
NOTE: The community has decided to focus on the language SDKs so this design and
the related project are no longer actively being worked upon.

Table of Contents
Design of Hyperledger Fabric REST API​ 2

Authors​ 2

Notes for Readers​ 2

Design to-do​ 3

Prerequisites​ 3

Requirements​ 3

(Very) High Level Architecture​ 3

Design Principles​ 4

REST API Versioning​ 4

REST API Use Cases​ 5

[A] Business/SoR Application​ 5

[B] “Blockchain aware” Application​ 5

[C] Build System Application​ 6

[D] Channel Administration Application​ 6

[E]<added in v0.8> Network Administration Application​ 6

Fabric Documented Use Cases​ 7

Security Design​ 7

Handling Asynchronous Interaction with Fabric​ 8

REST API Design Considerations​ 8

REST API Function Summary​ 9

Related Information​ 9

Lifecycle Functions​ 9

Management Functions​ 10

Hyperledger Fabric Rest ​ ​ ​ ​ ​ ​ Page 1

Query Functions​ 11

HTTP response codes​ 12

Swagger definition of the API​ 12

Loopback Specifics​ 12

Connector Required Methods​ 12

Packaging the Connector​ 13

REST provider configuration (loopback datasource)​ 14

Loopback Model Configuration​ 15

Packaging the Loopback Model​ 15

External References​ 15

Community Quotes​ 16

Design of Hyperledger Fabric REST API
Version Date State Description

0.1 Draft First skeleton design
0.5 Draft Base REST API design on use cases and not SDK functions
0.6 7 Apr

2017
Draft Update security, use cases, and HTTP response codes

sections
0.7 27 Apr

2017
Draft Update title, references, REST endpoints, updates from

comments
0.8 23 May

2017
Draft Added use case, responses to comments, and updated

endpoints
0.9 In

progres
s

More information on error handling, link to
implementation in external references, refine use case D
requirements

… …

Authors
•​ Martin Cocks, IBM

Linux Foundation ID: MartinC
Email: cocksmar@uk.ibm.com

•​ Chris Poole, IBM
Linux Foundation ID: chrispoole

Hyperledger Fabric Rest ​ ​ ​ ​ ​ ​ Page 2

Email: chrispoole@uk.ibm.com

Notes for Readers

??? is used where more information or research is needed.​
Discussion about the design should be recorded as review comments on this document or
within work item FAB-156.

Design to-do
•​ Validate endpoints with community
•​ Swagger doc for proposed API
•​ Further security design

Prerequisites

For the REST API to work it will need the following software to be configured:

•​ Hyperledger Fabric v1.0
•​ Loopback v3.0
•​ fabric-sdk-node
•​ A Hyperledger Fabric v1.0 network to connect to.

Requirements
•​ The REST API must be stateless

–​ No request may rely on state being created in the REST server from a previous
request.

–​ The server may contain state from Fabric that is common between all requests
and it may store that state during boot or on first reference.

•​ The REST API must be securable
•​ The API must be in a RESTful style that acts upon resources.

(Very) High Level Architecture

All connections from API consumers will be over HTTPS, into a Loopback server hosting the
Fabric SDK for Node. Here, as usual, GRPC will be employed as the transport to a
Hyperledger Fabric peer.

In the context of a particular Fabric Network (consisting of peers and orderers), there may
be 1 or more REST endpoints supporting the API described here operating on it. Each REST
endpoint will provide a view of the resources within the Fabric Network from its point of
view - thus a REST client should consistently use a chosen REST endpoint. Put another way,
REST endpoints operating on a given Fabric Network are independent of each other and a
client’s view of resources is valid only for the REST endpoint that provided them. One
example of this is a transaction that has been run committed on one peer but not yet run on

Hyperledger Fabric Rest ​ ​ ​ ​ ​ ​ Page 3

https://jira.hyperledger.org/browse/FAB-156
http://loopback.io

another peer. The REST server associated with the first peer would show a different query
result to the REST server associated with the second peer.

An instance of a REST API server will be associated with a specific peer. The assumption
being that each company involved in a blockchain network will need to administer which
REST API users (which “company IDs”) may access the blockchain under which specific
blockchain IDs. This configuration should not be visible to other users of the blockchain.
Exactly how a “company ID” can be mapped to a blockchain ID will be defined in the
security design section. A company may have multiple peers to provide both High
Availability (HA) and Continuous Availability (CA).

Design Principles
•​ The REST API should be defined by a Swagger document to aid consumption
•​ For REST, PUT should be used for update and POST for creation.
•​ The API should meet the requirements defined in the use cases.

–​ It will not be a 1:1 mapping of gRPC functionality.
–​ It will not be a 1:1 mapping of the SDK functionality.

•​ A REST URI should uniquely identify a resource or set of resources.
–​ It should not contain any verbs.

•​ The API document could be generated by loopback from a loopback model
•​ The API document could be handcrafted and consumed by loopback to create a model
•​ Example output from command lb swagger handcrafted.json
​
​
/**​
 * Creates a new `Chain` instance with default values.​
 * @param {string} chainName Name of the Chain instance to create​
 * @callback {Function} callback Callback function​
 * @param {Error|string} err Error object​
 * @param {chain} result Result object​
 */​
SwaggerApi.postChainChainName = function(chainName, callback) {​
 // Replace the code below with your implementation.​
 // Please make sure the callback is invoked.​
 process.nextTick(function() {​
 var err = new Error('Not implemented');​
 callback(err);​
 });​
}​
​

The API doc/loopback model will be created based upon the information in the REST API​
function summary section below. Validation of parameters will be left to the SDK where​
possible: duplication of validation code could lead to inconsistencies in what is allowed​

Hyperledger Fabric Rest ​ ​ ​ ​ ​ ​ Page 4

in different layers. Validation errors should be passed back to the REST client where​
possible and be logged in the server.

REST API Versioning

The versioning scheme (within the npm bundle) will use standard major.minor.micro​
syntax. The version of the REST API will be reflected in the base path of the URL, e.g.,​
/fabric/major.minor/, but excluding the micro version.

REST API Use Cases

We have identified four end user personas as consumers of this API. Each user may want to
“Update Fabric from a …”. We have added a fifth case [E] to record the network
administration application requirements that have come from the community to hopefully
feed into a follow on work item.

[A] Business/SoR Application

This is an application that just wants to store and read updates from an appropriate data​
store. It does not want to deal with the details of how the data store works.

•​ Run this update, tell me if it worked.
–​ The application will still need to know the name of the “Smart Contract” to use

and the name of the channel.
•​ Query data stored in the blockchain.
•​ Identify as user A, have the server map it to the appropriate blockchain user.
•​ Fabric entities the client application needs to know about

–​ Channel
–​ Chaincode ID (The smart contract to invoke)
–​ Data stored in the blockchain (For queries)

[B] “Blockchain aware” Application

This is an application that wants to store and read updates from a blockchain. It wants​
more granular control over reading and putting data into a blockchain.

•​ All [A] and the next bullet points.
•​ Query and invoke on blockchain
•​ Might target specific peers for endorsement
•​ Handles each phase of driving a transaction
•​ Maintains state
•​ Identify as user A, have the server map it to the appropriate blockchain user.
•​ Identify as blockchain user B.
•​ Fabric entities the client application needs to know about

–​ Channel

Hyperledger Fabric Rest ​ ​ ​ ​ ​ ​ Page 5

–​ Peers (if targeting a specific set of peers for endorsement)
–​ Orderers (if targeting a specific set of orderers)
–​ Chaincode ID (The smart contract to invoke)
–​ Data stored in the blockchain (For queries)

[C] Build System Application

This application wants to update chaincode in a channel. This might be done as part of a​
devOps pipeline.

•​ Deploy/Update chaincode
•​ Query chaincode
•​ Identify as user A, have the server map it to the appropriate blockchain user.
•​ Identify as blockchain user X.
•​ Fabric entities the client application needs to know about

–​ Channel
–​ Peers (if targeting a specific set of peers for endorsement)
–​ Orderers (if targeting a specific set of orderers)
–​ Chaincode ID (The smart contract to invoke)
–​ Chaincode
–​ Data stored in the blockchain (For querying deployed chaincode)

[D] Channel Administration Application

This application manages the peers and orderers that channels use.

•​ Create and update channels.
–​ <added 22 Aug 2017> This requires signatures from each of the orgs involved

in the channel. In a real world scenario it is unlikely that a single REST server
will be able to sign for more than one org. May need an additional endpoint to
return a signature for a config file.

•​ Identify as user A, have the server map it to the appropriate blockchain user.
•​ Identify as blockchain user Y.
•​ Fabric entities the client application needs to know about

–​ Channel
–​ Peers
–​ Orderers

[E]<added in v0.8> Network Administration Application
This is out of scope for the initial implementation but I want to record the requirements
for a potential future work item that may want to build upon the capabilities introduced
here. The roles involved in the following tasks are user management, peer management,
and channel management.

Hyperledger Fabric Rest ​ ​ ​ ​ ​ ​ Page 6

•​ Create and update users in the Fabric CA authority (authorities??? Can different CAs be
used by different Channels?)

•​ Create/update/delete a Peer in the network
•​ Create/update/delete a Channel in the network
•​ Fabric entities the client application needs to know about

–​ Channels
–​ Peers
–​ Users
–​ CA
–​ ???

Fabric Documented Use Cases

See use cases.

Security Design

Client and user creation and configuration will not be exposed over REST.

Hyperledger Composer intends to use Passport to do the​
authentication of REST clients. For compatibility purposes this REST API exposed through​
loopback should do the same. Basic auth and client certs should be supported for​
compatibility with users of the API: this should be transparent and handled by​
Passport. High level architecture is described below:

Hyperledger Fabric Rest ​ ​ ​ ​ ​ ​ Page 7

http://hyperledger-fabric.readthedocs.io/en/latest/biz/usecases.html
http://passportjs.org/

Key points: The REST API provider will be the client from the SDK’s perspective in the​
initial (prototyping) phase. One fabric user enrollment certificate will be used to drive​
all requests into the fabric-sdk—at least initially. The client and associated​
credentials to use will be configured in the REST API provider set up, a keyValueStore​
will probably also be part of the configuration. (i.e., the wallet. This component is​
likely to be required by Hyperledger Composer too, so a shared service employing its own
APIs can be used here.) The REST API provider MUST require clients to authenticate their​
identity so that only authorized users are able to use the REST API and drive SDK​
functions as the configured client. When a REST request is translated into an SDK​
function call the configured client will be used when required.

Hyperledger Composer have similar challenges with securing REST APIs for their business​
networks. We intend to work with them and arrive at an API that looks and feels similar,​
as much as is appropriate.

Handling Asynchronous Interaction with Fabric

For the first phase the REST calls will be synchronous and will block until the Promise​
is resolved and the result will be returned on the call. If a client request times out​

Hyperledger Fabric Rest ​ ​ ​ ​ ​ ​ Page 8

then the information returned in the promise will be lost to them.

To resolve the issue of a timeout causing context to be lost a future phase will look at​
the options for allowing the REST calls to be asynchronous, either through returning a​
token for a promise or providing a register callback mechanism. To allow the caller to
determine whether or not to run a request synchronously an optional query parameter will
be added to the command(s) that can be run asynchronously.

REST API Design Considerations

A stateless REST API can’t use an instance reference (in the url or message) for an SDK​
object it acts upon as the object won’t exist in the REST API provider’s memory. The REST
API may reference objects that exist within Fabric that the SDK may query.

To keep the REST API stateless requires passing serialized objects in some requests and
responses. An example would be a proposal response that would need to be passed on a
“commit” request to the orderers.

To keep the interface of the REST API cleaner this API will query data from Hyperledger
Fabric when possible rather than require it to be passed on a request/response. The
performance of querying information for each REST request can be considered in a follow
on phase. Techniques such as caching can be considered at that point.

This design does not consider server specific configuration to be state as it can be used
across unrelated requests and is not updated by the REST API functions.

PUT is used for updates and POST is used for create.

REST API Function Summary

Related Information

Fabric Client information, and mapping from a REST client will be configured in the​
loopback REST API provider application.

Lifecycle API
•​ Run a transaction end to end [A,B]

–​ POST /channels/{channelName}/transactions
–​ Related SDK function: Chain.createTransaction() does not appear to exist in the

SDK
–​ Related SDK function: Chain.sendTransactionProposal(request),

Chain.sendTransaction(request)
–​ input: transaction data

Hyperledger Fabric Rest ​ ​ ​ ​ ​ ​ Page 9

–​ output: transaction result
•​ Send a transaction to the channel’s orderer(s) [B]

–​ POST /channels/{channelName}/transactions
–​ NOTE: This is the same URL as end to end, action will be determined by payload

content.
–​ Related SDK function: Chain.sendTransaction(request)
–​ input: transaction data and, endorsement results
–​ output: transaction result
–​ This requires an improvement to the SDK or to store sdk class instances

between requests which requires session management in the REST server
•​ https://jira.hyperledger.org/browse/FAB-5156 raised to request sdk

improvement.
•​ Session management should not be required when the input data should

be sufficient.
•​ Endorse a transaction on the channel’s peers [B]

–​ PUT /channels/{channelName}/proposal
–​ Related SDK function: Chain.sendTransactionProposal(request)
–​ optional query string: peers=[i,j,k]
–​ input: transaction result
–​ output: array of endorsement results

•​ Endorse a transaction on the channel’s peers [B]
–​ NOTE: This is an RPC style call as it does not act on a resource

•​ The alternative is to do REST style calls to an ephemeral proposal. See
previous main bullet

•​ This call can have no asynchronous option as there is nothing created that
can be queried to determine if the request completes, fails or is still
in-progress.

•​ ??? How long can this call take? Is sync only okay?
–​ POST /channels/{channelName}/endorse
–​ optional query string: peers=[i,j,k]

•​ Use to target specific peers.
–​ input: Transaction data
–​ output: Array of endorsements

•​ Install new chaincode onto a peer [C,D]
–​ POST /chaincodes?peers=[i,j,k]
–​ input: chaincode id
–​ output: result

•​ Install an update to chain code on a peer [C,D]
–​ PUT /chaincodes?peers=[i,j,k]
–​ input: chaincode id

Hyperledger Fabric Rest ​ ​ ​ ​ ​ ​ Page 10

https://jira.hyperledger.org/browse/FAB-5156

–​ output: result
•​ Endorse new chaincode with the channel’s peers [C,D]

–​ POST /channels/{channelName}/endorse

–​ NOTE: Same url as endorsing a transaction. Same concerns apply about RPC
style.

–​ optional query string: peers=[i,j,k]
•​ Use to target specific peers.

–​ input: chaincode input
–​ output: endorsement result

•​ Instantiate new chaincode (end to end) [C]
–​ POST /channels/{channelName}/chaincodes
–​ input: chaincode id
–​ output: chaincode result

•​ Instantiate updated chaincode (end to end) [C]
–​ PUT /channels/{channelName}/chaincodes
–​ input: chaincode id
–​ output: chaincode result

•​ Instantiate new chaincode with the channel’s orderers [C]
–​ POST /channels/{channelName}/chaincodes

–​ NOTE: Same as instantiate end to end, action will be determined by payload.
–​ input: chaincode id, endorsement results
–​ output: chaincode result

•​ Instantiate updated chaincode with the channel’s orderers [C]
–​ PUT /channels/{channelName}/chaincodes

–​ NOTE: Same as instantiate update end to end, action will be determined by
payload.

–​ input: chaincode id, endorsement results
–​ output: chaincode result​

Management API
•​ Retrieve all known channels. [B,C,D]

–​ GET /channels
–​ Related SDK function: Client.queryChannels(peer)
–​ input: none
–​ output: array of channel names

•​ Retrieve information about a named channel. [B,C,D]
–​ GET /channels/{channelName}
–​ Related SDK function: Client.queryChainInfo(name, peers) and maybe

Chain.initialize()

Hyperledger Fabric Rest ​ ​ ​ ​ ​ ​ Page 11

–​ input: none
–​ output: Detailed Channel information

•​ Create a new named channel [D]
–​ POST /channels/{channelName}
–​ Related SDK function: Client.createChannel(request)
–​ input: Detailed channel information
–​ output: Result

•​ Update a named channel [D]
–​ PUT /channels/{channelName}
–​ Related SDK function: Client.updateChain() Not implemented yet.
–​ input: Detailed channel information
–​ output: Result

•​ Join a Peer to a channel [D]
–​ POST /channels/{channelName}/peers
–​ input: peer url
–​ output: Result

•​ Remove a Peer from a channel [D]
–​ NOTE: this is not implementable at the moment with Fabric 1.0

•​ NOTE: Orderers to use will be configured in the REST server configuration not over the
REST API.

Query API
•​ Query by resource - transaction [A,B,C,D]

–​ GET /channels/{channelName}/transactions/{transactionID}

–​ input: none

–​ output: transaction entry

•​ Query by resource - block [B,D]
–​ GET /channels/{channelName}/blocks

–​ query string - one of:

•​ blockID=id

•​ blockHash=hash

–​ Chain.queryBlock(blockNumber) or Chain.queryBlockByHash(blockHash)
–​ input: none
–​ output: block information

•​ Query by resource - chaincode [B,C,D]
–​ Installed (on peer)

•​ GET /chaincodes/{id}?peers=[i,j,k]

–​ Instantiated (in channel)

•​ GET /channels/{channelName}/chaincodes

•​ GET /channels/{channelName}/chaincodes/{id}

Hyperledger Fabric Rest ​ ​ ​ ​ ​ ​ Page 12

–​ Related SDK function: Chain.queryInstalledChaincodes(peer) or
Chain.queryInstantiatedChaincodes()

–​ input: none

–​ output: chaincode information

•​ Query by ledger [B, D]
–​ GET /channels/{channelName}/ledger
–​ query string - one of:

•​ chaincode=name

•​ blockID=id

•​ blockHash=hash

•​ transactionID=id

–​ input: Any

–​ output: Identifier String and byte array containing the result
•​ Query by database [B]

–​ Pass a query to the database used to contain the world state on the peer.
–​ Rich queries not supported by SDK yet.

Error Handling
What errors are expected and how should they be handled?

Error How to handle it

Connection, client to REST server Standard processing of loopback, passport,
or the client stack depending upon where
the failure occurs.

Connection, REST server to Peer Return a 5xx error. Log the problem in the
REST server. This is likely to be a server
configuration problem or a peer being
offline.

Connection, REST server to Orderer Return a 5xx error. Log the problem in the
REST server. This is likely to be a server
configuration problem or the orderer being
offline.

Endorsement, all requests failed Return a 4xx error and log in the REST
server

Endorsement, some requests failed If enough pass to meet endorsement policy
then it should not be treated as a failure.

Hyperledger Fabric Rest ​ ​ ​ ​ ​ ​ Page 13

If less than enough to meet endorsement
policy then return a 4xx with endorsement
responses and log it in the rest server.
***What if some or all of the failures are
connection failures?***

Ordering failed Return a 5xx, log the problem in the REST
server.

Input validation failures Return a 4xx and log in the REST server

HTTP response codes
•​ 200 OK => Use for all requests processed cleanly
•​ 201 Created => Not used
•​ 202 Accepted => Use this one when asynchronous options are added
•​ 204 No Content => Use when validly no content is returned
•​ 400 Bad Request => Use when missing fields or badly formatted data
•​ 401 Unauthorized => Should be returned when authorization fails
•​ 404 Not Found => Return when a resource identified in the URL does not exist.
•​ 408 Request Timeout => Should be returned by the loopback server comms layer. ???​

Where is the server side timeout configured?
•​ 409 Conflict => Use when the orderer says no ???

Swagger definition of the API
•​ Refer to the working document available here:

https://github.com/hyperledger/fabric-sdk-rest/blob/master/fabric-rest.yaml

Loopback Specifics

Connector Required Methods

This connector will wrapper fabric-sdk-node and connect to fabric v1. It will require the​
datasource to pass the certificate store information needed to create the client and user​
classes that it will use when connecting to fabric.

The four functions the connector must implement and export are.

Connector Method Intent
initialize(datasource,
callback)

Configure the user credentials and certificate store to use for
connections. Need a primary peer to be configured to query it
for all channels.

Hyperledger Fabric Rest ​ ​ ​ ​ ​ ​ Page 14

https://github.com/hyperledger/fabric-sdk-rest/blob/master/fabric-rest.yaml

connect() Validate connection credentials. The SDK establishes it’s own
connections when needed and so no permanent connection can
be made here.

disconnect() Null op.
ping() (Optional) Check fabric is still there
It will also need to implement a set of methods to access the channels stored in fabric,​
including utility functions to create SDK objects required by calls. A likely set of​
methods will be the following, although the names and number may change during​
implementation, as needed, the intent is the key thing here.

Connector Method Intent
setupSecurityContext(externalUser
)

Use the authenticated external user to determine the
blockchain user credentials to use when connecting
to fabric

lookupChannel(channelName) Get details of the named channel from the peer
runQuery() Run a query on the primary peer
runTransaction() Run a transaction on the primary peer
runTransactionEnd2End() Run, get endorsements, and send to orderer a

transaction
getEndorsement(peer) Get endorsement from the named peer
sendToOrderer(orderer) Send a transaction with its endorsements to an

orderer
deployChaincode() Deploy chaincode into a channel
updateChannel() Update the peers/orderers/configuration of a

channel

Packaging the Connector

There is naming defined by JIRA work​
item FAB-156 which proposes naming the​
connector as an npm installable module named hfc-rest. However as the connector will​
not do any REST itself and is more generic a better alternative should be used. Also the sdk​
module has been renamed to be fabric-client and no longer uses hfc.

Loopback has a naming convention where connectors are loopback-connector-NAME and
they​
are referenced in the datasources.json file by just the NAME. Therefore we propose​
using loopback-connector-fabric instead.

For npm install create a package.json with the following contents. The contents will be​
refined during implementation.

{​
 "name": "loopback-connector-fabric",​
 "version": "1.0.0",​

Hyperledger Fabric Rest ​ ​ ​ ​ ​ ​ Page 15

https://jira.hyperledger.org/browse/FAB-156

 "description": "LoopBack Connector for Hyperledger Fabric v1.0",​
 "engines": {​
 "node": ">=4"​
 },​
 "keywords": [​
 "StrongLoop",​
 "LoopBack",​
 "Hyperledger",​
 "Fabric",​
 "DataSource",​
 "Connector"​
],​
 "main": "index.js",​
 "dependencies": {​
 "loopback-connector": "^3.0.0"​
 }​
}

Where index.js includes

'use strict';​
​
module.exports = require('./lib/fabricconnector.js');

REST provider configuration (loopback datasource)

Aim for configuration to be similar to Hyperledger Composer.

•​ EITHER
–​ Name the fabric user.
–​ Secret for the fabric user.

•​ OR

–​ Define the key value store where the user certificates are stored on the
loopback server. Used to map external users to fabric users

•​ Array of Peers to connect to. This is the array of Peers that

•​ Array of orderers. One or more orderers that the REST server could send the order
transaction/chaincode request to.

In file server/datasources.json

"fabricDataSource": {​
 "name": "fabricDataSource",​
 "connector": "fabric",​
 "peers": ["NOT-SET"],​
 "orderers": ["NOT-SET"]​
}​

Hyperledger Fabric Rest ​ ​ ​ ​ ​ ​ Page 16

​
TODO detailed configuration

Hyperledger Composer stores information about the connection profile and the name of the
business network to connect to. These relate to Hyperledger Composer’s view of the fabric
and so are not needed in the rest SDK layer.

Loopback Model Configuration

The loopback model is used to define the external REST API. A skeleton model can be​
generated from a swagger document using the lb swagger FILE command.

Connect the model to the datasource by updating server/model-config.json

...​
"swagger_fabric" : {​
 "datasource" : "fabricDataSource",​
 "public": true​
},​
...

Packaging the Loopback Model

Potentially package this part with the datasource as an npm module called fabric-rest
that has a dependency on the loopback-connector-fabric.

External References
•​ REST SDK Source code on github
•​ REST SDK source on gerrit
•​ JIRA work item FAB-156
•​ SDK source on github
•​ SDK source on gerrit
•​ Node SDK, reference
•​ Fabric v1.0 SDK design doc
•​ This document is out of date (note added 20 April 2017)
•​ Node SDK, Read the docs
•​ Loopback “Building a Connector” documentation
•​ Fabric use cases

Hyperledger Fabric Rest ​ ​ ​ ​ ​ ​ Page 17

https://github.com/hyperledger/fabric-sdk-rest
https://gerrit.hyperledger.org/r/#/admin/projects/fabric-sdk-rest
https://jira.hyperledger.org/browse/FAB-156
https://github.com/Hyperledger/fabric-sdk-node
https://gerrit.hyperledger.org/r/#/admin/projects/fabric-sdk-node
https://fabric-sdk-node.github.io/
https://docs.google.com/document/d/1R5RtIBMW9fZpli37E5Li5_Q9ve3BnQ4q3gWmGZj6Sv4
http://fabric-sdk-node.readthedocs.io/en/latest/
https://loopback.io/doc/en/lb3/Building-a-connector.html
http://hyperledger-fabric.readthedocs.io/en/latest/biz/usecases.html

Community Quotes

This section is recording anything from the community chat that might be useful to reference
when looking at future design enhancements. TODO: record this information in a more
appropriate place.

Source chat.hyperledger.org

Use
r Date Related comment Channel

sajz 2017-3
-2

10:22

… “also the SDK is handling the certificate of the Client locally,
and if we use our API, we really don’t want to ”break" the
identity-proof link by receiving request from the Client through
our API on a server and then interacting (grpc) with the
chaincode with its certificate or ours (1st case we will handle
their certificate but we would rather not, 2nd case we will lose
the traceability of whom made the tx“

fabric-s
dk

…

Hyperledger Fabric Rest ​ ​ ​ ​ ​ ​ Page 18

	Design of Hyperledger Fabric REST API
	Authors
	Notes for Readers
	Design to-do
	Prerequisites
	Requirements
	(Very) High Level Architecture
	Design Principles
	REST API Versioning
	REST API Use Cases
	[A] Business/SoR Application
	[B] “Blockchain aware” Application
	[C] Build System Application
	[D] Channel Administration Application
	[E]<added in v0.8> Network Administration Application
	Fabric Documented Use Cases

	Security Design
	Handling Asynchronous Interaction with Fabric
	REST API Design Considerations
	REST API Function Summary
	Related Information
	Lifecycle API
	Management API
	Query API
	Error Handling
	HTTP response codes
	Swagger definition of the API

	Loopback Specifics
	Connector Required Methods
	Packaging the Connector
	REST provider configuration (loopback datasource)
	Loopback Model Configuration
	Packaging the Loopback Model

	External References
	
	
	
	Community Quotes

