Problem: Sentiment Classification using Optimized Naïve Bayes

Given a dataset with the following short reviews, classify their sentiment (positive or negative) using binary Naïve Bayes. Apply the following optimizations:

- 1. **Binarization:** Convert word frequencies into binary values (presence or absence).
- 2. **Negation Handling:** Prepend "NOT_" to words after a negation term (not, no, never, n't).
- 3. **Sentiment Lexicon Features:** Use predefined positive and negative word lists.

Dataset:

Review	Label
"The movie was great"	Positive
"I did not like the movie"	Negative
"No amazing scenes at all"	Negative
"A fantastic and thrilling film'	' Positive

Step 1: Binarization

Instead of word counts, we only note if a word appears (1) or not (0).

Word	Review 1	Review 2	Review 3	Review 4
the	1	1	0	0
movie	1	1	0	0
was	1	0	0	0
great	1	0	0	0
Ī	0	1	0	0
did	0	1	0	0
not	0	1	1	0
like	0	1	0	0
amazing	0	0	1	0
scenes	0	0	1	0
at	0	0	1	0
all	0	0	1	0
fantastic	0	0	0	1
thrilling	0	0	0	1
film	0	0	0	1

Step 2: Negation Handling

Apply the rule: words after negation markers (not, no, never, n't) are prefixed with "NOT_".

Original Review	Modified Review
"The movie was great"	"The movie was great"
"I did not like the movie"	"I did NOT_like NOT_the NOT_movie"
"No amazing scenes at all"	"No NOT_amazing NOT_scenes NOT_at NOT_all"
"A fantastic and thrilling film"	"A fantastic and thrilling film"

Step 3: Using Sentiment Lexicon

Given sentiment lexicons:

- Positive Words: great, fantastic, thrilling, amazing
- Negative Words: not_like, not_amazing

Count how many positive and negative words appear in each review.

Review	Positive Words Count	Negative Words Count
"The movie was great"	1 (great)	0
"I did NOT_like NOT_the NOT_movie"	0	1 (NOT_like)
"No NOT_amazing NOT_scenes NOT_at NOT_all"	0	1 (NOT_amazing)
"A fantastic and thrilling film"	2 (fantastic, thrilling)	0

Step 4: Naïve Bayes Classification

Using probability estimates:

- P(Positive) = 2/4 = 0.5
- P(Negative) = 2/4 = 0.5
- P(word | Positive) and P(word | Negative) calculated from training data.

After computing probabilities using Naïve Bayes (without smoothing for clarity), we classify:

- Reviews 1 & $4 \rightarrow$ **Positive**
- Reviews 2 & $3 \rightarrow$ Negative

Word	In Positive Reviews (R1, R4)	In Negative Reviews (R2, R3)
the	1	1
movie	1	1
was	1	0
great	1	0
1	0	1
did	0	1
not	0	2
like	0	1
amazing	0	1
scenes	0	1
at	0	1
all	0	1
fantastic	1	0
thrilling	1	0
film	1	0

Vocabulary Size (V)

The total number of unique words in the dataset (from all reviews):

$$V = 15$$

Smoothed Likelihood Calculation

Using Laplace smoothing, the formula for conditional probability becomes:

$$P(word|Positive) = rac{ ext{count in positive reviews} + 1}{ ext{total positive words} + V}$$

$$P(word|Negative) = rac{ ext{count in negative reviews} + 1}{ ext{total negative words} + V}$$

Total Word Counts with Smoothing

Total words in positive reviews: 7

Total words in negative reviews: 12

• Vocabulary size: V=15

Smoothed denominator:

Total positive words
$$+V = 7 + 15 = 22$$

Total negative words
$$+V = 12 + 15 = 27$$

Smoothed Word Probabilities

Using Naïve Bayes formula:

$$P(Positive|Review) \propto P(Positive) imes \prod P(word|Positive)$$
 $P(Negative|Review) \propto P(Negative) imes \prod P(word|Negative)$

Example: Classifying "The movie was great"

Words in the review: (the, movie, was, great)

Positive Sentiment Probability

$$P(Positive|R1) \propto 0.5 \times 0.0909 \times 0.0909 \times 0.0909 \times 0.0909$$

$$P(Positive|R1) \propto 0.5 \times (6.8 \times 10^{-5})$$

$$P(Positive|R1) = 3.4 \times 10^{-5}$$

Negative Sentiment Probability

$$egin{aligned} P(Negative|R1) &\propto 0.5 imes 0.0741 imes 0.0741 imes 0.037 imes 0.037 \end{aligned} \ P(Negative|R1) &\propto 0.5 imes (7.5 imes 10^{-5}) \end{aligned} \ P(Negative|R1) = 3.75 imes 10^{-5} \end{aligned}$$

Since P(Negative|R1) > P(Positive|R1), classification remains "Positive".

Example: Classifying "I did not like the movie"

Words in the review: (I, did, not, like, the, movie)

Positive Sentiment Probability

$$P(Positive|R2) \propto 0.5 \times 0.0455 \times 0.0455 \times 0.0455 \times 0.0455 \times 0.0909 \times 0.0909$$

$$P(Positive|R2) = 0.5 \times (3.2 \times 10^{-7})$$

$$P(Positive|R2) = 1.6 \times 10^{-7}$$

Negative Sentiment Probability

$$P(Negative|R2) \propto 0.5 \times 0.0741 \times 0.0741 \times 0.0741 \times 0.0741 \times 0.0741 \times 0.0741 \times 0.0741$$
 $P(Negative|R2) = 0.5 \times (2.6 \times 10^{-5})$ $P(Negative|R2) = 1.3 \times 10^{-5}$

Since P(Negative|R2) > P(Positive|R2), classification remains "Negative".

Final Classification Results

Review	Predicted Sentimen
"The movie was great"	Positive
"I did not like the movie"	Negative
"No amazing scenes at all"	Negative
"A fantastic and thrilling film"	Positive

Example-2

A company wants to classify incoming emails as "Spam" or "Not Spam" (binary classification). Features include the presence of specific words such as "discount," "offer," "free," etc. Suppose you have a dataset like this:

Email	Discount	Offer	Free	Spam
Email 1	1	0	1	Yes
Email 2	0	1	0	No
Email 3	1	1	1	Yes
Email 4	0	0	1	No

Step 1: Prior Probabilities

Calculate prior probabilities as usual:

$$P(\text{Spam}) = \frac{\text{Count of Spam emails}}{\text{Total emails}} = \frac{2}{4} = 0.5$$

$$P(\text{Not Spam}) = \frac{2}{4} = 0.5$$

Step 2: Smoothed Likelihood Probabilities

Using Laplace smoothing, add 1 to the numerator and k (number of feature values) to the denominator for each probability. Here, k=2 because the features ("Discount," "Offer," "Free") are binary (0 or 1).

For **Discount**:

$$P(\text{Discount | Spam}) = \frac{\text{Count of Discount in Spam emails} + 1}{\text{Spam emails} + k} = \frac{2+1}{2+2} = \frac{3}{4} = 0.75$$

$$P(\text{Discount} \mid \text{Not Spam}) = \frac{0+1}{2+2} = \frac{1}{4} = 0.25$$

For Free:

$$P(\text{Free } | \text{Spam}) = \frac{2+1}{2+2} = \frac{3}{4} = 0.75$$

$$P(\text{Free } | \text{Not Spam}) = \frac{1+1}{2+2} = \frac{2}{4} = 0.5$$

Step 3: Posterior Probabilities

For a new email with "Discount" and "Free," calculate the posterior probability for each class:

Spam:

$$P(\text{Spam} \mid \text{Discount}, \text{Free}) = P(\text{Spam}) \cdot P(\text{Discount} \mid \text{Spam}) \cdot P(\text{Free} \mid \text{Spam})$$

$$= 0.5 \cdot 0.75 \cdot 0.75 = 0.28125$$

Not Spam:

 $P(\text{Not Spam} \mid \text{Discount, Free}) = P(\text{Not Spam}) \cdot P(\text{Discount} \mid \text{Not Spam}) \cdot P(\text{Free} \mid \text{Not Spam})$

$$= 0.5 \cdot 0.25 \cdot 0.5 = 0.0625$$

Step 4: Classification

Since $P(\text{Spam} \mid \text{Discount}, \text{Free}) > P(\text{Not Spam} \mid \text{Discount}, \text{Free})$, classify the email as **Spam**.