BOF

course also online
https://www.cs.ubbcluj.ro/~rlupsa/edu/pdp/

LECTURE W1

multithreaded programming - google images

concurrent = several tasks that are in progress at the same time, not completely independent
switching tasks is problematic

?7?7? core pins

parallel =

distributed = higher cost of communication,

1970' -> 1Mhz

1999 -> 4Ghz

now it is the same, because increasing the freq would lead to too much heat

time to do addition operation = depends on the distance from the input to the output, through the
transistors

processor pipeline - starting the next operation when the current is still on-going

"there's no cloud, there's only someone else's computer”
miracle on the hot?? - dual engine failure
4-engine plane flew through a volcano ash cloud and all 4 engines failed

arian 5 because of a programming mistake

why not:
race condition - needs serialization w.r.t. the shared resource

spectrum & meltdown security issues

getting rid of race conditions - mutexes

https://www.cs.ubbcluj.ro/~rlupsa/edu/pdp/

deadlock - circular wait
non-determinism - a bug that manifest often enough to be problematic, but seldom enough to
not be able to fix it

0xCDCDCDCD in visual studio standard library on unallocated memory in order to make bugs
easier to trace

lack of global state, lack of universal chronology (distributed system only)

H1: Lecture 2

10s of nanoseconds to access RAM memory

ideal average time on cpu 100-200 picosecond

solution: cache memory

main memory: latency vs throughput
- dynamic ram - DRAM - means content is continuously refreshed
- SRAM - static ram - doesn't need refresh

how it works?

you have several capacitors, one for each cell

reading voltage and interpreting it in 0 and 1

you throw a glass of water on a corridor, and someone in the corner checks the level of water

reading is destructive

larger the memory, slower the reading process

large parallelism, but large latency

vector in the cache

memory chips have small increases in access time, but the throughput doubles

visit the cache from the other CPU, w/ a sync mechanism
few variables accessed from one thread, very good

access an array, depends on array size & access pattern; ex: row vs column traversal of a
matrix

communication between cache and memory = cache line, 64 bytes = 512 bits

several threads with different variables which are packed close to one another. if they get in the
same ?resource?
example :fale-sharing.cpp

standard: the implemenation can reorder the operation as long as the observable effect is the
same

std::atomic<T>::fetch_ad can be used to check if you should have done an operation

tell the compiler to do everything after a given operation

atomic is very restrictive, but its the basc that the processor provides

cond variables, mutexes & everything is built on top of that

LAB W1

FLCD is the missing piece of the puzzle

why logic gates & Computational Logic - venn & karnaugh diagrams? to make cheaper
microchips
business idea: fabrica de tranzistori si fabrica de microcipuri

farmezi materia prima

procesorul Dacic 3

o sa ti-l ia si ?apple

big data + deep learning = recommendations

Q: why the empty executable takes so much space?
A: routines to handle interrupts

error detection & error correction from Coding Theory from Algebra used in HTTP

parallel matrix calculation on the GPU

why amazon is the boss? e-commerece site pe steroizi - global

American Made tom cruize

why work in cluj? when you can work remote in US

"backbone in cluj is videochat"

50% drugs; 50% ubb

he's more afraid of you, than you are of him
he's an encyclopedic mind

ask him anything you're curious

ask him interesting question

el e super timid, atunci fa tu pasul so he can be comfortable

how do plan now to be well in the future?

like chess, think 7 moves ahead

how could you now make your life better in 5, 10 year?
software architect, project manager
"orice soldat are ... de maresal"

Sharpe https://en.wikipedia.org/wiki/Sharpe_(TV_series)

Bradley Cooper & Emily in Paris

feel better after cursing ads

lab1: nu alegeti 3

we'll not measure algorithms by # of operations
we want to optimize implementation

they started increasing the core numbers when they could no longer increase the number of
transistors

https://en.wikipedia.org/wiki/Sharpe_(TV_series)

veritasium: @ The Universe is Hostile to Computers - because there could come stuff from
space which changes the bits

trebuie sa pui niste entitati sa faca niste chesti si sa acceseze aceasi resursa printr-un mutex
read the statement with attention

write on teams regarding problems with implementation

no code til next lab, only ideas

how Gabi would do it in a corporation:

write on paper the pseudocode/scheme ideas

follow soundness & completeness

complete = covers all cases

go the senior with the paper and ask him if you're covering all cases
you can trust that algorithm

now you're done being the informatician
now rtfm instead of going to stackoverflow

advice: eighty % on thinking; 20% on implementation; 0% on debugging
if debugging > coding; then you're not gonna go far

0 progress for switching companies
if you don't feel like you're grew in six months, run away
ce thread-uri ai? ce o sa faca? cum le sincronizei?

care o sa fie contextele de live/dead-lock?

next time: just a paper with ideas
ne va la curs probabil niste hint-uri

LECTURE W2

behind the scenes of C++ A-function compilation
passing custom information to the OS - to the thread

waiting threads consume only memory

https://www.youtube.com/watch?v=AaZ_RSt0KP8

switching threads uses a few hundred instructions
blocking threads have a timeout
break

final restriction imposed on closures variables + C# comparison
the difference is seen when creating a A and using it much later

similar to Python's mutable default value

deffl=1]
l.append 1
print |

fl

fl

f[1, 2, 3]

fl

fl]
try to run this
mechanism for synchronization: atomic variables & mutexes

atomic = indivisible

std::atomic blocks other threads from doing operations on the same variable

limited to certain simple types and simple operations
time went from 2ms to 7ms
the access to that variable will be serialized in hardware

purpose: get rid of the shared variable, which cause bottleneck

multi-threaded vector sum: have a thread-local variable for the sum, then at the end do the sum

of those variables

why sometimes single thread is faster: most of the time is spent in the bottleneck

that's why putting more threads doesn't help

very expensive to create threads

cache ping pong is more expensive than making sure of exclusive access to a variable
chip manufacturers consider this

real-time computation = the program runs within an allocated time
2 kinds: soft real time - it's ok from time to time for a computation to take longer than
usual

- skipping frames that take longer than the time to switch
hard real time - rocket guiding systems, industrial

LECTURE W3

today: mutexes, using them, issues in using them
problems of early return and exceptions when using mutex lock and unlock

solution: std::unique_lock

in C++ you can do a forced exit by creating a custom exception and catching it in main() or
something

in Java:
mtx.lock try finally mtx.unlock
synchronized() = {mtx.lock ... mtx.unlock }

class invariant

a mutex protects all the promises between data variables
the code isn't problematic, but the data it accesses

if you modify => don't allow other read/write
if you read => don't allow writes

using a single mutex for everything is correct, but kKills all paralelism

when you read "mutex" somewhere you should read it as "bottleneck” - aka, if possible, avoid
modifying

FP = relies on pure functions, depend on input args, don't modify anything

multi-thread multiple vectors sum is much slower

if each thread does sum in a chunk then all is summed up, then it is more efficient
idea: share as little data as possible

bank problem: 1 mutex per account

race condition with several objects

bank transfer - the problem of audit() happing in the middle of the transfer
problem: dead lock for A->B and B->A transfers in the same time

usually a deadlock involves 2 threads, but can involve more
the probability decreases exponentially w/ the size of the cycle

often enough that is problem, seldom enough that is easy enough to debug
deadlock best scenario: it doesn't do anything
how to solve the cycle, 2 approaches

I. compulsory order for locking the mutexes
ex: increasing order of the id

special case: if a process can lock at most 1 mutex at a time

try_lock
how much to wait until you try again?

you have to release all the mutexes

live lock = threads are not completely blocked, but they cannot progress; like the diff between

checkmate and stalemate in chess

lock-free algorithms - you can do a lot of stuff w/o using mutexes at all

basic idea: freezing one of the thread will not prevent the other thread from achieving their goals

those threads cannot have locks

compare_and_exchange() - if it has expected value then it changes to desired value. if

successful, you get true
can be used for transfer when subtracting/adding to an account

how to do it on 2 accounts? You can't, you have to implement some more abstract data
structure

ABA problem
"if you can solve a non-trivial problem with a lock-free algorithm, you can get a PhD for
that"

std::shared_mutex - lock (lock is exclusive) & shared_lock
way more complicated than a regular mutex
a new Reader comes when the Writer is in stand-by => starvation
ex: waiting to enter a busy main road
solution: block all the reads until the writer comes, but it's expensive

recursive mutexes

3 types of mutexes in pthread: non-checked, checked, recursive
non-checked fails to do the lock
default - result in undefined behavior
recursive - blocks if you lock from a different threads,

recursive mutexes - usually in Java and C#

is usually thought to be a good idea, but it's not a good idea

if a method is called from the inside, the invariant might no longer hold

solution: f_internal() - must be called under mutex, mention all pre-conditions and call it
inside f() & g(). Much cleaner, much easier.

original collections in Java were thread-safe
later implementations are not. Why? experience showed that usually it's useless because
usually the access to the collection is already bottleneck by mutex by the programmer code

in Java all functions are by default virtual. bad idea, because it makes the semantic of a function
depending on the implementation details

ex: Collection with insert() & append() and derived CountedCollection

insert() { count++; Collection.insert(); }

append() {}

what if Collection.append() calls insert() ? => the counter is increased twice

solution: never call a public function from another public function. refactor into a
private helper function

next time: producer-consumer communication

another operation that can be involved in a deadlock: join()

normally you should join() all the threads you spawn
if the destructor is called before join() => an exception is thrown
you should have controller over when the thread ends
join() is blocking and all blocking functions may result in deadlock

example ??7?
very often the ending of a multi-threaded application is hard to analyze

LAB W3

aroganta
cryptosecurity
qubit

LAB W4

LAB W05

What are people looking for in a thesis? What are the expectations?

undergraduate exam consists of 3 parts
1. theoretical contest - 3 big areas: OS, DB, DSA; on paper/oral
2. the scientific paper of the thesis
3.

scientific articles
scientific books
undergraduate thesis
dissertation thesis
doctorate thesis

question to your helper teacher: like how to find the bibliography

Gabi's way:
1. initialState = 0 knowledge
2. you find the problem you want to solve (ex: predict what players wins a chess game). it
must be an open problem
3. How did others tackle it?: through research
a. how do you explore anything that has been written on the topic? use Al. search a
big space w/o a lot of time. GA balances exploration & exploitation
b. at 1st, you just explore (filter the water from the rivers and find nuggets => source
of gold). How do you explore scientific work? Google related words to your topic
in random order and add the word 'pdf' to the end
c. balancing with exploitation: harvest PDF files with the name:
YEAR_KEYWORDS_VALUE, VALUE = enjoyment of reading 1 (crap) -> 5
(omg). you can even use real numbers
d. skimming articles: resemblance between scientific paper & Romanian's fairytail
(basmul) - the chapters: introduction, intrigue (find a niche that can be
improved/hasn't been tackled yet)/proposed approach/abstract, implementation,
compare your performance on the problem vs the state of the art, conclusion -
did we do something to improve?

comparing two architectures is a valid scientific paper
Il 'you also need to put the shitty papers there. Why?

The Pareto principle - 80% of the wealth is owned by 20% of the population

extrapolating: 80% of the content on the topic is in the top 20% of it

golden tool: https://www.connectedpapers.com/
sqgrt(n) splitting

winter break - free time to take the 20 papers and put a .docx in which you highlight main ideas,
advantages, disadvantages. but you read everything

what is asked for the thesis: originality, no matter if it's basic

at the end of the paper highlight the disadvantages: conclusion & future improvements
THIS CHAPTER CONTAINS HINTS

??, adapt, improve
title: using <TECHNIQUE> to solve <PROBLEM>
for bachelor thesis, you need to show that you can create a layered architecture app
2 apps:
1. deliverable intr-un REST API

2. client care consuma API-ul

you need to convince that is motivational and relevant - it increases the quality of life

if you have a discussion, you have science

the app should show that you know you've been through all subjects

licenta poate sa fie personal project: git repo, documentatie, testare, layered architecture

https://www.connectedpapers.com/

LECTURE W5

POP LECTURE WS

Suding M) i rtptmaine , epesially
alll iﬂgfwm«fa}y 6% lions M%f
T//(h@mlpo,&g x/ﬁ @ M&Zfb&w

(. LismiZ O tle # of Ao

947/&%(&@0 B Lt
it iy dowin AR ol po0 o 2oty y
Prgel dudiy i, Mo ool ,:;,W‘ yéﬁf;
Aol Ko o vt P SR ey St
o houdd VEVER BE oy apenthey

/&,a;{/k/,@m/l, o dwf/fdﬁo&aué(m el 53

AR)‘%M/M@
% /‘Wa,ogﬁfﬁ&‘% by froard Com Au

(il anbtns
ch//gf’z £~ if/WM' i TR P 2! = e I

i
M/;M" ok wiws }Zza/(’/ff‘/ﬂ/‘:e afns md
| [{/ Uktf-{gt,é M/l/)
ANMAA y &% e A/%Cd)bfﬁh, /(/)
Aons ot the /5&5“'”"“/‘% [Ao o1+Gid oroun.
o-lhoc. Loiddus)

!

5(_,6-@0)!(&f‘% {av: 30

i i

i Cte dbeed - fulufe (il g Cao el L 4100
M&ﬂéﬂ

WA msinty ffort,

A+ ayme

S (2 Toah Fo By was @ Tfead Fyol

M{’,{ﬂ O d(y (ohe Atudcs ni ght Mool
| il He Jdle Ny Tpo foroe;
) WWW,LKE At
Aeagry oh af/fm%)
1 bl f it rpight Wf,&c Apn L4,
)@/LIZNM}I% 7Mz ol

lon, ety s edt-drcoeny
Slhn, &
- I i wpidy Aoeerm
~ a /z‘(n\/?@, /{;,%'fb&)(?//
Cmegﬂﬁé) (QW 0&44%5 3
%é% //Zfd% cCar Xy W‘% Mffé»aqwf‘a%
WL () Ca,ﬂ/ﬁ*’%'é/i

-

POF LECTIRE Wos

ol cf &, u ‘ |
1 8ot e tliry s collches
MNA 25 /A"m{&/n(
//)4 /m,é/%c?% W’M;/ M@,W&Z{;} 5054/
e O qp A # twd e lra, k[@c_
it e iy dinl?
2 MWW‘M , WAM%(/M& &0
g el

et (7% Jath)

3% el A

;/ifaﬂv'é aov C Ff
A ZLW an A Aynaonic ZLW
po CEF it fantl 18 gt ppbtfHV5
fra M = /wc/t,(«f/ /5” W/g@&
oo T Pt
Lifeboine wpmdiraXicny e Anmndbdla capticteo
/Clﬂmd{"v{a, et ’LW”VMM M““dff&m,
v = funZios oy Raiakd Po w7
LA Lomsy
M/;_ ;j:;mf Cam 17N %ﬁ//@m{ﬁL Lol ,téac%g
g1 /fo(, Sp” 6 W{M A
Q- on alt o dr A Califfon b Auwars?
VL{M (é o'éé/w@ty MM .

LECTURE W6

Por Lecrype wot
Ao tign @1’1 [P

/,(/L/—(A/L//qﬂ, m,‘é{waﬂﬁw M&?’L am C# (/M‘&/‘zc/rﬁéow

2 - Careadk £, 3
AN g polise fle furnch P and o fen
et g futiSt e L)
(i WAK Selilys oy« fuiale

Ad:gﬁﬂﬁ."—(z =
Tk Corp Ao o, Spu52 2 sy
Tk <3 Retibws e futade A

A el Tk facblyy, Sast st Seat
A mlyr fﬁr&ufé

10:20 nhin 00> - clled wdew A fm@/ﬁﬂw

ff’-%%w%a&&‘/wém/&qf) J e Canls

Wm;m 0w |
onAlel MOA Ao /Kr)fa, /M:W mﬂ"a’f A
arih KispPu @

Uy gl i eatelor 7t o pES

it in Al To il b o At

Mo&n 57

 neTed

9; (ot by pustll Hpcumadd) NUlion po

. M/K«%f J can CM Am /f//fb ,/%MLW
Sl Guld ppandlims N X%

1wl e p Al }t%a?cg//{i
Newr fyottom Al (idMihert pacet)
14:do m»&’;‘f?t—ﬂft/ /»%iw() p o d0) ﬁ,c/n,ié,m Ve Mw%u "
w futule

He clllinck 1P e pSpnict™s Fesll
Mimegle W7§»Z/ e perfiing a
bogin €, udcs pii
/"‘@u&%@% a. M?; Mf%ﬁm%z /6
A,

2

POP LECTyos W06

thead fon e Bare iy
AU Jimiled Lot T furet Yo peil pomllensy

2009% il A T2 « (el

s sty - (At imsily Jo Mo Aetvy (llony

. e L ez fé’ru;ui/&/‘? 20 bt A %«%ﬂ
vl adlbs fe St foone A Lo 7 gl
puh (o)ﬁg&ﬁ%bztab (4 6¢L/$5hﬂfL"?uAcﬁ«xffL el
Xﬁzﬂ/&ﬂ/gﬂ (o A as A covdtimn A1 O

Ad:19

At fheacd)

(s Wl 0 S oA (5 LG

(Sl m

g
55 oo (onmed A/ paned el bak

A s feng) Cl tbsa oo
' Y A R it 47
It e o g wﬁm%(mgzw&

Aol d W//% 7 cond - 1ak
st Al 1D e x M/é o

(plodan 4@7‘”‘2/4"‘/){{ w et e d
53 o g ot Mt Sl i

lw Aitn At
//Cg}z o § m%{ ,«f‘f/}"{, '

w2/l 7 ﬂW/@%Z(”M”;”J k)
; WMML (va()

S calt ﬂwfué Fiowes Mo Amitoet
e A N e /Z‘wﬁ@

Jf ol /,&/z‘,{/; Condltmae

A MbaiAl)
/W@m»? WOAW Aagle vl avyre otz

/(,m/ (‘hb W C&%/L&&//Z{é Mf(?’féfa’%/é /LW/M-/

/%é{ s 2{ 0&7&/ /{ﬁe /LMQWZ
/M/L? Cﬁ;o Cﬂﬂ/‘? = &3 ""’ME”{

mbrk: otk Ho ctor (L. J WM\/@/ WW@

PDP LeCcTiw s woe
A ss arp AptI T 1t o AaA ool

Mige flihane, < WM@ Hb A el fe
(Ol d LA

fAbess TLTE7 L el s ompralasti,

t A o tocd ihontrr

ool
~as e (D M&JL?{‘/&

/V&/%Z/% MZKJL e cgz/mw
/fzf:;’ﬂx(ﬂ[/]f/ﬂlﬂjﬁ jor’s 547‘—/{267‘/)

LAB W6

the IT Crowd

LECTURE W7

POP LECTURE wo?

51:0'«//0{9/ /f’ﬂha’M\WM

oure »'%: ot S A

AL g /’Mﬂv’j&

crPV V[ﬁé[/?%

7-p10:57% a/""w{?mb
e pcconts B B prtallel

030 pLedES e AXL ﬂf,z&??,

20430 #S Kotonty ol Kb
~'10fff3—4f}'—%wm7r /»%c/&//u ol > Feons
4247 I 4 ,/.,4}‘7(%

11005 FucuSpine o prilign
YN 9(;/ //&9-{;57,,,\7 et WIS AOWMZ%
ma«?k,ug?ﬁvt/ﬁ G A OA Ww% [W/f@

L.%/%Q | wﬂk(gzﬂw@
A48 ﬁ%ﬁ/é

v s g
~
"/;*_:A'.“‘lrg . -
[7 &

A /l’ s il 5 - . X) "
W/h?/ﬁ, /{%L 4’6{“’%0 /5“”3?‘»«"3 D it 4
/) L7 Fln\ LA A

P 4

) | .
VA g v . B
/(/Lﬂ /ﬂ jzl/ﬂ /*Lo(mf //(:_/1 A & /@m 9‘{’2,3 :57'?,5"-:4;(,*,’;“';;,}"/
A ﬁ;{-bf'f{ ,,,:,.»fxt,?f:i' A * # i

/?'}’;fﬁ' “_f’. ;7‘;_’,;
R G Q7

1% 4 pomdls f Freamdne o
7

A

A4 @ Can L MW/%O%F

mlret Ow yq Z‘ﬂh{,mé

LECTURE W8

POP LECTURE Wog
o CfE T NUE
/WVL Lt & ,

inghainy th Sl Eonte)y Staatroth //"//mwlm
By = Ap*. .t Ay

w:/mauaw 6%
£0:22 /&/ﬁ‘(ﬂ/&f
- £
iR L % (%”@m)}(|
40 :3 /4' A A/M-ﬂ.d’ ﬁeaﬂ%/u}uz, 046&%—/.«(9%‘/?:4&&
f0: 40 B polilimy pwb o il s,

(8 (D +£.02) (0409 +0,13)
(ok il ol 2ne s > 3 6l il 4l oA
TCam) = 3T (7D ¢ 0(%)
T{/g.m,) - B T ¢ /(,W)

o Lttt o sl 155, o 0 P%)
U7 o p(w@af’/\ fop 3 = 1L

487 w@ i ?
L 7
N L)
[\
/’1@2 L -2 3,,},, ool XE/—\\L].? Q
! I

- Vi
(102800, f@})ﬂazj D
Aaz Wéﬁ'?&/{;{iw
Koo dntra: Lor sorsthend fr el 2o
= e Y elanice . M% |
1 dituidoa oy Loz omtmlierts
Syl O A AT Lon
?fLM ol »
o e ¢M&{%, E it Foabiss TR amnttr

(WM//(M% /MW@
(U (n 497,.,_,) %WJ,@

47:&%

PO7 25 C0r wos

ot gl srplsfe - badth i padolhh

w bk i A e Aoy

- w h 4ol Aopctiolihe oy ¥ e
ot o (ol Ly po comF>e

~ iy owd rtledele tdy L 2
(W!j\% 4 Aitey aeet/ ;oY ot 2
audd * 4 Hreup il v

Mty &

LECTURE W10 - MPI

ladtule /—5—%/:'.&@;”@7
¢ pppbuint i
sty ftuem Jmikts o d Fin lisar)
sl Sedifection Hgugl s ks Turn?

/W’/‘_ COMM_ Wikl p - WCJ&

Specbboviouts nus Buflifed sond
S e R N
035 1l puin s %L/whdf{ o«

066 poo docdd Lo wle A Fit o/ B

(10:67 g in fodtel)
17:4) pplier £ g, abapypss e Pl
Wi 0 MLIBh vm fopmo Soeom,

10 Awadcat
N1 Al pel 2P

"4:.00m
11> 22 /M%Wﬁ = ;ﬂmf %&&/CJ

1129~ WBATA
iz2 g pdons ety o A7
34 M
(1:350inr 2y d
R4 }%f@% Quan o, Covemie 2L

b of
09T fhr o ling/ | ,

Ml 4 Ma ﬁ'ixfmn {fﬂ{ /;i/” v i ;/

" PPN / ‘ ."J){:Zf\‘.;-‘q.‘-

A £, 4 Y o YW i
N T 4 Jus o owrmnt
L P e

LECTURE W11

POP | Fe7ure wid é
s L
}:,{p,a/;‘? o Htadys o L > i g gty
10: 12 MPI ﬁadﬂ?{ bl MM - 2l & ,m&wfl /«7:7

10: 1% /Q'&Cq‘-’
A0 <2l o~ L7 _
— negugthal (0 <),

iy ; AF Gt Cantlesind)
Y. Afa\j’ Yo L ada MCM
2, At ppEa /Z/'*M.a(,oow?'
oo, o Mo il Al o1 o ppucihe
the %@i o romasaicatio,, disnds - Por
Lotinde Lna. sttt an iy
10:54 y cubnint ﬂ&Wm g P

16 2% aﬁ_z,éh/ﬁwj&f
10:4(/1/99}% Jd fcn m&f@/ i g
7%/&?@)6&94\. [pp// /22971/,,{,,7/
A/{:L?”
M ps ’ﬁ,ou‘vé/w’sf Wawy& | |
Al ¥ o&%{,of d&,{[&c W“’Mm”" %M/
V8D - 4pid3 rhMM ZQMZ()
144 ity il aéﬂﬂmgm:q e le i
st = - sy Jloct, 1631

midly o by %4}-)@.é it p Tt

M idea (#eend iy 30)
vhuld st Ml

M= g
ety e Z@eﬁm/éﬁp@ mew
oy Ml g1
b0, e A el 3]t g

- WM P TM’“’%W
| “lpt po b4, WM/ /MW/[M//K%
o Rapdl ol fid of P alllon O fod 2gn cp

s and 07w it oy hH fe
LI INY: . A (e

i
Futk W//W/A,M gloss T Tome - MeFing
syons, ypivegy 76 Aoty bt 1k

LECTURE W11 Recovery from W10

POPLECT Y E W ey

(#, /?1;/4%/ Lua, ¢, Cre %/wj Cothon & WY

MM =
do o Hablped 1 el o sl s
ke w AL A%é— "

s lidow #P; AL

10:15 — %fﬁ(ﬁf W
B S e MA ppale %
Jﬁ,ﬂ/écd/{’cﬁ% U5 2%
- Ml o@»&wf%ﬂ% wck B g0

/[6?;/)7 C/ZMﬂbéCﬂ/‘&%‘l/
) M

,&ac/(! WC—D A pp”
< WM %m“/—f'éfp il A

o kAl Nl o Ll e
\//r(,aét«'(()y)mﬁ% O/quawm

= @M‘j

A Nabasen like o pine :
i (1 com feo pureppirdsd Gud Wﬁ%

10:35 amail was av ilimad #bs /076

Lo: 2¢C

~w:53 05 dotuls
ergie 7?1;?””"
AW/ I N0
“19:56 thih
19:55/5}/&6{7% yvis

whoting Lol - (F ks 15 mﬁ/z“"“‘d
WM H Mm&émww%/&”wfé

tHhead

Moo —g1:4092 CFHE Q?ﬁx@d/-c["ué

LAB W11

LECTURE W12

POP LECTYRE W12

A0 09 Mv{,’o’?,nujjhl [V@’T‘?ap

fo:h Gracittit chepinclogey M’M‘”“

{0224 ﬂhabomj/ Ladindl Al
f10: 2% quawChtl = (% X)), ¥i ;e,wz’{whfl»f%f/é@ sl
ﬂﬁlif ?&Io{lm#’{vyé Sogmdene
10: 36 7!

10: %4 O&JW% /{ZWJ‘%

M06 wrimy mWﬂrf{ X Conrn RO ol

M= 1p-pf X 0S5 '
rpoay wotf BT o G, fousttt 1R, guadtn

11: 15 eyl ﬁmﬂlﬂﬂ-&t‘%
P R i

11-23 ﬂw(

LECTURE W13 - OpenCL programming

PP | EcTdRE W13

OFENc. PROGRAEMMNMG

—

(9:08 fnli -MiAdy
/W« RAM i (po Ko M@l}(fﬂf (J’LM on P
I / Fanron e [220
"y,
i e onrlea pth ;

o mioed /o3 M«%Jﬂé
Jfardabd iAMPG Ll ot sr foc. iy piphity

M5 DAYgZd X
Viultan

#13 /W’d’#”i u L "f& Wﬂ.fm 7&,5»7
opn G- Y Mioie (V04

Jow pomo Gapy he apl. Can, Ae e foy A% v

Fer”
19:4 ¢ /ch -
J6uf® folndy folighalibne £ Vi

Ll | AR 2 l) Y N A4
qa:dd il

A0 1024(%0&% Ml ,ovu}”az? W‘%/
40 22 d % £t

Ry Wwﬂty/ o Aidedns
A2k il
AV : 25 M 6}%/

< / Ao i)
A48 &/ ¢Wm @wa/@u /4'7”‘/”(” e

1

LECTURE W14 - Fault Tolerance

only scratching the surface, cuz the topic is huge

independence of airplane engines

case when redundancy didn't help cuz the software was the same - same error
manufacturing issue/overload

bottom line: failures are not always independent, software bugs will affect all devices that have
the same software

10:14 consensus problem

advice: floating point arithmetics errors (associativity doesn't hold, casting to boolean, line
example)

10:20 variations, General's problem

10:22 failure types

crash failure - best cuz it does not send bad data

byzantine failure - there could a traitor in the army, even the general

communication failure

10:26 sync vs async

no upper bound on computing time for async operations.

synchronous. if time limit is passed => process is considered faulty

no change of solving Consensu problem in the async case

sync case - byzantine failure

1 lieutenant failure
general failure

limit of 3t <n

all distinct => every1 sees distinct value => resort to the default value

timeout, you can create a default value for it
output does not uniquely depend on the output
why is the async case such a big deal?
deadline for non-leaf node that has a fault

puzzle: you have n prisoners. they are locked in individual sense (cannot communicate w/ one
another).

from time to time, single prisoners are taken, arbitrarily, to the court. eventually, all prisoners will
go.

communication device w/ 2 positions in courtyard. originally the switch is 0, the guardian doesn't
touch it.

at an time, in a finite amount of time, a prisoner should be able to declare that all prisoners were
in the courtyard

prisoners know the number n.

you have n prisoners switch https://jaylorch.net/braint rs/ThePrisonersAndTheSwitch

exam subjects - everything besides OpenCL

time: 2h

official cheats sheet A4 (aka 2 pages) that must be turned in at the end
retake exams has same rules and same difficulty

coming w/ another date - write an email

emphasis on parallel and distributed stuff and less on programming
V language, csharp, c++, java

he won't be picky w/ the syntax

don't exaggerate w/ the comments, try to be concise w/ the explanation

mutex, cond var, creation/joining of threads
but it's ok if you something else

recursive decomposition

https://jaylorch.net/brainteasers/ThePrisonersAndTheSwitch/

always think about range of processors that are assigned to solve a particular problem

split the work and the range (ex: for karatsuba in 3)
pass the subproblem & the # of processors it can use

id formula: id_ind? =i + floor(nr_processs/2)
ex: mergesort-simplified-mpi.cpp
get parent id - from status param of MPI_Recv()

from binary tree:
childld1 = parent * 2;
childld2 = parent * 2 + 1;
works only if the parent doesn't do anything. but this means the parent idles

solution to the problem:
2 prisoners case
3 prisoners case
idea
?
3 declares only if he sees in pos 0 after he saw it in pos 1
fault - taking the prisoners always in the order 1, 2, 3

rules to satisfy by Vv algorithm
- not output an incorrect result (partial correctness)
- eventually output a result
hash table based mapping
probability of O (ex: always flipping heads)
probability of O for infinite loop for a fair random generator for generating edges in a graph

1 prisoner becomes the counter, all others flip the switch to pos 1 the 1st time they see it.
the counter flips it to pos 0, if it's in pos 1

exam prep 07 feb

cheat sheet writing idea: write on paper, scan it, make it smaller, print it, now u got free space

Astea sunt toate variantele posibile pe care le poate da la ppd?
normal sau cu mpi)

(

1. big_numbers_product
2. scalar_product_simple
3. scalar_product_tree
4. convolution

5. hamiltonian

6. permutations

7. combinations

8. k_combinations

9. k_coloring

10. merge_sort

11. quick_sort

12. producer_consumer

resources

1. lectures

2. bookmarks?

3. https://github.com/alexovidiupopa/pdp/tree/main/exam-workspace/src/ro/alexpopa/mpi
4

5

exam-subjects 2022
t ion Jinga 4 f
a. problem 1
i. 00:00 intro
ii. 03:08 A fals?
iii. 06:40 B adv
iv. 09:.05C
V. 1?:?77
33:22 problem 2
~53 - about problem 3
problem 1
1:09:10 problem 2 ProducerConusmerQueue
1:21:59 sub 4 pr 1

~0 00U

https://github.com/alexovidiupopa/pdp/tree/main/exam-workspace/src/ro/alexpopa/mpi
https://drive.google.com/drive/u/0/folders/1IHZ5hf_QVIsO62ndMVJkH8r-P9h2Vpro
https://ubbcluj-my.sharepoint.com/personal/tudor_jinga_stud_ubbcluj_ro/_layouts/15/stream.aspx?id=%2Fpersonal%2Ftudor%5Fjinga%5Fstud%5Fubbcluj%5Fro%2FDocuments%2FStudy%20Sessions%2FPDP%2Emkv&ga=1

subject 2

1. https://www.cs.ubbcluj.ro/~rlupsa/edu/pdp/progs/futures-demo1-with-impl.cpp

2. https://www.cs.ubbcluj.ro/~rlupsa/edu/pdp/progs/producer-consumer.cpp

3. https://www.cs.ubbcluj.ro/~rlupsa/edu/pdp/exam-example.pdf future with continuation
4

cheatsheets

1. @ cheat sheet pdp.pdf by Cristian Gherman
2.

2023 subject 2 problem 1

Consider the following excerpt from a program that is supposed to merge-sort a vector. The
function worker() is called in all processes except process 0, the function mergeSort() is called
from process 0 (and from the places described in this excerpt), the function mergeSortLocal()
sorts the specified vector and the function mergeParts() merges two sorted adjacent vectors,
given the pointer to the first element, the total length and the length of the first vector.

void mergeSort(int* v, int dataSize, int myld, int nrProc) {

if (nrProc == 1) {
mergeSortLocal(v, dataSize);

} else {
int halfLen = dataSize / 2;
int halfProc = (nrProc+1) / 2;
int child = myld+halfProc;
MPI_Ssend(&halfLen, 1, MPL_INT, child, 1, MPI_COM_WORLD);
MPI_Ssend(&halfProc, 1, MPL_INT, child, 2, MPI_COM_WORLD);
MPI_Ssend(v, halfSize, MPI_INT, child, 3, MPI_COM_WORLD);
mergeSort(v+halfSize, halfSize, myld, nrProc-halfProc);
MPI_Recv(v, halfSize, MPI_INT, child, 4, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
mergeParts(v, dataSize, halfSize);

}
}

void worker(int myld) {
MPI_Status status;
int dataSize, nrProc;
MPI_Recv(&dataSize, 1, MPI_INT, MPI_ANY_SOURCE, 1, MPI_COMM_WORLD, &status);
auto parent = status.MPI_SOURCE;
MPI_Recv(&nrProc, 1, MPI_INT, parent, 3, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

https://drive.google.com/file/d/1tBKyO1b_8KBaTKQ05OrynQ-OC8S8Y6l_/view
https://www.cs.ubbcluj.ro/~rlupsa/edu/pdp/progs/futures-demo1-with-impl.cpp
https://www.cs.ubbcluj.ro/~rlupsa/edu/pdp/progs/producer-consumer.cpp
https://www.cs.ubbcluj.ro/~rlupsa/edu/pdp/exam-example.pdf

std::vector v(dataSize);

MPI_Recv(v.data(), dataSize, MPI_INIT, parent, 3, MPI_COMM_WORLD,
MPI_STATUS_IGNORE);

mergeSort(v.data(), dataSize, myld, nrProc);

MPI_Ssend(v.data(), dataSize, MPI_INT, parent, 3, MPI_COMM_WORLD);

}

Which of the following issues are present? Describe the changes needed to solve them.

A: the application can deadlock if the length of the vector is smaller than the number of MPI
processes.

B: the application can produce a wrong result if the input vector size is not a power of 2.
C: some worker processes are not used if the number of processes is not a power of 2.

D: the application can deadlock if the number of processes is not a power of 2.

EOF

	BOF
	LECTURE W1
	LAB W1
	LECTURE W2
	LECTURE W3
	LAB W3
	LAB W4
	LAB W05
	LECTURE W5
	LECTURE W6
	LAB W6
	LECTURE W7
	LECTURE W8
	LECTURE W10 - MPI
	LECTURE W11
	LECTURE W11 Recovery from W10
	LAB W11
	LECTURE W12
	LECTURE W13 - OpenCL programming
	LECTURE W14 - Fault Tolerance
	exam prep 07 feb
	Astea sunt toate variantele posibile pe care le poate da la ppd? (normal sau cu mpi)
	resources
	subject 2
	cheatsheets
	2023 subject 2 problem 1

	EOF

