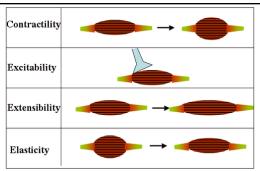
Guided Notes: Unit 3 - The Muscular System (Muscles and Muscle Tissue)

Part 1: Overview of Muscle Tissues

Functions of Muscles: Think S.M.A.R.T.


Fill in the main role each function plays in the body.

- 2. **M**ovement: To allow for ______.
- 3. Assist: To assist in the movement of ______ and
- 4. Regulation: To maintain _____
- 5. Target Protection: To ______ and stabilize joints.

Muscle Characteristics: How Do Muscles Work?

Muscles share four key functional characteristics. Define each one.

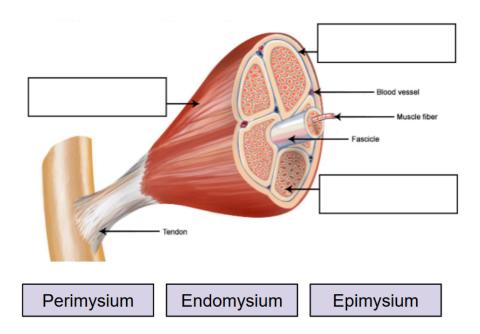
Characteristic	Definition
Excitability (Responsiveness)	The ability to
Contractility	The ability to
Extensibility	The ability to
Elasticity	The ability to

The Three Muscle Types: A Comparative Table

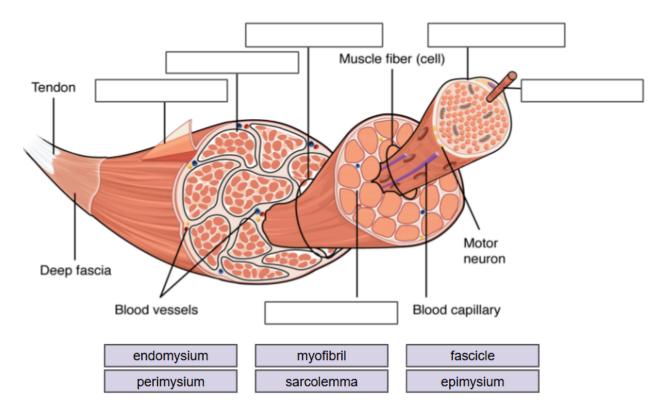
Complete the table below using the slides to compare the three types of muscle tissue.

Characteristic	Skeletal Muscle	Cardiac Muscle	Smooth Muscle
Body Location	Attached to	Walls of the	Mostly in walls of
Cell Shape/Appea rance	multinucleate cells with	chains of cells, single nucleus,, and	(spindle-shaped) cells with a single nucleus, and
Voluntary/Inv oluntary			

•	myo and mys refer to
•	sarco refers to


Part 2: Gross Anatomy of Skeletal Muscle

Connective Tissue Wrappings


Identify what each layer of connective tissue covers in the organization of a skeletal muscle.

Connective Tissue Layer	Location/What it Covers	
Endomysium	Encloses a	_ (muscle cell).
Perimysium	Wraps around amuscle fibers).	(bundle of
Epimysium	Covers the	
Fascia	Found on the	of the epimysium.

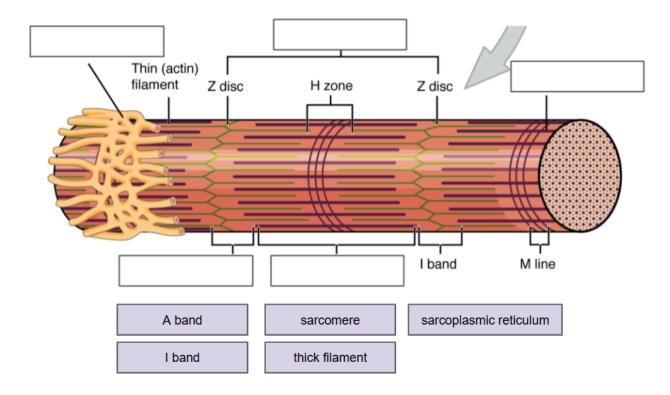
In the image below, label the three connective tissue layers and indicate what a fascicle is.

In the image below, labeled the indicated terms.

Muscle Attachments

The Sarcomere Structure

Muscle attachments can be direct or indirect.


1.	Direct	Attachment : The _		of the muscle blends directly into
	the co	nnective tissue att	achment.	
2.	Indired	ct Attachment: Cor	nnective tissues extend beyond the	muscle to attach to the bone.
	0	Tendons:	struct	cures made mostly of
			fibers.	
	0	Aponeuroses:	s	structures that attach muscles
		indirectly.		
Part 3	: Micro	oscopic Anatom	y of Skeletal Muscle	

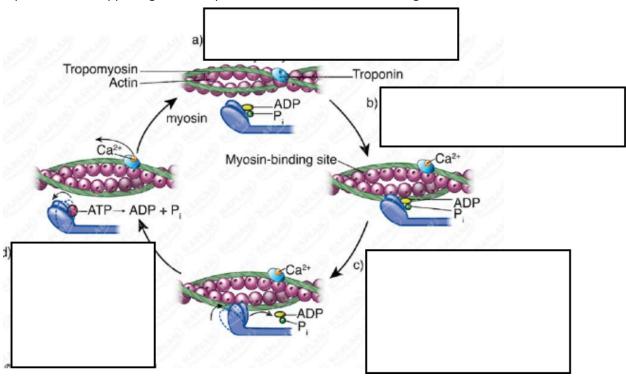
The functional, contractile unit of a muscle fiber is the _____

_ (A) bands.

The striated appearance comes from the alternating ______ (I) bands and

Label the indicated structures on the image below:

Sarcomere Band/Line	Composition	Location
I band (Light band)	Contains only() filaments.	
A band (Dark band)	Contains the entire length of the() filaments.	
Z disc (line)	The midline interruption within the (where actin is anchored).	


	T			
H zone	A lighter	_ within the A band		
	that lacks	filaments at rest.		
M line	The center of the	·		
Myofilaments (F	ilaments that cause contracti	ion)		
1. Thick Fila	ments			
	omposed of the protein			
	ossess wh		when	thev link to
	in filaments.			,
2. Thin Filan	ents			
o Co	omposed of the contractile prote	ein		
o Ai	nchored to the	·		
Part 4: The Slid	ing Filament Model of Con	traction		
Muscle contractio	n occurs when the	filamen	ts slide over the	
	filaments. This proces	ss is activated by		and
	ions.			
Fill in the blanks t	a complete the four stone of the	Cuasa Buidaa Cuala		

Fill in the blanks to complete the four steps of the Cross Bridge Cycle:

Step	Myosin Head State (High/low energy)	Action/Event
1. Cross Bridge Formation		Myosin head attaches to an exposed binding site on
2. Power Stroke		The myosin head pivots, pulling the filament toward the center of the sarcomere are released.

3. Cross Bridge Detachment	A new molecule binds to the myosin head.
4. Cocking of the Myosin Head	is hydrolyzed (split), releasing the energy needed to reset the myosin head.

Explain what is happening at the steps labeled a, b, c, and d in the diagram below:

Part 5: Physiology of Skeletal Muscle Fibers (Excitation)

A. The Neuromuscular Junction (NMJ)

•	NMJ: The site where a	_ neuron's axon terminal meets
	the sarcolemma of a muscle fiber.	

- Synaptic Cleft: The _______ between the nerve terminal and the muscle fiber.
- **Neurotransmitter**: The specific chemical released by the nerve to stimulate the muscle is _______ (ACh).

B. Sequence of a Muscle Contraction

The muscle cell must be stimulated by a nerve impulse (Action Potential) to contract. Place the following events in the correct sequence (1-7):

Sequence (1-7)	Event
	ACh diffuses across the synaptic cleft and binds to receptors on the sarcolemma.
	The muscle cell relaxes as calcium is actively reabsorbed into the (SR).
	Depolarization occurs, and an (AP) is generated and travels along the sarcolemma.
	The AP travels deep into the cell, causing the SR to release (55) ions.
	ACh is released by the axonal terminal into the NMJ.
	The thin filaments slide past the thick filaments, and the muscle cell
	The muscle cel and lengthens.

Label the following terms on the diagram below: mitochondrion, synaptic vesicles, T tubule, synaptic cleft, sarcomere. Add small arrows to indicate the location of Ach receptors and label appropriately.

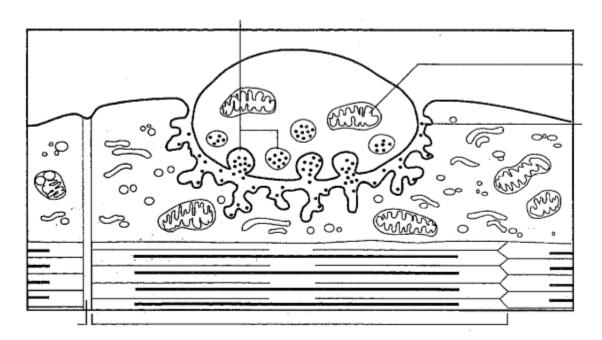


Figure 6-4

Part 6: Muscle Contraction and Metabolism

A. Types of Contractions

Complete the table to compare the two main contraction types:

Contraction Type	Muscle Length	Movement Occurs?	Tension (Force)	Example
Isotonic				
Isometric				

B. Generating ATP (Energy) The only molecule that directly powers muscle contraction is ________. It is regenerated through three main pathways: 1. Direct Phosphorylation of ADP by _______. 2. Aerobic Respiration: Requires _______ and produces the most_______ per glucose molecule.

3. Anaerobic Glycolysis: Does not require oxygen, but produces
_____acid as a byproduct, leading to
muscle_____.

C. Muscle Fiber Types

Skeletal muscle fibers can be classified based on speed and primary pathway.

Characteristic	Type I (Slow Oxidative)	Type II A (Fast Oxidative)	Type II X (Fast Glycolytic)
Contraction Speed			
Primary Pathway			
Fatigue Resistance			
Myoglobin Content			

Part 7: Disorders and Injuries

A. Muscular Disorders

Disorder	Description	Cause
Muscular Dystrophy	An disorder where muscle fibers degenerate and	Lacking a protein to maintain the
Gravis	Progressive weakness due to a shortage of receptors.	Autoimmune condition

B. Common Injuries

•	Strain:	of a	near a joint.
•	Sprain:	of a	leading to
	injury to ligaments and to	endons.	
•	Myalgia	of muscle tissue.	
•	Tendinitis: of a tendon due to strain of repeated activity.		