Part of the Carbon Language, under the Apache License v2.0 with LLVM Exceptions.
SPDX-License-ldentifier: Apache-2.0 WITH LLVM-exception

Carbon Language - http:/github.com/carbon-language

Authors: zygoloid, chandlerc

Carbon: C++ Interop st oo

Created: 2025-03-17

for overloaded o i catboris Shared Drive
functions and
function templates

Abstract

When calling a C++ overload set from Carbon, the rules that decide exactly which overload to
call and how to initialize the parameters are shared between Carbon and C++, and the work to
implement those rules are shared between the Carbon toolchain and Clang. The C++ side
determines what is called, and the Carbon side determines how it is called.

Background

Related docs:

e Carbon: Interop - Using C++: High-level design doc.
e Carbon: C++ Interop for constructors: Design for interop with constructors in particular.

Overload sets

The basic unit of callable APl in C++ is an overload set. This is a collection of functions and
function templates that were found by name lookup as potential candidates for a call. An
overload set should be treated as a unit and not divided into individual declarations, because
overloads may misbehave if called with arguments that would have been a better match for
another overload.

In modern C++, even a single non-templated function is considered to be an overload set, and
uses the same rules as an overload set that can produce multiple different candidates.

Implicit conversion sequences in C++ overload resolution

When overload resolution in C++ considers call candidates, it builds implicit conversion
sequences to determine whether each argument can be converted to the corresponding

https://carbon-lang.dev/LICENSE
https://spdx.org/licenses/Apache-2.0.html
https://spdx.org/licenses/LLVM-exception.html
http://github.com/carbon-language
https://drive.google.com/drive/folders/1aC5JJ5EcI8B7cgVDrLvO7WNw97F0LpS2
https://github.com/carbon-language/carbon-lang/blob/trunk/CONTRIBUTING.md#getting-access
https://docs.google.com/document/d/1mJk92JUPzPNr4LSDUUvfhL9-9i0Dh707uKCCuw3LncU/edit?tab=t.0#heading=h.6dyyhz5krl9v
https://docs.google.com/document/d/1_bD_WWkWaikPCxpZnzp8PAf-BFWkcTH-GJpw1GZt17E/edit?tab=t.0

Part of the Carbon Language, under the Apache License v2.0 with LLVM Exceptions.
SPDX-License-ldentifier: Apache-2.0 WITH LLVM-exception

parameter, and approximately how that would be done. The implicit conversion sequences for
each argument are ranked and compared across overload candidates to determine which
overload should be called - the selected overload must have the best (or tied for best) implicit
conversion sequence for every argument.

Implicit conversion sequences are a virtual representation of what an implicit conversion might
do, and the rules for forming them mostly mirror the C++ implicit conversion rules. However,
they are not identical to the implicit conversion rules:

e There are cases where an implicit conversion sequence exists but no implicit conversion
exists, where the C++ rules believe they have identified the function that the developer
"meant to" call, even though it is not actually callable. For example:

o Given an argument that is a glvalue of type T, an implicit conversion sequence to
a parameter of type T always exists and always has "identity" rank, even if T is
not copyable or moveable.

o Implicit conversion sequence formation typically does not take access into
account. An implicit conversion sequence can be formed when the argument is
of type Derived* and the parameter is of type PrivateBase%*.

If an overload candidate is selected for which implicit conversion sequences can be
formed but implicit conversions cannot, the later process of building a call to the
selected candidate will fail with an error.

e There are rare cases where an implicit conversion sequence does not exist despite an
implicit conversion being possible. Initially this was assumed to not happen, and the C++
rules historically did not perform overload resolution when the only candidate was a
single non-templated function, but the rules were changed to perform overload
resolution even for that case so that, among other concerns, calls with no viable implicit
conversion sequence would be rejected even if an implicit conversion is possible.

Proposal

When an overloaded C++ function is called from Carbon, the overload is resolved by Clang,
using the C++ rules. This includes:

e Performing template argument deduction and template instantiation.
e Forming implicit conversion sequences.
e Ranking the overload candidates and picking the best viable function.

Then, the selected function is converted into a Carbon function signature, and called using the
Carbon rules for performing a function call, including argument conversions.

Details

Example

https://carbon-lang.dev/LICENSE
https://spdx.org/licenses/Apache-2.0.html
https://spdx.org/licenses/LLVM-exception.html
https://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#2241

Part of the Carbon Language, under the Apache License v2.0 with LLVM Exceptions.
SPDX-License-ldentifier: Apache-2.0 WITH LLVM-exception

import Cpp inline
#include "stdint.h"

void F(...);

template<typename T> void F(T);
template<typename T> void F(T*);
void F(int32_t);

[I I
J

fn CallF() {
var n: i64;

// C++ overload resolution rules pick F<int64_t>(int64_t*).

// This is converted to a synthesized Carbon function:

// fn F(p: i64*) -> () {

// // call C++ function template specialization

/7 }

// This is then called using the Carbon rules for function calls.
F(&n);

// C++ overload resolution rules pick F(int32_t).

// This is converted to a synthesized Carbon function:

// fn F(n: i32) -> () {

// // call C++ function

/7 }

// The call is then rejected in Carbon because i64 can't be converted to
i32.

F(n);
3

Viability versus validity of making a call

These rules mean that we make a distinction between determining whether a candidate from
C++ is viable — determined using the C++ rules for implicit conversion sequences — and whether
that candidate is actually callable — determined using the Carbon rules for implicit conversion.
Notably, this is the same process that happens in C++ already, except that the callability check
is performed using the C++ rules for implicit conversion instead of the Carbon rules.

For this to work well, we need implicit conversions in Carbon to line up reasonably well with
implicit conversion sequences in C++, but that is a constraint that we would want to impose
regardless. There are two ways we can see a divergence:

e It can happen that a C++ implicit conversion sequence can be formed but a Carbon
implicit conversion cannot be performed. For example, for a parameter of type int32_t,
the C++ logic may decide that an argument of type int64_t is acceptable but the
Carbon implicit conversion rules would not permit the conversion. In this case we will

https://carbon-lang.dev/LICENSE
https://spdx.org/licenses/Apache-2.0.html
https://spdx.org/licenses/LLVM-exception.html

Part of the Carbon Language, under the Apache License v2.0 with LLVM Exceptions.
SPDX-License-ldentifier: Apache-2.0 WITH LLVM-exception

select the C++ candidate taking 1int32_t anyway, and reject the call. This is analogous
to cases in C++ where overload resolution selects a function that it believes was the
intended callee because an implicit conversion sequence could be formed, but rejects
the call because the conversion is not actually possible.

e It can happen that a C++ implicit conversion sequence cannot be formed but a Carbon
implicit conversion can be. This should be rare, as it is in C++: Carbon is generally more
restrictive about which implicit conversions it permits than C++ is. However, there may
be implicit conversions that are defined in Carbon code but that cannot be represented
in C++, and so the C++ search for an implicit conversion may not find them. When this
happens, either the call will be rejected because there are no viable candidates, or the
call will select a different candidate that doesn't rely on the problematic Carbon
conversion. The latter case is potentially a concern, but conversions that cannot be lifted
from Carbon to C++ should be rare.

Non-overloaded functions

When a call is made from Carbon to a C++ function that is not overloaded, these rules reduce to
two steps:

e Ensure that the C++ rules believe that the function is viable for the call.
e Call the function using the Carbon rules, as if it were a normal Carbon function.

It is tempting to remove the first step in this case, so that the rules for a Carbon -> C++ call of a
non-overloaded function are exactly the same as the rules for a Carbon -> Carbon call of a
non-overloaded function. However, doing so would make the interop behavior less consistent.
The extra check also doesn't harm our migration story — migrating the callee from C++ to
Carbon removes the extra check, but that doesn't affect any callers that were previously valid.

Future work

Implementation of the Call interface

A C++ overload set should eventually be modeled as providing a templated impl of the Call
interface, with a predicate constraint that checks whether the function is callable from C++. In
approximate Carbon code, this might look like the following:

““carbon
// Built-in mechanism to call into C++ overload resolution, provided by C++
// interop.
fn! SelectCallee(F:! Cpp.OverloadSet, ...template each T:! type)
-> Optional(Cpp.Candidate);
predicate IsCallable(F:! Cpp.OverloadSet, ...template each T:! type)
= SelectCallee(F, ...each T).HasValue();

impl forall [...template each T:! type] Cpp.F as Call(... each T)
if IsCallable(Cpp.F, ... each T) {

https://carbon-lang.dev/LICENSE
https://spdx.org/licenses/Apache-2.0.html
https://spdx.org/licenses/LLVM-exception.html
https://github.com/carbon-language/carbon-lang/issues/2153

Part of the Carbon Language, under the Apache License v2.0 with LLVM Exceptions.
SPDX-License-ldentifier: Apache-2.0 WITH LLVM-exception

fn Call(...each t: each T) -> auto {
SelectCallee(Cpp.F, ...each T)(...each t);

}
14

Any other information made available to the Call interface, such as the expression category
and constant value of the arguments, and whether the arguments are tuple / struct literals,
should also be made available to C++ overload resolution.

Alternatives considered

Use the Carbon rules alone

For template argument deduction

Calls will be made from Carbon to C++ overload sets that include function templates. When this
happens, we could either mirror the template into a Carbon template, or we could treat the
template as a C++ template and use the C++ rules for argument deduction and substitution.

In general, producing a Carbon template that exactly matches a C++ template is a very hard
problem, because the exact semantics of C++ is exposed in its template machinery, for example
through SFINAE, and through cases where multiple language semantics are modeled with the
same C++ syntax.

For example, an expression suchas T(args. ..) in an expression in a C++ function template
could be a constructor call, or could call a conversion function, or could be interpreted as a
C-style cast if the size of args is 1, or could be a no-op if args is already a prvalue of type T, or
could be value initialization if the size of args is 0. If the chosen interpretation is not valid in
certain ways, the enclosing function is not a candidate for the call, and if it's not valid in other
ways, the program is ill-formed. The order in which those checks for invalidity are performed is
subtle and programs rely on it. Producing a Carbon template that is identical in all of those
details would be extremely difficult, even if we had sufficient language constructs to represent
all of the details, which we currently do not.

Therefore the only feasible option appears to be to perform the work of function template
argument deduction and substitution using the C++ rules.

For viability of overload candidates

While we don't yet have full rules for overloading in Carbon, we can at least determine what the
outcome of overload resolution would be for some simple cases where there is only one viable
candidate. For example:

class C {}

https://carbon-lang.dev/LICENSE
https://spdx.org/licenses/Apache-2.0.html
https://spdx.org/licenses/LLVM-exception.html

Part of the Carbon Language, under the Apache License v2.0 with LLVM Exceptions.
SPDX-License-ldentifier: Apache-2.0 WITH LLVM-exception

impl i64 as ImplicitAs(C);

// Placeholder syntax
fn F overloaded {

fn (n: i32);

fn (c: C);
}

fn CallF(n: i64) {
// Calls C overload - other overload is not viable.
F(n);

3

But this gives a different answer than we would get for the equivalent code in C++:

// cpp.h
class C { C(int64_t); };

void F(int32_t);
void F(C);

void CallF(int64_t n) {
// OK, calls int overload, truncates n.
F(n);

3,

Therefore if we use the Carbon rules for overload resolution, we do not preserve the behavior of
the C++ APl when used from Carbon:

// carbon
import Cpp library "cpp.h";
fn CallF(n: i64) {
// Calls C overload.
F(n);
3

In order to preserve the behavior of C++ interfaces when used from Carbon, we should not give
a use of that interface a different valid meaning than the meaning that it had in C++.

https://carbon-lang.dev/LICENSE
https://spdx.org/licenses/Apache-2.0.html
https://spdx.org/licenses/LLVM-exception.html

Part of the Carbon Language, under the Apache License v2.0 with LLVM Exceptions.
SPDX-License-ldentifier: Apache-2.0 WITH LLVM-exception

For ranking overload candidates

After we have determined a set of viable C++ candidate functions, we could use Carbon rules to
determine which function should be selected. We don't yet know exactly what those rules will
be, but based on our approach for imp1 selection in general, it is likely that candidates will be
ranked by some explicit mechanism, such as a prioritized list, at least in cases where a best
match is otherwise non-obvious.

However, we reject this alternative:

e Such aranking does not exist in C++ code, so performing a Carbon-like ordering would
likely involve making an arbitrary choice of candidate

e Selecting a different candidate than C++ would select among the same set of viable
candidates would give surprising outcomes that may cause the C++ code to behave in
unexpected ways

Use the C++ rules alone

Given that we decide to use the C++ rules to select an overload from a C++ overload set, we
could use the C++ rules to build the call as well. This would mean that we:

e Marshal the call argument expressions from Carbon into C++
e Ask the C++ compiler to form a call
e Marshal the result expression from C++ into Carbon

This superficially sounds like it would provide unsurprising results: uses of a C++ API would
have the C++ meaning. It would also allow what seems like a clean implementation strategy,
where the only interaction between the C++ and Carbon toolchains for a call would be to pass
semi-opaque expressions from one language to the other. However, it gives undesirable
outcomes for simple cases, such as the following:

// cpp.h

void F(int32_t n);

void CallF(int64_t n) {
// OK, truncates n.
F(n);

3

// carbon
import Cpp library "cpp.h";
fn CallF(n: i64) {
// OK?
F(n);
}

https://carbon-lang.dev/LICENSE
https://spdx.org/licenses/Apache-2.0.html
https://spdx.org/licenses/LLVM-exception.html

Part of the Carbon Language, under the Apache License v2.0 with LLVM Exceptions.
SPDX-License-ldentifier: Apache-2.0 WITH LLVM-exception

The Carbon call to F should not be valid: Carbon code should not be able to convert from 164 to
132 implicitly. But it is valid in C++, so if we use the C++ rules to build the call, including
argument conversions, then this code would be accepted.

It is important that simple C++ functions, such as the non-overloaded F function above, have
essentially the same call behavior when called from Carbon as corresponding Carbon functions.
Therefore the argument conversions for the call should be performed using the Carbon rules.

https://carbon-lang.dev/LICENSE
https://spdx.org/licenses/Apache-2.0.html
https://spdx.org/licenses/LLVM-exception.html

	Carbon: C++ interop for overloaded functions and function templates
	Abstract
	Background
	Overload sets
	Implicit conversion sequences in C++ overload resolution

	Proposal
	Details
	Example
	Viability versus validity of making a call
	Non-overloaded functions

	Future work
	Implementation of the Call interface

	Alternatives considered
	Use the Carbon rules alone
	For template argument deduction
	For viability of overload candidates
	For ranking overload candidates

	Use the C++ rules alone

