
Balkan Storage – Software Documentation

BalkanID Capstone Internship Hiring Task – VIT 2026

Prepared By:​

Name: Mahidhar Reddy G​

Email: mahidhar.reddy2003@gmail.com​

College: VIT Vellore

Contents Of The Document

1.​ Introduction

2.​ Setup Instructions

3.​ Database Schema Overview

4.​ API Documentation

5.​ Architecture Design

6.​ Design Choices

7.​ User Acceptance Testing (UAT) Checklist

8.​ Deployment

9.​ Testing & QA Automation

10.​Storybook and Visual Testing

11.​UAT Automation Plan

12.​Conclusion

13.​Appendix

mailto:mahidhar.reddy2003@gmail.com

1. Introduction

Balkan Storage is a production-ready file storage and management system developed as

part of the VIT 2026 Capstone Internship Hiring Task. It demonstrates full-stack engineering

and deployment skills with:

●​ Backend: Go (Gin) + PostgreSQL

●​ Frontend: Next.js (React, TypeScript, TailwindCSS)

●​ Containerization: Docker Compose

●​ Extra Tooling: API Testing (Postman, Newman), UI Testing (Playwright), Storybook

The system provides secure file storage, deduplication, folder management, audit logging,

and a modern UI using glassmorphism design.

2. Setup Instructions

Backend (Go + PostgreSQL)

1.​ Clone the repository:

git clone <your-repo-url> ​

cd vit-2026-capstone-internship-hiring-task-mahidharreddyg​

2.​ Create .env in backend/ with:

DB_HOST=db​

DB_PORT=5432​

DB_USER=postgres​

DB_PASSWORD=postgres​

DB_NAME=balkan_storage​

PORT=8080​

JWT_SECRET=supersecret​

STORAGE_PATH=/data/storage​

3.​ Run backend locally:

cd backend ​

go run main.go

API: http://localhost:8080

Frontend (Next.js + React + TypeScript)

1.​ Create .env.local in frontend/:

NEXT_PUBLIC_API_URL=http://localhost:8080​

2.​ Install dependencies:

cd frontend​

npm install​

3.​ Run frontend locally:

npm run dev​

App: http://localhost:3000

Docker (Full System – One Command)

docker compose up --build​

●​ Frontend → http://localhost:3000

●​ Backend → http://localhost:8080

●​ PostgreSQL → localhost:5432

3. Database Schema Overview

Users

●​ Stores account details

●​ Passwords hashed using bcrypt

http://main.go
http://localhost:8080
http://localhost:3000
http://localhost:3000
http://localhost:8080

Column Type Description

id SERIAL PK Unique user ID

username TEXT Unique username

email TEXT User email

password_hash TEXT Bcrypt hashed password

created_at TIMESTAMP Account creation time

Files

●​ Supports deduplication (SHA-256 hash)

Column Type Description

id SERIAL PK File ID

owner_id INT (FK) Reference to users

name TEXT File name

mime_type TEXT Detected file type

size BIGINT File size in bytes

hash TEXT SHA-256 hash

created_at TIMESTAMP Upload timestamp

Folders

Column Type Description

id SERIAL PK Folder ID

owner_id INT (FK) Reference to users

name TEXT Folder name

parent_id INT (FK) Nested folder support

Audit Logs

Column Type Description

id SERIAL PK Log ID

user_id INT (FK) User performing action

action TEXT login, upload, delete

object_type TEXT Target entity (file/folder)

object_id INT Entity ID

created_at TIMESTAMP Action timestamp

4. API Documentation

Base URL: http://localhost:8080

Authentication

●​ POST /signup

●​ POST /login

●​ GET /verify-token

File Management

●​ GET /files

●​ POST /upload

●​ POST /multi-upload

●​ PATCH /files/:id/move

●​ PATCH /files/:id/trash

●​ DELETE /trash/:id

Folder Management

●​ POST /folders

●​ GET /folders

●​ PATCH /folders/:id

●​ PATCH /folders/:id/trash

Admin

●​ GET /admin/files

●​ GET /admin/stats

5. Architecture Design

●​ Frontend: Next.js (React + TS + TailwindCSS, glassmorphism UI)

●​ Backend: Go (Gin), REST API with JWT

●​ Database: PostgreSQL with indexing & relational queries

●​ Containerization: Docker Compose to bring up DB, backend, frontend

Features: drag-and-drop uploads, deduplication, audit logging, rate limiting

6. Design Choices

●​ Security: JWT auth, bcrypt password hashing, CORS enabled

●​ Scalability: File deduplication + bulk API

●​ UX: Glassmorphism, drag-and-drop upload, responsive UI

●​ Observability: Audit logs for all user/file actions

●​ Extensibility: RBAC and GraphQL can be added

7. User Acceptance Testing (UAT) Checklist

​ User signup, login, invalid credentials rejected

​ File upload (single & multi), deduplication works

​ Folder CRUD and file movements supported

​ Trash + restore flow tested

​ Admin can view files and stats

​ Rate limiting works against abuse

​ Search (name, type, date, tags) works

8. Deployment

Local (Docker)

docker compose up --build​

Cloud

●​ Push Docker images to registry

●​ Use Kubernetes/Docker Swarm

●​ Add Nginx + HTTPS proxy

9. Testing & QA Automation

●​ Postman + Newman: API regression tests

●​ Playwright: UI E2E (signup, login, dashboard)

●​ CI/CD: GitHub Actions workflow with backend vetting, Newman, Playwright

●​ Database tests: Can be extended with migration seeds

10. Storybook and Visual Testing

●​ Storybook spins up component previews on port 6006

●​ Scripts:

npm run storybook​
npm run build-storybook​

●​ For visual diffs: Percy / Chromatic

11. UAT Automation Plan

●​ Automate flows: Signup → Login → Upload → File List → Sharing

●​ API integration: Newman + seeded DB in CI

●​ UI integration: Playwright headless E2E in GitHub Actions

●​ Visual regression nightly via Storybook

12. Conclusion

This project highlights end-to-end full-stack development using modern tooling:

●​ Secure Go backend

●​ PostgreSQL with deduplication

●​ Cutting-edge Next.js UI with glassmorphism styling

●​ Dockerized for easy deployment

●​ Automated testing pipelines with Postman, Playwright, Storybook

Designed to showcase production-level engineering for recruitment evaluation.

