
TUGAS KELOMPOK UJI KOMPETENSI BERBASIS INDUSTRI BIDANG SISTEM BASIS DATA

Kelompok​ ​ : 99
DMBS​​ ​ : MariaDB​
Tema​ ​ ​ : Aplikasi Order Coffee Shop
Anggota Kelompok :

1.​ Ilham Maulana (14230018)
2.​ Ilham Maulana (14230019)
3.​ Ilham Maulana (14230020)
4.​ Ilham Maulana (14230021)
5.​ Ilham Maulana (14230022)

.oO Semoga Sukses Oo.

.oO Semoga Sukses Oo.

No Nama
Query Hasil Gambar Query Sql Penjelasan Query

 ERD

.oO Semoga Sukses Oo.

 ER

No Nama
Query Hasil Gambar Query Sql Penjelasan Query

.oO Semoga Sukses Oo.

1 CREATE
DATABASE

CREATE DATABASE cafe_db2;
USE cafe_db;

Membuat database baru dan memilih database

2 CREATE
TABLE

CREATE TABLE `users` (
 `id` bigint unsigned NOT NULL AUTO_INCREMENT,
 `name` varchar(255) NOT NULL,
 `email` varchar(50) NOT NULL,
 `phone` varchar(25) DEFAULT NULL,
 `roles` enum('admin','staff','user') NOT NULL DEFAULT
'user',
 `password` varchar(255) NOT NULL,
 `created_at` timestamp NULL DEFAULT NULL,
 `updated_at` timestamp NULL DEFAULT NULL,
 PRIMARY KEY (`id`),
 UNIQUE KEY `users_email_unique` (`email`)
);

Membuat Tabel users

3 CREATE
TABLE

CREATE TABLE `products` (
 `id` bigint unsigned NOT NULL AUTO_INCREMENT,
 `name` varchar(255) NOT NULL,
 `description` text,
 `price` int NOT NULL DEFAULT '0',
 `stock` int NOT NULL DEFAULT '0',
 `category` enum('food','drink','snack') NOT NULL,
 `image` varchar(255) DEFAULT NULL,
 `created_at` timestamp NULL DEFAULT NULL,
 `updated_at` timestamp NULL DEFAULT NULL,
 `is_best_seller` tinyint(1) NOT NULL DEFAULT '0',
 PRIMARY KEY (`id`)
);

Membuat Tabel products

.oO Semoga Sukses Oo.

4 CREATE
TABLE

CREATE TABLE `orders` (
 `id` bigint unsigned NOT NULL AUTO_INCREMENT,
 `transaction_time` timestamp NOT NULL,
 `total_price` int NOT NULL,
 `total_item` int NOT NULL,
 `kasir_id` bigint unsigned NOT NULL,
 `payment_method` enum('Tunai','QRIS') NOT NULL,
 `created_at` timestamp NULL DEFAULT NULL,
 `updated_at` timestamp NULL DEFAULT NULL,
 PRIMARY KEY (`id`),
 KEY `orders_kasir_id_foreign` (`kasir_id`),
 CONSTRAINT `orders_kasir_id_foreign` FOREIGN KEY
(`kasir_id`) REFERENCES `users` (`id`)
);

Membuat Tabel orders

5 CREATE
TABLE

CREATE TABLE `order_items` (
 `id` bigint unsigned NOT NULL AUTO_INCREMENT,
 `order_id` bigint unsigned NOT NULL,
 `product_id` bigint unsigned NOT NULL,
 `quantity` int NOT NULL,
 `total_price` int NOT NULL,
 `created_at` timestamp NULL DEFAULT NULL,
 `updated_at` timestamp NULL DEFAULT NULL,
 PRIMARY KEY (`id`),
 KEY `order_items_order_id_foreign` (`order_id`),
 KEY `order_items_product_id_foreign` (`product_id`),
 CONSTRAINT `order_items_order_id_foreign` FOREIGN KEY
(`order_id`) REFERENCES `orders` (`id`),
 CONSTRAINT `order_items_product_id_foreign` FOREIGN
KEY (`product_id`) REFERENCES `products` (`id`)
);

Membuat Tabel order_items

6 INSERT

INSERT INTO `users`
(name, email, phone, roles, password, created_at,
updated_at)
VALUES
('Budi', 'budi@gmail.com', '085644445555', 'user',
SHA2('budi123', 256), NOW(), NOW()),
('Ayu', 'ayu@gmail.com', '085655556666', 'user',
SHA2('ayu123', 256), NOW(), NOW()),
('Rina', 'rina@gmail.com', '085666667777', 'user',
SHA2('rina123', 256), NOW(), NOW());

INSERT INTO `products` (name, description, price,
stock, category, image, created_at, updated_at,
is_best_seller)
VALUES
('Nasi Goreng', 'Nasi goreng dengan campuran sayuran
dan daging ayam.', 25000, 50, 'food',
'nasi_goreng.jpg', NOW(), NOW(), 1),
('Es Teh Manis', 'Teh manis dingin yang segar.', 5000,
100, 'drink', 'es_teh_manis.jpg', NOW(), NOW(), 0),

Menambahkan data kedalam tabel users, products,
orders dan order_items

.oO Semoga Sukses Oo.

 ('Keripik Kentang', 'Keripik kentang renyah dengan rasa
gurih.', 15000, 30, 'snack', 'keripik_kentang.jpg',
NOW(), NOW(), 0);

INSERT INTO `orders` (transaction_time, total_price,
total_item, kasir_id, payment_method, created_at,
updated_at)
VALUES
('2024-06-24 10:00:00', 40000, 2, 1, 'Tunai', NOW(),
NOW()),
('2024-06-24 11:00:00', 20000, 1, 2, 'QRIS', NOW(),
NOW()),
('2024-06-24 12:00:00', 30000, 3, 1, 'Tunai', NOW(),
NOW());

INSERT INTO `order_items` (order_id, product_id,
quantity, total_price, created_at, updated_at)
VALUES
(1, 1, 1, 25000, NOW(), NOW()),
(1, 2, 1, 15000, NOW(), NOW());

INSERT INTO `order_items` (order_id, product_id,
quantity, total_price, created_at, updated_at)
VALUES
(2, 3, 1, 20000, NOW(), NOW());

INSERT INTO `order_items` (order_id, product_id,
quantity, total_price, created_at, updated_at)
VALUES
(3, 1, 1, 25000, NOW(), NOW()),
(3, 3, 1, 15000, NOW(), NOW()),
(3, 2, 1, 10000, NOW(), NOW());

7 SELECT SELECT
 o.id AS order_id,
 o.transaction_time,
 o.total_price AS order_total_price,
 o.total_item AS order_total_item,
 u.name AS kasir_name,
 o.payment_method,
 p.name AS product_name,
 p.description AS product_description,
 p.price AS product_price,
 oi.quantity,
 oi.total_price AS item_total_price
FROM order_items oi
LEFT JOIN orders o ON oi.order_id = o.id
LEFT JOIN users u ON o.kasir_id = u.id
LEFT JOIN products p ON oi.product_id = p.id;

Menampilkan isi tabel order_details dan relasi ke
tabel orders, users dan products

.oO Semoga Sukses Oo.

8 UPDATE UPDATE order_items oi
JOIN products p ON oi.product_id = p.id
SET oi.quantity = 5,
 oi.total_price = 5 * p.price,
 oi.updated_at = NOW()
WHERE oi.order_id = 3
 AND oi.product_id = 3;

Merubah quantity=5 dan total_price pada tabel
order_items yang berelasi ke tabel products

9 DELETE DELETE FROM order_items WHERE order_id = 3;
DELETE FROM orders WHERE id = 3;

Menghapus order_id=3 pada tabel orders dan
order_items

10 CREATE
VIEW

CREATE VIEW order_details_view AS
SELECT
 a.id AS order_id,
 a.transaction_time,
 a.total_price AS order_total_price,
 a.total_item AS order_total_item,
 b.name AS kasir_name,
 a.payment_method,
 d.name AS product_name,
 d.description AS product_description,
 d.price AS product_price,
 c.quantity,
 c.total_price AS item_total_price
FROM orders a
LEFT JOIN users b ON a.kasir_id = b.id
LEFT JOIN order_items c ON a.id = c.order_id
LEFT JOIN products d ON c.product_id = d.id;

Membuat view yang isinya menampilkan data detail
order

11 CREATE
VIEW

CREATE VIEW product_sales_view AS
SELECT
 p.id AS product_id,
 p.name AS product_name,
 SUM(oi.quantity) AS total_quantity_sold,
 SUM(oi.total_price) AS total_revenue
FROM products p
LEFT JOIN order_items oi ON p.id = oi.product_id
GROUP BY p.id, p.name;

Membuat view yang isinya menampilkan data sales
berdasarkan product

.oO Semoga Sukses Oo.

12 CREATE
VIEW

CREATE VIEW daily_sales_summary_view AS
SELECT
 DATE(a.transaction_time) AS transaction_date,
 COUNT(a.id) AS total_orders,
 SUM(a.total_price) AS total_sales_amount,
 SUM(a.total_item) AS total_items_sold
FROM orders a
GROUP BY DATE(a.transaction_time);

13 CREATE
VIEW

CREATE VIEW user_orders_view AS
SELECT
 u.id AS user_id,
 u.name AS user_name,
 COUNT(o.id) AS total_orders
FROM users u
LEFT JOIN orders o ON u.id = o.kasir_id
GROUP BY u.id, u.name;

14 CREATE
VIEW

CREATE VIEW best_seller_products_view AS
SELECT
 p.id AS product_id,
 p.name AS product_name,
 SUM(oi.quantity) AS total_quantity_sold
FROM products p
LEFT JOIN order_items oi ON p.id = oi.product_id
GROUP BY p.id, p.name
ORDER BY SUM(oi.quantity) DESC;

15 CREATE
PROCEDURE

CREATE PROCEDURE `cafe_db`.`spProductList`(
 IN search_name VARCHAR(255),
 IN search_category ENUM('food', 'drink', 'snack'),
 IN page INT,
 IN page_size INT
)
BEGIN
 DECLARE offset_val INT DEFAULT 0;
 SET offset_val = (page - 1) * page_size;

 SELECT *
 FROM products
 WHERE (search_name IS NULL OR name LIKE CONCAT('%',
search_name, '%'))
 AND (search_category IS NULL OR search_category =
'' OR category = search_category)
 ORDER BY id
 LIMIT page_size OFFSET offset_val;
END;

.oO Semoga Sukses Oo.

16 CREATE
PROCEDURE

 CREATE PROCEDURE `cafe_db`.`spProductDetail`(
 IN product_id BIGINT UNSIGNED
)
BEGIN
 SELECT *
 FROM products
 WHERE id = product_id;
END

17 CREATE
PROCEDURE

 CREATE PROCEDURE `cafe_db`.`spProductAdd`(
 IN p_name VARCHAR(255),
 IN p_description TEXT,
 IN p_price INT,
 IN p_stock INT,
 IN p_category ENUM('food', 'drink', 'snack'),
 IN p_image VARCHAR(255)
)
BEGIN
 DECLARE result_code INT;
 DECLARE error_message VARCHAR(1000);
 -- Check if name or category is empty
 IF p_name = '' OR p_name IS NULL OR p_category = ''
OR p_category IS NULL THEN
 SET result_code = 39999;
 SET error_message = 'Semua kolom (nama,
kategori) harus diisi.';
 SELECT result_code, error_message;
 ELSE
 -- Check if product name already exists
 IF EXISTS (SELECT 1 FROM products WHERE name =
p_name LIMIT 1) THEN
 SET result_code = 39998;
 SET error_message = 'Nama produk sudah ada
dalam database.';
 SELECT result_code, error_message;
 ELSE
 -- Insert new product
 INSERT INTO products (name, description,
price, stock, category, image, created_at, updated_at)
 VALUES (p_name, p_description, p_price,
p_stock, p_category, p_image, NOW(), NOW());
 SET result_code = 1;
 SET error_message = '';
 SELECT result_code, error_message;
 END IF;
 END IF;
END

.oO Semoga Sukses Oo.

18 CREATE
PROCEDURE

 CREATE PROCEDURE `cafe_db`.`spProductEdit`(
 IN p_id BIGINT UNSIGNED,
 IN p_name VARCHAR(255),
 IN p_description TEXT,
 IN p_price INT,
 IN p_stock INT,
 IN p_category ENUM('food', 'drink', 'snack'),
 IN p_image VARCHAR(255)
)
begin
 DECLARE result_code INT;
 DECLARE error_message VARCHAR(1000);
 DECLARE product_count INT;
 -- Check if the product exists
 SELECT COUNT(*) INTO product_count
 FROM products
 WHERE id = p_id;
 IF product_count = 0 THEN
 SET result_code = 39999;
 SET error_message = 'Produk dengan ID yang
diberikan tidak ditemukan.';
 SELECT result_code, error_message;
 ELSE
 IF p_name = '' OR p_name IS NULL OR p_category =
'' OR p_category IS NULL THEN
 SET result_code = 39999;
 SET error_message = 'Semua kolom (nama,
kategori) harus diisi.';
 SELECT result_code, error_message;
 ELSE
 UPDATE products
 SET name = p_name,
 description = p_description,
 price = p_price,
 stock = p_stock,
 category = p_category,
 image = p_image,
 updated_at = NOW()
 WHERE id = p_id;

 SET result_code = 1;
 SET error_message = '';
 SELECT result_code, error_message;
 END IF;
 END IF;
END;

.oO Semoga Sukses Oo.

19 CREATE
PROCEDURE

 CREATE PROCEDURE `cafe_db`.`spProductStockAdd`(
 IN p_product_id BIGINT UNSIGNED,
 IN p_add_stock INT
)
BEGIN
 DECLARE result_code INT;
 DECLARE error_message VARCHAR(1000);
 DECLARE current_stock INT;
 -- Check if the product exists
 IF NOT EXISTS (SELECT 1 FROM products WHERE id =
p_product_id) THEN
 SET result_code = 0;
 SET error_message = 'Product ID does not exist';
 ELSE
 -- Get the current stock
 SELECT stock INTO current_stock FROM products
WHERE id = p_product_id;
 -- Add the new stock
 UPDATE products SET stock = current_stock +
p_add_stock, updated_at = NOW() WHERE id =
p_product_id;
 SET result_code = 1;
 SET error_message = '';
 END IF;
 SELECT result_code, error_message;
END

20 RUN
PROCEDURE

 CALL spProductList('', null, 1, 10);
CALL spProductList('', 'food', 1, 10);
CALL spProductDetail(1);

CALL spProductAdd(null, 'Deskripsi Produk', 10000, 50,
'food', 'gambar.jpg');
CALL spProductAdd('', 'Deskripsi Produk', 10000, 50,
'food', 'gambar.jpg');
CALL spProductAdd('Nama Produk2', 'Deskripsi Produk',
10000, 50, 'food', 'gambar.jpg');
CALL spProductEdit(12, '', 'Nama Produk', 12000, 60,
'drink', 'gambar_baru.jpg');
CALL spProductEdit(11, null, 'Deskripsi Produk Baru',
12000, 60, 'drink', 'gambar_baru.jpg');
CALL spProductEdit(11, '', 'Deskripsi Produk Baru',
12000, 60, 'drink', 'gambar_baru.jpg');
CALL spProductEdit(14, 'Nama Produk', 'Nama Produk',
12000, 60, 'drink', 'gambar_baru.jpg');

CALL spProductDelete(1);
CALL spProductDelete(13);CALL spProductStockAdd(1, 10);
CALL spProductStockAdd(1, 10);

.oO Semoga Sukses Oo.

21 CREATE
PROCEDURE

 CREATE PROCEDURE `cafe_db`.`spOrderAdd`(
 IN p_transaction_time TIMESTAMP,
 IN p_total_price INT,
 IN p_total_item INT,
 IN p_kasir_id BIGINT UNSIGNED,
 IN p_payment_method ENUM('Tunai', 'QRIS')
)
begin
 DECLARE result_code INT;
 DECLARE error_message VARCHAR(1000);

 INSERT INTO orders (transaction_time, total_price,
total_item, kasir_id, payment_method, created_at,
updated_at)
 VALUES (p_transaction_time, p_total_price,
p_total_item, p_kasir_id, p_payment_method, NOW(),
NOW());

 SET result_code = 1;
 SET error_message = '';
 SELECT result_code, error_message;
END

22 CREATE
PROCEDURE

 CREATE PROCEDURE `cafe_db`.`spOrderItemAdd`(
 IN p_order_id BIGINT UNSIGNED,
 IN p_product_id BIGINT UNSIGNED,
 IN p_quantity INT,
 IN p_total_price INT
)
BEGIN
 DECLARE result_code INT;
 DECLARE error_message VARCHAR(1000);
 DECLARE product_stock INT;
 -- Check if the order exists
 IF NOT EXISTS (SELECT 1 FROM orders WHERE id =
p_order_id) THEN
 SET result_code = 0;
 SET error_message = 'Order ID does not exist';

 -- Check if the product exists
 ELSEIF NOT EXISTS (SELECT 1 FROM products WHERE id =
p_product_id) THEN
 SET result_code = 0;
 SET error_message = 'Product ID does not exist';

 -- Check if the stock is sufficient
 ELSE
 SELECT stock INTO product_stock FROM products
WHERE id = p_product_id;
 IF product_stock < p_quantity THEN
 SET result_code = 0;
 SET error_message = 'Insufficient stock';
 ELSE

.oO Semoga Sukses Oo.

 -- Insert the order item
 INSERT INTO order_items (order_id,
product_id, quantity, total_price, created_at,
updated_at)
 VALUES (p_order_id, p_product_id,
p_quantity, p_total_price, NOW(), NOW());
 -- Update the product stock
 UPDATE products SET stock = stock -
p_quantity WHERE id = p_product_id;
 SET result_code = 1;
 SET error_message = '';
 END IF;
 END IF;
 SELECT result_code, error_message;
END

23 CALL spOrderAdd('2024-06-24 14:00:00', 50000, 3, 1,
'Tunai');
CALL spOrderItemAdd(9,1, 1, 10000);
CALL spProductStockAdd(1, 10);

24 CREATE
PROCEDURE

 CREATE PROCEDURE `cafe_db`.`spRegister`(
 IN p_name VARCHAR(255),
 IN p_email VARCHAR(50),
 IN p_phone VARCHAR(25),
 IN p_roles ENUM('admin','staff','user'),
 IN p_password VARCHAR(255)
)
BEGIN
 DECLARE result_code INT;
 DECLARE error_message VARCHAR(1000);
 -- Check if the email already exists
 IF EXISTS (SELECT 1 FROM users WHERE email =
p_email) THEN
 SET result_code = 0;
 SET error_message = 'Email already exists';
 ELSE
 -- Insert the new user with hashed password
 INSERT INTO users (name, email, phone, roles,
password, created_at, updated_at)
 VALUES (p_name, p_email, p_phone, p_roles,
SHA2(p_password, 256), NOW(), NOW());
 SET result_code = 1;
 SET error_message = '';
 END IF;
 SELECT result_code, error_message;
END

.oO Semoga Sukses Oo.

25 CREATE
PROCEDURE

 CREATE PROCEDURE `cafe_db`.`spLogin`(
 IN p_email VARCHAR(50),
 IN p_password VARCHAR(255)
)
BEGIN
 DECLARE result_code INT;
 DECLARE error_message VARCHAR(1000);
 DECLARE user_id BIGINT UNSIGNED;
 DECLARE user_name VARCHAR(255);
 DECLARE user_roles ENUM('admin','staff','user');
 -- Check if the email and hashed password match
 IF EXISTS (SELECT 1 FROM users WHERE email = p_email
AND password = SHA2(p_password, 256)) THEN
 -- Get user details
 SELECT id, name, roles INTO user_id, user_name,
user_roles FROM users WHERE email = p_email AND
password = SHA2(p_password, 256);

 SET result_code = 1;
 SET error_message = '';

 SELECT result_code, error_message;
 SELECT user_id, user_name, user_roles;
 ELSE
 SET result_code = 0;
 SET error_message = 'Invalid email or password';
 SELECT result_code, error_message;
 END IF;

END

26 RUN
PROCEDURE

 select * from users;
CALL spRegister('John Doe', 'johndoe@example.com',
'123456789', 'user', 'budi123');
CALL spLogin('johndoe@example.com', 'budi123');

27 CREATE
TRIGGER

 CREATE TRIGGER trg_after_insert_order_items
AFTER INSERT ON order_items
FOR EACH ROW
BEGIN
 CALL spOrderTotalUpdate(NEW.order_id);
END

.oO Semoga Sukses Oo.

28 CREATE
TRIGGER

 CREATE TRIGGER trg_after_update_order_items
AFTER UPDATE ON order_items
FOR EACH ROW
BEGIN
 CALL spOrderTotalUpdate(NEW.order_id);
END

29 CREATE
TRIGGER

 CREATE TRIGGER trg_after_delete_order_items
AFTER DELETE ON order_items
FOR EACH ROW
BEGIN
 CALL spOrderTotalUpdate(OLD.order_id);
END

30 CREATE
TABLE

 CREATE TABLE order_report (
 order_id BIGINT UNSIGNED NOT NULL,
 transaction_time TIMESTAMP NOT NULL,
 order_total_price INT NOT NULL,
 order_total_item INT NOT NULL,
 kasir_name VARCHAR(255) NOT NULL,
 payment_method ENUM('Tunai', 'QRIS') NOT NULL,
 product_name VARCHAR(255) NOT NULL,
 product_description TEXT,
 product_price INT NOT NULL,
 quantity INT NOT NULL,
 item_total_price INT NOT NULL,
 INDEX idx_transaction_time (transaction_time),
 INDEX idx_kasir_name (kasir_name),
 INDEX idx_payment_method (payment_method),
 INDEX idx_product_name (product_name)
);

31 CREATE
PROCEDURE

 CREATE PROCEDURE`cafe_db`.`spOrderReportAdd`()
BEGIN
 -- Insert data into order_report if it doesn't
already exist
 INSERT INTO order_report (
 order_id,
 transaction_time,
 order_total_price,
 order_total_item,
 kasir_name,
 payment_method,
 product_name,
 product_description,
 product_price,
 quantity,
 item_total_price
)

.oO Semoga Sukses Oo.

 SELECT
 v.order_id,
 v.transaction_time,
 v.order_total_price,
 v.order_total_item,
 v.kasir_name,
 v.payment_method,
 v.product_name,
 v.product_description,
 v.product_price,
 v.quantity,
 v.item_total_price
 FROM
 cafe_db.order_details_view v
 WHERE NOT EXISTS (
 SELECT 1
 FROM order_report r
 WHERE r.order_id = v.order_id
 AND r.product_name = v.product_name
 AND r.quantity = v.quantity
);
END

32 CREATE
EVENT

CREATE EVENT IF NOT EXISTS move_data_to_order_report
ON SCHEDULE EVERY 1 MINUTE
STARTS CURRENT_TIMESTAMP
ON COMPLETION NOT PRESERVE
ENABLE
DO
 CALL spOrderReportAdd();

33 SELECT

SELECT
 EVENT_NAME,
 STATUS,
 LAST_EXECUTED
FROM
 information_schema.EVENTS
WHERE
 EVENT_SCHEMA = 'cafe_db'
 AND EVENT_NAME = 'move_data_to_order_report';

34 SET GLOBAL

SET GLOBAL event_scheduler = ON;
SHOW VARIABLES LIKE 'event_scheduler';
SELECT NOW();

.oO Semoga Sukses Oo.

