
BOF 
course also online 
https://www.cs.ubbcluj.ro/~rlupsa/edu/pdp/  
 

LECTURE W1 
multithreaded programming  - google images 
 
 
concurrent = several tasks that are in progress at the same time, not completely independent 
switching tasks is problematic 
??? core pins 
 
parallel =  
 
distributed = higher cost of communication,  
 
1970' -> 1Mhz 
1999 -> 4Ghz 
now it is the same, because increasing the freq would lead to too much heat 
 
time to do addition operation = depends on the distance from the input to the output, through the 
transistors 
 
processor pipeline - starting the next operation when the current is still on-going 
 
 
"there's no cloud, there's only someone else's computer" 
 
miracle on the hot?? - dual engine failure 
4-engine plane flew through a volcano ash cloud and all 4 engines failed 
arian 5 because of a programming mistake 
 
why not: 
race condition - needs serialization w.r.t. the shared resource 
 
spectrum & meltdown security issues 
 
getting rid of race conditions - mutexes 
 

https://www.cs.ubbcluj.ro/~rlupsa/edu/pdp/


deadlock - circular wait 
 
 
non-determinism - a bug that manifest often enough to be problematic, but seldom enough to 
not be able to fix it 
 
0xCDCDCDCD in visual studio standard library on unallocated memory in order to make bugs 
easier to trace 
 
lack of global state, lack of universal chronology (distributed system only) 
 
 
H1: Lecture 2 
 
10s of nanoseconds to access RAM memory 
ideal average time on cpu 100-200 picosecond 
solution: cache memory 
 
main memory: latency vs throughput 

-​ dynamic ram - DRAM - means content is continuously refreshed 
-​ SRAM - static ram - doesn't need refresh 

 
how it works? 
you have several capacitors, one for each cell 
reading voltage and interpreting it in 0 and 1 
you throw a glass of water on a corridor, and someone in the corner checks the level of water 
 
reading is destructive 
larger the memory, slower the reading process 
large parallelism, but large latency 
 
vector in the cache 
 
memory chips have small increases in access time, but the throughput doubles 
 
 
visit the cache from the other CPU, w/ a sync mechanism  
 
few variables accessed from one thread, very good 
 
access an array, depends on array size & access pattern; ex: row vs column traversal of a 
matrix 
 
communication between cache and memory = cache line, 64 bytes = 512 bits 



 
 
several threads with different variables which are packed close to one another. if they get in the 
same ?resource? 
example :fale-sharing.cpp 
 
 
standard: the implemenation can reorder the operation as long as the observable effect is the 
same 
 
 
std::atomic<T>::fetch_ad can be used to check if you should have done an operation 
 
tell the compiler to do everything after a given operation 
 
atomic is very restrictive, but its the basc that the processor provides 
 
cond variables, mutexes & everything is built on top of that 
 
 

LAB W1 
FLCD is the missing piece of the puzzle 
 
why logic gates & Computational Logic - venn & karnaugh diagrams? to make cheaper 
microchips 
business idea: fabrica de tranzistori si fabrica de microcipuri 
​ farmezi materia prima 
​ procesorul Dacic 3 
​ o sa ti-l ia si ?apple 
 
big data + deep learning = recommendations 
 
 
Q: why the empty executable takes so much space? 
A: routines to handle interrupts  
 
 
error detection & error correction from Coding Theory from Algebra used in HTTP 
 
 
parallel matrix calculation on the GPU 
 



why amazon is the boss? e-commerece site pe steroizi - global 
 
American Made tom cruize 
 
 
why work in cluj? when you can work remote in US 
 
"backbone in cluj is videochat" 
 
 
50% drugs; 50% ubb 
 
 
he's more afraid of you, than you are of him 
he's an encyclopedic mind 
ask him anything you're curious 
ask him interesting question 
 
el e super timid, atunci fa tu pasul …. so he can be comfortable 
 
how do plan now to be well in the future? 
like chess, think 7 moves ahead 
how could you now make your life better in 5, 10 year? 

software architect, project manager 
"orice soldat are … de maresal" 

 
Sharpe https://en.wikipedia.org/wiki/Sharpe_(TV_series)  
 
Bradley Cooper & Emily in Paris 
 
 
feel better after cursing ads 
 
 
lab1: nu alegeti 3 
 
 
we'll not measure algorithms by # of operations 
we want to optimize implementation 
 
 
they started increasing the core numbers when they could no longer increase the number of 
transistors 
 

https://en.wikipedia.org/wiki/Sharpe_(TV_series)


veritasium:   - because there could come stuff from The Universe is Hostile to Computers
space which changes the bits 
 
trebuie sa pui niste entitati sa faca niste chesti si sa acceseze aceasi resursa printr-un mutex 
read the statement with attention 
write on teams regarding problems with implementation 
 
no code til next lab, only ideas 
 
how Gabi would do it in a corporation: 
write on paper the pseudocode/scheme ideas 
follow soundness & completeness 
 
complete = covers all cases 
 
go the senior with the paper and ask him if you're covering all cases 
you can trust that algorithm 
 
now you're done being the informatician 
 
now rtfm instead of going to stackoverflow 
 
advice: eighty % on thinking; 20% on implementation; 0% on debugging 
if debugging > coding; then you're not gonna go far 
 
0 progress for switching companies 
if you don't feel like you're grew in six months, run away 
 
 
ce thread-uri ai? ce o sa faca? cum le sincronizei? 
care o sa fie contextele de live/dead-lock? 
 
next time: just a paper with ideas 
ne va la curs probabil niste hint-uri 

LECTURE W2 
 
behind the scenes of C++ λ-function compilation 
 
passing custom information to the OS - to the thread 
 
waiting threads consume only memory 

https://www.youtube.com/watch?v=AaZ_RSt0KP8


switching threads uses a few hundred instructions 
 
blocking threads have a timeout 
 
break 
 
final restriction imposed on closures variables + C# comparison 
​ the difference is seen when creating a λ and using it much later 
​  
​ similar to Python's mutable default value 
 
def f l = [] 
​ l.append 1 
​ print l 
 
f [] 
f [] 
f [1, 2, 3] 
f [] 
f[ ] 
 
try to run this 
 
mechanism for synchronization: atomic variables & mutexes 
 
​ atomic = indivisible 
​  
​ std::atomic blocks other threads from doing operations on the same variable 
​ limited to certain simple types and simple operations 
 
​ time went from 2ms to 7ms 
 
​ the access to that variable will be serialized in hardware 
 
purpose: get rid of the shared variable, which cause bottleneck 
 
 
multi-threaded vector sum: have a thread-local variable for the sum, then at the end do the sum 
of those variables 
 
why sometimes single thread is faster: most of the time is spent in the bottleneck 
​ that's why putting more threads doesn't help 
 
very expensive to create threads 



cache ping pong is more expensive than making sure of exclusive access to a variable 
​ chip manufacturers consider this  
 
real-time computation = the program runs within an allocated time 
​ 2 kinds: soft real time - it's ok from time to time for a computation to take longer than 
usual 
​ ​ ​ ​ - skipping frames that take longer than the time to switch 
​ ​ hard real time - rocket guiding systems, industrial 
 
 

LECTURE W3 
today: mutexes, using them, issues in using them 
 
problems of early return and exceptions when using mutex lock and unlock 
​ solution: std::unique_lock 
 
 
in C++ you can do a forced exit by creating a custom exception and catching it in main() or 
something 
 
 
in Java: 

mtx.lock try finally mtx.unlock 
synchronized() = {mtx.lock … mtx.unlock } 
 
 

class invariant  
 
 
a mutex protects all the promises between data variables 
 
the code isn't problematic, but the data it accesses 
 
if you modify => don't allow other read/write 
if you read => don't allow writes 
 
using a single mutex for everything is correct, but kills all paralelism 
 
when you read "mutex" somewhere you should read it as "bottleneck" - aka, if possible, avoid 
modifying 
 
FP = relies on pure functions, depend on input args, don't modify anything 



 
multi-thread multiple vectors sum is much slower 
if each thread does sum in a chunk then all is summed up, then it is more efficient 
 
 
idea: share as little data as possible 
 
bank problem: 1 mutex per account 
 
race condition with several objects 
 
bank transfer - the problem of audit() happing in the middle of the transfer   

problem: dead lock for A->B and B->A transfers in the same time 
 

usually a deadlock involves 2 threads, but can involve more 
​ the probability decreases exponentially w/ the size of the cycle 
 
often enough that is problem, seldom enough that is easy enough to debug 
 
deadlock best scenario: it doesn't do anything 
 
how to solve the cycle, 2 approaches 
 
I. compulsory order for locking the mutexes 
​ ex: increasing order of the id 
 
special case: if a process can lock at most 1 mutex at a time  
 
try_lock  
how much to wait until you try again? 
 
you have to release all the mutexes 
 
live lock = threads are not completely blocked, but they cannot progress; like the diff between 
checkmate and stalemate in chess 
 
 
lock-free algorithms - you can do a lot of stuff w/o using mutexes at all 
basic idea: freezing one of the thread will not prevent the other thread from achieving their goals 
those threads cannot have locks 
 
compare_and_exchange() - if it has expected value then it changes to desired value. if 
successful, you get true 
​ can be used for transfer when subtracting/adding to an account 



​ how to do it on 2 accounts? You can't, you have to implement some more abstract data 
structure 
 
​ ABA problem 
​ "if you can solve a non-trivial problem with a lock-free algorithm, you can get a PhD for 
that" 
 
std::shared_mutex - lock (lock is exclusive) & shared_lock 

way more complicated than a regular mutex 
a new Reader comes when the Writer is in stand-by => starvation 

ex: waiting to enter a busy main road 
​ ​ solution: block all the reads until the writer comes, but it's expensive 
 
recursive mutexes 
  
3 types of mutexes in pthread: non-checked, checked, recursive 
​ non-checked fails to do the lock 
​ default - result in undefined behavior 
​ recursive - blocks if you lock from a different threads,  
  
 
recursive mutexes - usually in Java and C# 
​ is usually thought to be a good idea, but it's not a good idea 
​ if a method is called from the inside, the invariant might no longer hold 
​ solution: f_internal() - must be called under mutex, mention all pre-conditions and call it 
inside f() & g(). Much cleaner, much easier. 
 
original collections in Java were thread-safe 
later implementations are not. Why? experience showed that usually it's useless because 
usually the access to the collection is already bottleneck by mutex by the programmer code  
 
in Java all functions are by default virtual. bad idea, because it makes the semantic of a function 
depending on the implementation details 
​ ex: Collection with insert() & append() and derived CountedCollection 

insert() { count++; Collection.insert(); } 
append() {} 
what if Collection.append() calls insert() ? => the counter is increased twice 

solution: never call a public function from another public function. refactor into a 
private helper function 

 
 
next time: producer-consumer communication 
 
another operation that can be involved in a deadlock: join() 



 
normally you should join() all the threads you spawn 

if the destructor is called before join() => an exception is thrown      
 ​ you should have controller over when the thread ends 
​ join() is blocking and all blocking functions may result in deadlock 
​ example ??? 
​ very often the ending of a multi-threaded application is hard to analyze 
 
 

LAB W3 
aroganta 
cryptosecurity 
qubit 
 



LAB W4 



 



LAB W05 
What are people looking for in a thesis? What are the expectations? 
 
undergraduate exam consists of 3 parts 

1.​ theoretical contest - 3 big areas: OS, DB, DSA; on paper/oral 
2.​ the scientific paper of the thesis 
3.​  

 
scientific articles 
scientific books 
undergraduate thesis 
dissertation thesis 
doctorate thesis 
 
question to your helper teacher: like how to find the bibliography 
 
Gabi's way: 

1.​ initialState = 0 knowledge 
2.​ you find the problem you want to solve (ex: predict what players wins a chess game). it 

must be an open problem 
3.​ How did others tackle it?: through research 

a.​ how do you explore anything that has been written on the topic? use AI. search a 
big space w/o a lot of time. GA balances exploration & exploitation 

b.​ at 1st, you just explore (filter the water from the rivers and find nuggets => source 
of gold). How do you explore scientific work? Google related words to your topic 
in random order and add the word 'pdf' to the end 

c.​ balancing with exploitation: harvest PDF files with the name: 
YEAR_KEYWORDS_VALUE, VALUE = enjoyment of reading 1 (crap) -> 5 
(omg). you can even use real numbers 

d.​ skimming articles: resemblance between scientific paper & Romanian's fairytail 
(basmul) - the chapters: introduction, intrigue (find a niche that can be 
improved/hasn't been tackled yet)/proposed approach/abstract, implementation, 
compare your performance on the problem vs the state of the art, conclusion - 
did we do something to improve? 

4.​  
 
 
 
comparing two architectures is a valid scientific paper 
 
!!! you also need to put the shitty papers there. Why? 
 
The Pareto principle - 80% of the wealth is owned by 20% of the population 



​ extrapolating: 80% of the content on the topic is in the top 20% of it 
 
golden tool: https://www.connectedpapers.com/  
 
sqrt(n) splitting 
 
winter break - free time to take the 20 papers and put a .docx in which you highlight main ideas, 
advantages, disadvantages. but you read everything 
 
what is asked for the thesis: originality, no matter if it's basic 
 
at the end of the paper highlight the disadvantages: conclusion & future improvements 
​ THIS CHAPTER CONTAINS HINTS 
 
??, adapt, improve 
 
title: using <TECHNIQUE> to solve <PROBLEM> 
 
for bachelor thesis, you need to show that you can create a layered architecture app 
 
2 apps: 

1.​ deliverable intr-un REST API 
2.​ client care consuma API-ul 

 
you need to convince that is motivational and relevant - it increases the quality of life 
 
 
if you have a discussion, you have science 
 
the app should show that you know you've been through all subjects  
 
 
licenta poate sa fie personal project: git repo, documentatie, testare, layered architecture 
 

https://www.connectedpapers.com/


LECTURE W5 









 



 



LECTURE W6 











 



 

LAB W6 
the IT Crowd 
 
 



LECTURE W7 





 



 
 



LECTURE W8 







 



 



LECTURE W10 - MPI 





 



 



LECTURE W11 





 



LECTURE W11 Recovery from W10 





 



 

LAB W11 
 



LECTURE W12 



 



 



LECTURE W13 - OpenCL programming 





 



 

LECTURE W14 - Fault Tolerance 
only scratching the surface, cuz the topic is huge 
 
independence of airplane engines 
 
case when redundancy didn't help cuz the software was the same - same error 
 
manufacturing issue/overload 
bottom line: failures are not always independent, software bugs will affect all devices that have 
the same software 
 
10:14 consensus problem 
 
advice: floating point arithmetics errors (associativity doesn't hold, casting to boolean, line 
example) 
 
 
10:20 variations, General's problem 
 
10:22 failure types 
 
crash failure - best cuz it does not send bad data 
byzantine failure - there could a traitor in the army, even the general 
communication failure 
 
10:26 sync vs async 
 
no upper bound on computing time for async operations. 
 
synchronous. if time limit is passed => process is considered faulty 
 
no change of solving Consensu problem in the async case 
 
sync case - byzantine failure 
 
1 lieutenant failure 
general failure 
 
limit of 3t < n 
 
all distinct => every1 sees distinct value => resort to the default value 



 
timeout, you can create a default value for it 
 
output does not uniquely depend on the output 
 
why is the async case such a big deal? 
 
deadline for non-leaf node that has a fault 
 
puzzle: you have n prisoners. they are locked in individual sense (cannot communicate w/ one 
another). 
from time to time, single prisoners are taken, arbitrarily, to the court. eventually, all prisoners will 
go. 
communication device w/ 2 positions in courtyard. originally the switch is 0, the guardian doesn't 
touch it. 
at an time, in a finite amount of time, a prisoner should be able to declare that all prisoners were 
in the courtyard 
prisoners know the number n. 
 
you have n prisoners switch https://jaylorch.net/brainteasers/ThePrisonersAndTheSwitch/  
 
 
 
exam subjects - everything besides OpenCL 
time: 2h 
official cheats sheet A4 (aka 2 pages) that must be turned in at the end 
retake exams has same rules and same difficulty 
 
coming w/ another date - write an email 
 
emphasis on parallel and distributed stuff and less on programming 
 
∀ language, csharp, c++, java 
he won't be picky w/ the syntax 
don't exaggerate w/ the comments, try to be concise w/ the explanation 
 
mutex, cond var, creation/joining of threads 
​ but it's ok if you something else 
 
 

 
 
recursive decomposition 
 

https://jaylorch.net/brainteasers/ThePrisonersAndTheSwitch/


always think about range of processors that are assigned to solve a particular problem 
 
split the work and the range (ex: for karatsuba in 3) 
​ pass the subproblem & the # of processors it can use 
 
id formula: id_ind? = i + floor(nr_processs/2) 
 
ex: mergesort-simplified-mpi.cpp 
 
get parent id - from status param of MPI_Recv() 
 
from binary tree: 

childId1 = parent * 2; 
childId2 = parent * 2 + 1; 

works only if the parent doesn't do anything. but this means the parent idles 
 
 
solution to the problem: 
2 prisoners case 
3 prisoners case 
​ idea 
​ ​ ? 
​ ​ 3 declares only if he sees in pos 0 after he saw it in pos 1 
​ ​ fault - taking the prisoners always in the order 1, 2, 3  
 
rules to satisfy by ∀ algorithm 

-​ not output an incorrect result (partial correctness) 
-​ eventually output a result 

 
hash table based mapping 
 
probability of 0 (ex: always flipping heads) 
 
probability of 0 for infinite loop for a fair random generator for generating edges in a graph 
 
 
1 prisoner becomes the counter, all others flip the switch to pos 1 the 1st time they see it. 
the counter flips it to pos 0, if it's in pos 1 
 
 

exam prep 07 feb 
cheat sheet writing idea: write on paper, scan it, make it smaller, print it, now u got free space 



 
 

Astea sunt toate variantele posibile pe care le poate da la ppd? 
(normal sau cu mpi) 
1. big_numbers_product 
2. scalar_product_simple 
3. scalar_product_tree 
4. convolution 
5. hamiltonian 
6. permutations 
7. combinations 
8. k_combinations 
9. k_coloring 
10. merge_sort 
11. quick_sort 
12. producer_consumer 
 
 

resources 
1.​ lectures 
2.​ bookmarks? 
3.​ https://github.com/alexovidiupopa/pdp/tree/main/exam-workspace/src/ro/alexpopa/mpi  
4.​ exam-subjects 2022  
5.​ study session Jinga 4 feb  

a.​ problem 1 
i.​ 00:00 intro 
ii.​ 03:08 A fals? 
iii.​ 06:40 B adv 
iv.​ 09:05 C  
v.​ 1?:??  

b.​ 33:22 problem 2 
c.​ ~53 - about problem 3 
d.​ problem 1 
e.​ 1:09:10 problem 2 ProducerConusmerQueue 
f.​ 1:21:59 sub 4 pr 1 

6.​  
 

https://github.com/alexovidiupopa/pdp/tree/main/exam-workspace/src/ro/alexpopa/mpi
https://drive.google.com/drive/u/0/folders/1IHZ5hf_QVIsO62ndMVJkH8r-P9h2Vpro
https://ubbcluj-my.sharepoint.com/personal/tudor_jinga_stud_ubbcluj_ro/_layouts/15/stream.aspx?id=%2Fpersonal%2Ftudor%5Fjinga%5Fstud%5Fubbcluj%5Fro%2FDocuments%2FStudy%20Sessions%2FPDP%2Emkv&ga=1


subject 2 
1.​ https://www.cs.ubbcluj.ro/~rlupsa/edu/pdp/progs/futures-demo1-with-impl.cpp  
2.​ https://www.cs.ubbcluj.ro/~rlupsa/edu/pdp/progs/producer-consumer.cpp  
3.​ https://www.cs.ubbcluj.ro/~rlupsa/edu/pdp/exam-example.pdf future with continuation 
4.​  

cheatsheets 
1.​  by Cristian Gherman  cheat sheet pdp.pdf
2.​  

 
 

2023 subject 2 problem 1 
Consider the following excerpt from a program that is supposed to merge-sort a vector. The 
function worker() is called in all processes except process 0, the function mergeSort() is called 
from process 0 (and from the places described in this excerpt), the function mergeSortLocal() 
sorts the specified vector and the function mergeParts() merges two sorted adjacent vectors, 
given the pointer to the first element, the total length and the length of the first vector. 
 
void mergeSort(int* v, int dataSize, int myId, int nrProc) { 
    if (nrProc == 1) { 
        mergeSortLocal(v, dataSize); 
    } else { 
        int halfLen = dataSize / 2; 
        int halfProc = (nrProc+1) / 2; 
        int child = myId+halfProc; 
        MPI_Ssend(&halfLen, 1, MPI_INT, child, 1, MPI_COM_WORLD); 
        MPI_Ssend(&halfProc, 1, MPI_INT, child, 2, MPI_COM_WORLD); 
        MPI_Ssend(v, halfSize, MPI_INT, child, 3, MPI_COM_WORLD); 
        mergeSort(v+halfSize, halfSize, myId, nrProc-halfProc); 
        MPI_Recv(v, halfSize, MPI_INT, child, 4, MPI_COMM_WORLD, MPI_STATUS_IGNORE); 
        mergeParts(v, dataSize, halfSize); 
    } 
} 
 
void worker(int myId) { 
    MPI_Status status; 
    int dataSize, nrProc; 
    MPI_Recv(&dataSize, 1, MPI_INT, MPI_ANY_SOURCE, 1, MPI_COMM_WORLD, &status); 
    auto parent = status.MPI_SOURCE; 
    MPI_Recv(&nrProc, 1, MPI_INT, parent, 3, MPI_COMM_WORLD, MPI_STATUS_IGNORE); 

https://drive.google.com/file/d/1tBKyO1b_8KBaTKQ05OrynQ-OC8S8Y6l_/view
https://www.cs.ubbcluj.ro/~rlupsa/edu/pdp/progs/futures-demo1-with-impl.cpp
https://www.cs.ubbcluj.ro/~rlupsa/edu/pdp/progs/producer-consumer.cpp
https://www.cs.ubbcluj.ro/~rlupsa/edu/pdp/exam-example.pdf


    std::vector v(dataSize); 
    MPI_Recv(v.data(), dataSize, MPI_INIT, parent, 3, MPI_COMM_WORLD, 
MPI_STATUS_IGNORE); 
    mergeSort(v.data(), dataSize, myId, nrProc); 
    MPI_Ssend(v.data(), dataSize, MPI_INT, parent, 3, MPI_COMM_WORLD); 
}     
 
Which of the following issues are present? Describe the changes needed to solve them. 
 
A: the application can deadlock if the length of the vector is smaller than the number of MPI 
processes. 
 
B: the application can produce a wrong result if the input vector size is not a power of 2. 
 
C: some worker processes are not used if the number of processes is not a power of 2. 
 
D: the application can deadlock if the number of processes is not a power of 2. 
 
 
 
 

EOF 


	BOF 
	LECTURE W1 
	LAB W1 
	LECTURE W2 
	LECTURE W3 
	LAB W3 
	LAB W4 
	LAB W05 
	LECTURE W5 
	LECTURE W6 
	LAB W6 
	LECTURE W7 
	LECTURE W8 
	LECTURE W10 - MPI 
	LECTURE W11 
	LECTURE W11 Recovery from W10 
	LAB W11 
	LECTURE W12 
	LECTURE W13 - OpenCL programming 
	LECTURE W14 - Fault Tolerance 
	exam prep 07 feb 
	Astea sunt toate variantele posibile pe care le poate da la ppd? (normal sau cu mpi) 
	resources 
	subject 2 
	cheatsheets 
	2023 subject 2 problem 1 

	EOF 

