource Management

System Project. This Project should fulfill all needs of the HRMS. The world is going

fast to finish their Problems and needs. This Project should need for the Real Time

Human Resource Management System in any Places.

​

BIBLIOGRAPHY

​ 1. JAVA2 The Complete Reference​ -​ Herbert Schildt

​ 2. An Introduction to HTML​ ​ -​ J.Arnold
​
​ 3. Mastering JavaScript​ ​ ​ -​ James Jaworski

4. HTML 3.2 UNLEASED​ ​ ​ -​ John December and

​ ​ ​ ​ Mark Ginsburg

​ 5. JAVA handbook - TATA InfoTech

​

6. Software Engineering ​ ​ -​ Richard Fairley

 ​ 7. System analysis and design​ - Elias. M.Award

8. DataBase System ​ ​ ​ -​ Abraham Silberschartz,
 Henry F.Korth and S.Sudarshan

​

CONTENTS

S.NO

TOPIC

PAGE NO

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

SYNOPSIS

COMPANY PROFILE

ABOUT SOFTWARE

 3.1. JAVA SERVLETS
 3.2. JAVA SCRIPT
 3.3. MS-ACCESS

SYSTEM CONFIGURATION

SYSTEM ANALYSIS

 5.1. EXISTING SYSTEM
 5.2. PROPOSED SYSTEM

SYSTEM DESIGN

 6.1. INPUT DESIGN

6.2.​OUTPUT DESIGN

DATABASE DESIGN

 7.1. DATABASE TABLES

SYSTEM TESTING & IMPLEMENTATION

 7.1. SYSTEM TESTING
 7.2. SYSTEM IMPLEMENTATION

DATAFLOW DIAGRAMS

SCREEN REPORTS

11.

12.

CONCLUSION

BIBLIOGRAPHY

	
	CONTENTS
	​
	
	S.NO
	
	NAME OF THE TITLE
	
	
	PAGE NO
	
	1
	
	SYNOPSIS
	
	
	2
	
	COMPANY PROFILE
	
	
	3
	
	INTRODUCTION
	
	
	4
	
	MODULAR DESCRIPTION
	
	5
	SYSTEM REQUIREMENTS
	
	 4.1 Software requirements
	 4.2 Minimum Hardware Requirements
	 4.3 System Analysis
	 4.4 System Design
	
	6
	SYSTEM TESTING AND IMPLEMENTATION
	
	 5.1 System Testing
	 5.2 Implementation
	
	7
	ABOUT THE SOFTWARE
	
	 6.1 Software Architecture
	 6.2 HTML
	 6.3 Java Servlets
	 6.4 JDBC
	 6.5 ODBC
	 6.6 MS Access
	
	
	8
	
	DATA FLOW DIAGRAMS
	
	
	9
	
	DATABASE DESIGN
	
	
	10
	
	SOURCE CODE
	
	
	11
	
	SCREEN LAYOUTS
	
	
	12
	
	CONCLUSION
	
	
	13
	
	BIBLIOGRAPHY
	
	
	
	
	
	
	COMPANY PROFILE
	
	HIDUSTAN SOFTWARE LIMITED
	
	DEVELOPMENT
	
	 Our software development team strives to develop innovative software that meets customer needs. A team of developers with exclusive educational background and excellent computing skills exert their maximum efforts and endeavor to satisfy the specialized requirement of our esteemed clients. Our expertise and vast exposure qualifies us in developing software’s in Information systems, Web Based Applications, Internet Solution, Web page Design and Hosting. Our team consists of expertise in Java, VC++, VB, Oracle and all Internet Application Development Tools.

	
	
	
	
	
	
	
	
	
	
	SYNOPSIS
	
	 Human Resource Management System is aimed to integrate the activities of Human Resource Department of Hindustan Software Limited (HSL).
	
	
	Personal Information Management
	
	
	
	Personal Training Management
	Recruitment Process Management
	
	Direct Recruitment
	
	
	Campus Interviews
	Absorbing Project Trainees
	
	Project Management
	
	
	
	
	
	
	MODULAR DESCRIPTION
	
	User module exits for
	Recruitment process
	
	Administration module exits for
	 Reports generated for

	
	
	
	
	
	
	
	SYSTEM REQUIREMENTS
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	SYSTEM ANALYSIS
	
	Introduction to System Analysis
	
	
	​​System analysis is a process of gathering interpreting facts, diagnosing problems, and using facts to improve the system. The objective of the system analysis is to understand the important facts of current system by studying it in detail. To accomplish this objective the following have to be done.
	
	●​Learn the details of the system as well as procedures currently in practice.
	
	●​Develop insight into future demands of the organization on its growth; hike in Competition, evolving new financial structures, introduction of new technology, and changes in the customer needs.
	
	●​Documentation details of the current system for discussion and review by others.
	
	●​Evaluate effectiveness and efficiency of the current system and procedure taking into account the impact of anticipating future demands.
	
	●​Recommend any revisions and enhancements to the current system, indicating how they are justified. If appropriate, an entire new system may be purposed.
	
	●​Document the new system features at a level of details that allows others to understand its components and manage the new system developed.
	
	
	
	
	
	
	
	SYSTEM DESIGN
	
	
	​​The design of a system produces the details that state how a system meet the requirements identified during system analysis. System specialists often refer to this stage as logical design, in contrast to the process of developing program software, which is referred to as physical design.
	
	​​Data Flow Diagrams have been used in the design of the system. Data Flow Diagram is a graphical tool used to describe and analyze the movement of data. The transformation of data from input to output, through processes may be described logically using these Data Flow Diagrams.
	
	​​The DFD shown to the user must represent only the major functions being performed by the system. This is called Top Level DFD. If this process is complex enough, it can be broken further into different levels. This process can be continued till the process is simple. This is called the leveling of DFD’s.
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	SYSTEM TESTING
	
	
	​​Theoretically, a new designed system should have all the pieces in working order, but in reality, each piece works independently. Now is the time to put all pieces into one system and test it to determine whether it meets the user’s requirements. The purpose of the system is to consider all the likely variations to which it will be subjected and then push the system to its limits. It is tedious but necessary step in system development. One needs to be familiar with the following basic terms.
	
	
	●​UNIT TESTING: Unit Testing is testing changes made in an existing or a new program.
	
	●​SEQUENTIAL OR SERIES TESTING: Sequential or Series Testing is checking the logic of one or more programs in the candidate system, where the output of one program will affect the processing done by another program.
	
	●​SYSTEM TESTING: System Testing is executing a program to check logic changes made in it and with the intention of finding errors making the program fail.
	
	●​ACCEPTANCE TESTING: Acceptance Testing is running the system with live data by the actual user of the system.
	
	
	 Testing is vital to the success of the system. System testing makes a logical assumption that if all the parts of the system are correct, the goal will be successfully achieved. In adequate testing or no-testing leads to errors that may not appear until months later. Another reason for system testing is its utility as a user-oriented vehicle before implementation. The best program and the user have communication barriers due to different backgrounds. The system tester (designer, programmer, or user) who has developed some computer mastery can bridge this barrier.
	
	(i)​Unit Testing:
	
	 This focuses on the smallest unit of software design. The module using the details design description as a guide; important control paths are tested to uncover errors within the boundary of the module.
	
	Unit test consideration:
	
	​​​The module interface id tested to ensure that information properly flows into and out of the program unit under test. The local data structures are examined to ensure that the data stored temporarily maintains it integrity during all steps in an algorithm execution. Boundary conditions are tested to ensure that the module operates properly at boundaries established to limit or restrict processing. The test of data flow across a module interface is required before any other test. If data do not enter and exit properly, all other tests are moot.
	
	Unit Procedure:
	
	●​Unit test is normally considered adjunct to the coding style.
	●​After source level code has been developed, reviewed and verified for correct syntax, unit test case design begins. Each test case should be coupled with a set of expected results.
	●​Normally, a driver is a “main program” that accepts test case data, passes such data to the module to be tested and prints the relevant results. Stubs serve to replace modules that are subroutines called by the module to be tested. A Stub or ‘dummy stub program’ uses the subroutine module’s interface to do minimal data manipulation and returns.
	
	 Unit testing is simplified when a module with high cohesion is designed. When a module addresses only one function, the number of test cases is reduced and errors can be more easily predicted and uncovered.
	 ​​
	(ii) Integration Testing:
	
	
	​​Integration is a systematic technique for constructing the program structure, while at the same time conducting tests to uncover errors associated with interfacing. The objective is to make unit-tested modules and build a program structure that has been dictated by design. Incremental integration is the program that is the program that is constructed and tested in small segments where errors are easier to isolate and correct.
	
	Top down Integration:
	
	​​​Top-down integration is an incremental approach to the construction of program structure. Modules are integrated by moving downward through the control hierarchy, beginning with the main control module. Module subroutine to the main control module is incorporated into the structure either in a depth-first manner is engaged for this system. Breadth-first incorporates all modules directly subroutine at each level, moving across the structure horizontally.
	
	The integration process is performed in a series of five steps:
	
	a.​The main control module is used as a test driver and stubs are substituted for all modules directly subroutine to the main control module.
	b.​Depending on the integration approach selected (depth or breadth first) subroutine stub are replaced one at a time with actual modules.
	c.​Tests are conducted as each module is integrated.
	d.​On the completion of each set of test, another stub is replaced with the real module.
	e.​Registration testing is conducted to ensure that new errors have not been introduced.
	
	
	
	
	
	
	(iii) Validation testing:
	
	 ​​At the end of integration testing, the system is completely assembled as a package with interfacing errors corrected after which a final series of software tests namely validation testing begins. Validation succeeds when the software functions in a manner that can be reasonably expected by the user.
	
	Criteria:
	
	​​Software validation is achieved through black box tests that demonstrates conformity with requirements.
	
	(iv) System Testing:
	
	​​System testing is actually a series of different tests whose primary purpose is to fully exercise the computer-based system. Although each test has a different purpose, all work should verify that all system elements have been properly integrated and perform allocated functions. Being the most important test, the performance test is covered briefly below:
	
	a.​Performance Testing: For real-time systems, software that provides required function but does not conform to performance requirement is unacceptable. Performance testing is designed to test the run-time performance of software within the context of an integrated system. Performance testing occurs throughout all steps in the testing process. Even at the unit level, the performance of an individual module may be accessed as tests are conducted. However, it is not until all system elements are fully integrated that the true performance of a system can be ascertained.
	Debugging:
	​​Debugging is not testing not occurs as a consequence of testing, that is when a test case uncovers an error, debugging is the process that results in the removal of the error.
	
	Normally three categories for debugging approaches are proposed:
	a.​Brute force
	b.​Back-tracking
	c.​Cause-elimination
	
	a.​Brute force:
	
	 This is the most common and least efficient method for isolating the cost of a software error. Brute-force debugging method is usually applied when all else fails. Using a “let the computer finding the error” philosophy, memory-dumps are taken, runtime traces are invoked and the program is loaded with WRITE (in this case message box) statements. In the information that is produced, a clue is found leading to the cause of the error.
	
	b.​Back-tracking:
	
	 This is fairly common debugging approach that can be used successfully in small programs. Beginning at the site where a symptom has been uncovered, the source code is traced backwards (manually) until the site of the cost is found.
	
	c.​Cause-Elimination:
	
	 This approach is manifested by induction/deduction and introduces the concept of ‘binary partition’. A ‘cause hypothesis’ is devised and the error related data are used to prove or disprove the hypothesis. Alternatively, a list of all possible causes is developed, and tests are conducted to eliminate each. If initial tests indicate that a particular cause hypothesis shows promise, that data are refined in an attempt to isolate the path.
	 Each of the debugging approaches can be supplemented with debugging tools. A wide variety of debugging compilers, dynamic debugging aids (tracers), automatic test case generators, memory dumps and cross-reference maps can be applied. However, tools are not a substitute for careful evaluation, based on a complete software design document and clear source code.
	
	
	
	SYSTEM IMPLEMENTATION
	
	​​After proper testing and validation, the question arises whether the system can be implemented or not. Implementation includes all those activities that take place to convert from the old system to the new. The new system may be totally new, replacing an existing module or automated system, or it may be major modification to an existing system. In either case proper implementation is essential to provide a reliable to provide a reliable system to meet organization requirements.
	
	​​All planing has now, be completed and the transformation to a fully operational system can commence. The first job will be writing, debugging documenting of all computer programs and their integration into a total system. The master and transaction files are decided, and this general processing of the system is established. Programming is complete when the programs conformed to the detailed specification.
	
	​​When the system is ready for implementation, emphasis switches to communicate with the finance department staff. Open discussion with the staff is important form the beginning of the project. Staff can be expected to the concerned about the effect of the automation on their jobs and the fear of redundancy or loss of status must be allayed immediately. During the implementation phase it is important that all staff concerned be apprised of the objectives of overall operation of the system. They will need shinning on how computerization will change their duties and need to understand how their role relates to the system as a whole. An organization-training program is advisable; this can include demonstrations, newsletters, seminars etc.
	
	​​The department should allocate a member of staff, who understands the system and the equipment, and should be made responsible for the smooth operation of the system. An administrator should coordinate the users to the system.
	
	​​
	
	
	Users should be informed about new aspects of the system that will, affect them. The features of the system explained with the adequate documentation. New services such as security, on-line application from the back-ups must be advertise on the staff when the time is ripe.
	
	​​Existing documents such as employee loan details should be entered into the new system. Since these files are very large, conversion of these may continue long after the system based on current files has been implemented. Hence we need to assign responsibility for each activity.
	
	​​The system may come into full operation via number of possible routes. Complete change over at one point time is conceptually the most tidy. But this approach requires careful planning and coordination, particularly during the changeover. A phased approach, possible implementing the system of the section relating to one operation or procedure first and processing to more novel or complex subsystems in the fullness of time. These likely to be less traumatic. A phased approach gives the staff time to adjust to the new system. But depends on being able to split the system, without reliance on it. Thus approach is sensible when the consequences of failure are disastrous, but will require extra staff time. The fourth angle, is pilot operation permits any problems to be tackled on a smaller scale operation. Pilot operation generally means the implementation of the complete system, but at one location or branch only.
	
	
	
	
	
	
	
	
	
	
	
	
	
	SOFTWARE ARCHITECTURE
	
	
	 The following diagram illustrates the links between various components involved in this system:
	
	
	
	
	 CLIENT​ SERVER
	
	 In the following sections the salient features of each of their components are discussed:
	
	●​Java
	●​JavaScript
	●​HTML
	●​Servlets
	●​JDBC
	●​MS Access
	
	
	
	
	
	JAVA
	
	
	WHAT IS JAVA?
	
	
	 Java ha two things: a programming language and a platform.
	 Java is a high-level programming language that is all of the following
	
	​​​Simple​​​Architecture-neutral
	​​​Object-oriented​Portable
	​​​Distributed ​​High-performance
	​​​Interpreted​​multithreaded
	​​​Robust​​​Dynamic
	​​​Secure
	​​
	Java is also unusual in that each Java program is both compiled and interpreted. With a compile, you translate a Java program into an intermediate language called Java bytecodes the platform-independent code instruction is passed and run on the computer.
	
	Compilation happens just once; interpretation occurs each time the program is executed. The figure illustrates how this works.
	
	
	
	
	
	
	You can think of Java byte codes as the machine code instructions for the Java Virtual Machine (Java VM). Every Java interpreter, whether it’s a Java development tool or a Web browser that can run Java applets, is an implementation of the Java VM. The Java VM can also be implemented in hardware.
	
	Java byte codes help make “write once, run anywhere” possible. You can compile your Java program into byte codes on my platform that has a Java compiler. The byte codes can then be run any implementation of the Java VM. For example, the same Java program can run Windows NT, Solaris, and Macintosh.
	
	
	JAVA PLATFORM
	
	
	 A platform is the hardware of software environment in which a program runs. The Java platform differs from most other platforms in that it’s a software only platform that runs on the top of other, hardware-based platform. Most other platforms are described as a combination of hardware and operating system.
	​​
	​​
	
	
	
	The Java platform has two components:
	
	1)​The Java Virtual Machine (Java VM)
	2)​The Java Application Programming Interface (Java API)
	
	
	 You have already been introduced to the Java VM. It’s the base for the Java platform and is ported onto various hardware-based platforms.
	
	​​The Java API is a large collection of ready-made software components that provide many useful capabilities, such as graphical user interface (GUI) widgets.
	
	​​The Java API is grouped into libraries (package) of related components. The next sections, what can Java do? Highlights each area of functionally provided by the package in the Java API.
	
	​​The following figure depicts a Java program, such as an application or applet, that’s running on the Java platform. A special kind of application known as a server serves and supports clients on a network. Examples of the servers include Web Servers, proxy servers, and mail servers, print servers, and boot servers. Another specialized program is a Servlet. Servlets are similar to applets in that they are runtime extensions of the application. Instead of working in browsers, though, Servlets run with in Java Web Servers, configuring of tailoring the server.
	
	​​How does the Java API support all of these kinds of programs? With packages of software components, that provides a wide range of functionality. The API is the API included in every full implementation of the platform.
	
	​​
	
	
	
	
	
	
	
	The core API gives you the following features:
	
	1)​The Essentials: Objects, Strings, threads, numbers, input and output, datastructures, system properties, date and time, and so on.
	2)​Applets: The set of conventions used by Java applets.
	3)​Networking URL’s TCP and UDP sockets and IP addresses.
	4)​ Internationalization: Help for writing programs that can be localized for users.
	
	
	 Worldwide programs can automatically adept to specific locates and be displayed in the appropriate language.
	
	
	JAVA PROGRAM
	
	
	●​Java API
	●​Java Virtual Machine
	●​Java Program
	●​Hard Ware
	
	
	 API and Virtual Machine insulates the Java program from hardware dependencies. As a platform-independent environment, Java can be a bit slower than native code. However, smart compilers, well-tuned interpreters, and Just-in-time-byte-code compilers can bring Java’s performance close to the native code without threatening portability.
	
	
	
	
	
	WHAT CAN JAVA DO?
	
	
	 However, Java is not just for writing cut, entertaining applets for the World Wide Web (WWW). Java is a general purpose, high-level programming language and a powerful software platform. Using the fineries Java API, you can write many types of programs.
	​​​
	​​​The most common types of program are probably applets and application, where a Java application is a standalone program that runs directly on the Java platform.
	
	Security:
	
	​​Both low-level and high-level, including electronic signatures, public/private key management, accesses control, and certificate.
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	JavaScript OVERVIEW
	
	INTRODUCTION
	
	​​JavaScript is an interpreted, object-based scripting language. Although it has fewer capabilities that full-fledged object-oriented like C++ and Java, JavaScript is more than sufficiently powerful for its intended purposes. JavaScript is not a cut-down version of any other language; it is not a simplification of anything. It is, however, limited. You cannot write standalone application in it, and it has little capability for reading or writing files. Moreover, JavaScript script can run only in the presence of an interpreter, in either a web server or a web browser.
	​​JavaScript is loosely typed language. That means you do not have to declare those data types of variables explicitly.
	​​It is scripting language used to develop Internet applications mostly for client side validations. It has the features of windows, frames, buttons, forms, images, list boxes, applets and so on.
	
	MAIN FEATURES:
	
	​​Most of the browsers support JavaScript. It has all the functionality’s of a high level language. It supports OOPS.
	
	JavaScript IN VB SCRIPT:
	​​Microsoft Visual Basic Scripting Edition, the newest member of the Visual Basic family of programming languages, brings active scripting to a wide variety of environments, including web client scripting to a wide variety of environments, including web client scripting in Microsoft Internet Explorer and Web server scripting in Microsoft Internet Information Server.
	​​VBScript talks with host applications using ActiveX scripting. With ActiveX, scripting, browsers and host applications do not require special integration code for each scripting component. ActiveX scripting enables a host to compile scripts, obtain and call entry points, and manage the namespace available to the developer.
	
	HYPERTEXT MARKUP LANGUAGE (HTML)
	
	
	INTRODUCTION
	
	​​HTML is a major language of the Internet’s World Wide Web. Web sites and web pages are written in HTML. HTML files are plain-text files so they can be edited on any type of Computer IBM, Mac, UNIX, Intel etc. The World Wide Web is a collection of linked documents or pages on millions of computers spread over the entire internet. HTML which defines their appearance and layout and more importantly creates the links to other documents.
	
	​​A set of instructions embedded in a document is called MarkUp Language. These instructions describe what the document text means and how it should look in a display. The language also tells you how to make a document with other document on your local system, the World Wide Web and other Internet resources such as FTP.
	
	Brief History of HTML:
	
	​​HTML was originally developed by time Berners lee which at CERN, and popularized by the mosaic browser developed at NCASA. During of the course of the 1990’s it has blossomed with the explosive growth of the Web. During this time, HTML has been extended in a number of ways. The Web depends on Web page authors and vendors sharing the same conversions for HTML. This has motivated the join work on specifications for HTML. HTML 2.0 was developed under the aegis of the Internet Engineering Task Force (IETF) to codify common practice in late 1994. HTML has been developed with the version that all manners of devices should be able to use information on the Web. Computers with high or low and bandwidth.
	
	
	
	
	
	
	Document Structure Elements:
	
	​HTML documents are composed of four parts:
	​​
	●​A HTML document begins with a line declaring which version of HTML is being used to create the document.
	●​A HTML document that describes the documents as a HTML document.
	●​A declarative header section which is enclosed in the <HEAD> element
	●​The main body of the document that contains the actual document content. The body can be contained within either the <BODY> elements.
	
	
	
	 The “head” section is opened and closed by <HEAD> and </HEAD> tags. Information about the document such as the title, indexing information and ownership. The “body” section is opened and closed by <BODY> and </BODY> tags. The text and images of the document itself to be displayed by the Web browser.
	
	Model HTML document:
	
	<HTML>
	<HEAD>
	<TITLE>
	​​<SAMPLE HTML Document>
	</TITLE>
	</HEAD>
	<BODY>……………………………….</BODY>
	</HTML>
	
	
	
	SERVLETS OVERVIEW
	
	INTRODUCTION
	
	​​Servlets extend the request-response-oriented servers, such as Java-enabled Web servers. For example, a Servlet can retrieve data from an HTML form and applying the business logic used to update Product database.
	
	
	
	
	
	​​Applets used in browsers. Similarly Servlets for server.
	
	​​The Servlet API assumes nothing about the server’s environment or protocol. Therefore, Servlet can be embedded in many different servers.
	
	
	
	
	
	
	
	
	Uses of Other Servlets:
	
	​​There are many applications for Servlets:
	 ​​​
	●​A Servlet can handle multiple requests concurrently, it allows Servlets to support systems and concurrently requests.
	●​Servlets can be used to balance load among several servers that mirror the same content, and to partition a single logical service over several servers, thus Servlets can forward requests.
	Web Servers:
	
	​​A Web server receives the request it then springs into action. Depending on the type of request, the webserver might look for a web page or it might execute program on the server, usually, as discussed earlier, CGI script or an advanced server-side program.
	
	The Servlet API:
	
	​​The two packages contains the code to build the Servlets: javax.servlet and javax.servlet.http
	
	The javax.servlet package:
	
	​​The javax.servlet package contains a number of interfaces and classes that establish the framework in which Servlets operate. The ServletRequest and ServletResponse are also very important.
	
	●​The ServletRequest interface is used to read data from a client request.
	
	●​The ServletResponse interface is used to write data to a client response.
	
	The Servlet Interface:
	
	​​All Servlets must implement the Servlet interface. Generic Servlet must implements the Servlet and Servletconfig interface. HttpServlet extends GenericServlet. It is commonly used to Servlets that receives and process HTTP requests.
	
	
	
	The ServletRequest Interface:
	
	​​The server implements the ServletRequest interface. It enables to obtain about a client request:
	●​The parameter of the names passed by the client, and the names of the remote host that made the request.
	●​Servlets use to get data from clients that use application protocols such as the HTTP POST and PUT methods in an InputStream such as ServletInputStream.
	●​The HttpServletRequest interface contains methods for accessing HTTP-specific header information.
	
	
	The ServletResponse Interface:
	
	​​The ServletResponse interface is implemented by the server. It enables to obtain about a client response:
	
	●​It allows the Servlet to set the content length.
	●​Servlet can send the reply data which writer through n output stream such as ServletOutputStream.
	●​The HttpResponse interface contains allow the Servlet to manipulate HTTP-specific header information.
	
	
	Hypertext Transfer Protocol (HTTP):
	​
	​​The Hypertext Transfer Protocol (HTTP) is used an application-level protocol for distributed, collaborative, hypermedia information systems. A feature of HTTP is the typing and negotiation of data representation, allowing systems to be built independently of the data being transferred. The HTTP protocol is a request/response protocol.
	
	The javax.servlet.http Package:
	
	​​The javax.servlet.http package contains several interfaces and classes that are commonly used by Servlet developers.
	
	Http Request and Responses:
	
	​​The Http Requests and Responses contains in two arguments:
	
	●​An HttpServletRequest is used to enables Servlets to read data from an HTTP request.
	●​An HttpServletResponse is used to enables Servlets to write data to an HTTP response.
	
	
	HttpServletRequest Object:
	
	​​An HttpServletRequest Object provides to access the data from the client:
	
	●​The getParameter method returns the value of a named parameter and similarly the getParameterValues method returns an array of values for the named parameter.
	●​The getReader method returns the BufferedReader to use to read the data.
	●​The getInputStream method returns the ServletInputStream to use to read the data.
	
	
	HttpServletResponse Objects:
	
	​​An HttpServletResponse object provides the HTTP method. To access the data from the user:
	
	●​The getWriter method returns a Writer.
	●​The getOutputStream method returns the ServletOutputStream.
	
	
	HTTP Header Data:
	
	​​The HTTP header data means to access Writer or OutputStream. For example, the GET and POST for HTTP requests to which the service method includes:
	
	●​The handling for GET requests returns to doGet, Conditional GET and HEAD requests.
	●​The handling for POST requests returns to doPost.
	●​The handling for PUT requests returns to doPut.
	●​The handling for DELETE requests returns to doDelete.
	
	Servlets Features:
	
	​​Servlets are efficient when compared to any other server-side programs. They allow persistence of data to be maintained. More important is the fact they are portable, robust security features.
	
	Servlets Better than CGI:
	
	​​Servlets offer advantages over CGI in the areas of performance, portability and security. Each of these advantages will be discussed in turn:
	
	1.​Performance is perhaps the most visible difference between Servlets and CGI. Since most Servlets run in the same process space as the server and are loaded only once, they are able to respond much more quickly and efficiently to client requests. In contrast, CGI must create a new process to service each new request. The overhead involved with creating a new process incurs a significant performance penalty. Unlike Servlets, CGI cannot share a single database connection across multiple requests.
	2.​Portability is another strong advantage for Servlets. Unlike many CGI applications, Servlets can be run on different servers and platforms without modifications. This characteristic can be extremely important when building enterprise-wide distributed applications.
	3.​Servlets are much more secure than CGI. Though CGI scripts can be written in Java, they are often written in more error-prone language such as C, since C programs can inadvertently or maliciously access invalid memory locations, CGI programs are less secure. Of course, these restrictions can be lifted according to the security policies set by the Java Security Manager.
	
	
	
	
	
	Life Cycle of Servlet:
	
	​Each Servlet has the same life cycle:​​
	●​Sever loads and initializes the servlets calls the init () method.
	●​The sever handles zero or more client requests calls the service () method.
	●​The server removes the servlets calls the destroy () method.
	
	(Some servers do this step only when they shutdown Destroy ())
	
	
	Initialization Parameters of Servlets:
	​​Initialize the Servlet before client requests are handled and before the Servlet is destroyed. The Servlet runs the init method. The Servlet calls the init method when the server loads the Servlet, and similarly will not call the init method again unless the server is reloading the Servlet. After initialization, the Servlet able to handle client requests. Initialization can be accessed in two ways:
	●​The init method declared by the Servlet interface receives ServletConfig object as its argument. This object provides methods that enable you to read the initialization parameters.
	●​The getServletConfig method declared by the Servlet interface returns a ServletConfig object.
	
	Destroying Servlets:
	
	​​Destroys the Servlet runs the servlet’s destroy method. The method is run once; similarly the server will not run the destroy method, when the server calls the destroy method, another thread might be running a service request. Servlets run until the server destroys them.
	
	
	Communication of Servlets:
	
	​​To communicate Servlets sometimes need to access network resources. HTML pages, objects shared among Servlets at the same server and other Servlets:
	
	●​The Request Dispatcher Object with other Server Resources (JSDK 2.1) such as other Servlets with HTML pages and so on.
	●​The resource is an object in the JAVA programming language such as Sharing Resources among Servlets (JSDK2.1).
	●​The other servlet’s Servlet object and calling its public such as Calling Servlet from Servlets (JSDK2.0).
	
	
	Utilities For Running Servlets:
	
	​​The JSDK2.0 has a utility called Servletrunner. If you can test it with the utility included in the JSDK, while JSDK2.1 comes with a small utility server.
	
	Properties of Servlets:
	
	The Servlet requires initialization parameters, if you set this data before starting the JSDK process that runs your Servlet.
	
	
	
	
	JAVA DATABASE CONNECTIVITY (JDBC)
	
	
	JDBC AND ODBC IN JAVA:
	
	​​Most popular and widely accepted database connectivity called Open Database Connectivity (ODBC) is used to access the relational databases. It offers the ability to connect to almost all the databases on almost all platforms. Java applications can also use this ODBC to communicate with a database. Then we need JDBC why? There are several reasons:
	
	●​ODBC API was completely written in C language and it makes an extensive use of pointers. Calls from Java to native C code have a number of drawbacks in the security, implementation, robustness and automatic portability of applications.
	●​ODBC is hard to learn. It mixes simple and advanced features together, and it has complex options even for simple queries.
	●​ODBC drivers must be installed on client’s machine.
	
	
	Architecture of JDBC:
	
	​​JDBC Architecture contains three layers:
	
	
	
	
	
	
	
	1.​Application Layer: Java program wants to get a connection to a database. It needs the information from the database to display on the screen or to modify the existing data or to insert the data into the table.
	2.​Driver Manager: The layer is the backbone of the JDBC architecture. When it receives a connection-request form.
	3.​The JDBC Application Layer: It tries to find the appropriate driver by iterating through all the available drivers, which are currently registered with Device Manager. After finding out the right driver, it connects the application to appropriate database.
	4.​JDBC Driver layers: This layer accepts the SQL calls from the application and converts them into native calls to the database and vice-versa. A JDBC Driver is responsible for ensuring that an application has consistent and uniform m access to any database.
	
	When a request received by the application, the JDBC driver passes the request to the ODBC driver, the ODBC driver communicates with the database, sends the request, and gets the results. The results will be passed to the JDBC driver and in turn to the application. So, the JDBC driver has no knowledge about the actual database, it knows how to pass the application request o the ODBC and get the results from the ODBC.
	
	​The JDBC and ODBC interact with each other, how? The reason is both the JDBC API and ODBC are built on an interface called “Call Level Interface” (CLI). Because of this reason, the JDBC driver translates the request to an ODBC call. The ODBC then converts the request again and presents it to the database. The results of the request are then fed back through the same channel in reverse.
	
	
	
	
	
	
	
	
	Structured Query Language (SQL):
	
	​​SQL (Pronounced Sequel) is the programming language that defines and manipulates the database. SQL databases are relational databases; this means simply the data is store in a set of simple relations. A database can have one or more table. You can define and manipulate data in a table with SQL commands. You use the data definition language (DDL) commands to creating and altering databases and tables.
	
	​​You can update, delete or retrieve data in a table with data manipulation commands (DML). DML commands include commands to alter and fetch data.
	
	​​The most common SQL commands include commands is the SELECT command, which allows you to retrieve data from the database.
	
	​​In addition to SQL commands, the oracle server has a procedural language called PL/SQL. PL/SQL enables the programmer to program SQL statement. It allows you to control the flow of a SQL program, to use variables, and to write error-handling procedures​
	​​
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	Data Flow Diagrams

	DATA FLOW DIAGRAM FOR OVERALL SYSTEM
	USERS MODULE FLOW PROCESS

	
	
	
	
	
	ADMINISTRATIVE MODULE FLOW PROCESS
	PROJECT MAINTENANCE FLOW PROCESS
	
	

	Admin Table :
	Answer Table :
	CONTENTS

	S.NO
	TOPIC

