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1 CREATE 
DATABASE  

 

CREATE DATABASE cafe_db2; 
USE cafe_db; 

Membuat database baru dan memilih database 

2 CREATE 
TABLE 

CREATE TABLE `users` ( 
 `id` bigint unsigned NOT NULL AUTO_INCREMENT, 
 `name` varchar(255) NOT NULL, 
 `email` varchar(50) NOT NULL, 
 `phone` varchar(25) DEFAULT NULL, 
 `roles` enum('admin','staff','user') NOT NULL DEFAULT 
'user', 
 `password` varchar(255) NOT NULL, 
 `created_at` timestamp NULL DEFAULT NULL, 
 `updated_at` timestamp NULL DEFAULT NULL, 
 PRIMARY KEY (`id`), 
 UNIQUE KEY `users_email_unique` (`email`) 
); 
 
 

Membuat Tabel users 

3 CREATE 
TABLE 

CREATE TABLE `products` ( 
 `id` bigint unsigned NOT NULL AUTO_INCREMENT, 
 `name` varchar(255) NOT NULL, 
 `description` text, 
 `price` int NOT NULL DEFAULT '0', 
 `stock` int NOT NULL DEFAULT '0', 
 `category` enum('food','drink','snack') NOT NULL, 
 `image` varchar(255) DEFAULT NULL, 
 `created_at` timestamp NULL DEFAULT NULL, 
 `updated_at` timestamp NULL DEFAULT NULL, 
 `is_best_seller` tinyint(1) NOT NULL DEFAULT '0', 
 PRIMARY KEY (`id`) 
); 
 

Membuat Tabel products 
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4 CREATE 
TABLE 

CREATE TABLE `orders` ( 
 `id` bigint unsigned NOT NULL AUTO_INCREMENT, 
 `transaction_time` timestamp NOT NULL, 
 `total_price` int NOT NULL, 
 `total_item` int NOT NULL, 
 `kasir_id` bigint unsigned NOT NULL, 
 `payment_method` enum('Tunai','QRIS') NOT NULL, 
 `created_at` timestamp NULL DEFAULT NULL, 
 `updated_at` timestamp NULL DEFAULT NULL, 
 PRIMARY KEY (`id`), 
 KEY `orders_kasir_id_foreign` (`kasir_id`), 
 CONSTRAINT `orders_kasir_id_foreign` FOREIGN KEY 
(`kasir_id`) REFERENCES `users` (`id`) 
); 

Membuat Tabel orders 

5 CREATE 
TABLE 

 

CREATE TABLE `order_items` ( 
 `id` bigint unsigned NOT NULL AUTO_INCREMENT, 
 `order_id` bigint unsigned NOT NULL, 
 `product_id` bigint unsigned NOT NULL, 
 `quantity` int NOT NULL, 
 `total_price` int NOT NULL, 
 `created_at` timestamp NULL DEFAULT NULL, 
 `updated_at` timestamp NULL DEFAULT NULL, 
 PRIMARY KEY (`id`), 
 KEY `order_items_order_id_foreign` (`order_id`), 
 KEY `order_items_product_id_foreign` (`product_id`), 
 CONSTRAINT `order_items_order_id_foreign` FOREIGN KEY 
(`order_id`) REFERENCES `orders` (`id`), 
 CONSTRAINT `order_items_product_id_foreign` FOREIGN 
KEY (`product_id`) REFERENCES `products` (`id`) 
); 
 

Membuat Tabel order_items 

6 INSERT  

 

 

INSERT INTO `users` 
(name, email, phone, roles, password, created_at, 
updated_at) 
VALUES 
('Budi', 'budi@gmail.com', '085644445555', 'user', 
SHA2('budi123', 256), NOW(), NOW()), 
('Ayu', 'ayu@gmail.com', '085655556666', 'user', 
SHA2('ayu123', 256), NOW(), NOW()), 
('Rina', 'rina@gmail.com', '085666667777', 'user', 
SHA2('rina123', 256), NOW(), NOW()); 
 
 
INSERT INTO `products` (name, description, price, 
stock, category, image, created_at, updated_at, 
is_best_seller) 
VALUES 
('Nasi Goreng', 'Nasi goreng dengan campuran sayuran 
dan daging ayam.', 25000, 50, 'food', 
'nasi_goreng.jpg', NOW(), NOW(), 1), 
('Es Teh Manis', 'Teh manis dingin yang segar.', 5000, 
100, 'drink', 'es_teh_manis.jpg', NOW(), NOW(), 0), 

Menambahkan data kedalam tabel users, products, 
orders dan order_items 
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 ('Keripik Kentang', 'Keripik kentang renyah dengan rasa 
gurih.', 15000, 30, 'snack', 'keripik_kentang.jpg', 
NOW(), NOW(), 0); 
 
 
INSERT INTO `orders` (transaction_time, total_price, 
total_item, kasir_id, payment_method, created_at, 
updated_at) 
VALUES 
('2024-06-24 10:00:00', 40000, 2, 1, 'Tunai', NOW(), 
NOW()), 
('2024-06-24 11:00:00', 20000, 1, 2, 'QRIS', NOW(), 
NOW()), 
('2024-06-24 12:00:00', 30000, 3, 1, 'Tunai', NOW(), 
NOW()); 
 
 
INSERT INTO `order_items` (order_id, product_id, 
quantity, total_price, created_at, updated_at) 
VALUES 
(1, 1, 1, 25000, NOW(), NOW()), 
(1, 2, 1, 15000, NOW(), NOW()); 
 
 
INSERT INTO `order_items` (order_id, product_id, 
quantity, total_price, created_at, updated_at) 
VALUES 
(2, 3, 1, 20000, NOW(), NOW()); 
 
 
INSERT INTO `order_items` (order_id, product_id, 
quantity, total_price, created_at, updated_at) 
VALUES 
(3, 1, 1, 25000, NOW(), NOW()), 
(3, 3, 1, 15000, NOW(), NOW()), 
(3, 2, 1, 10000, NOW(), NOW()); 
 

7 SELECT SELECT 
   o.id AS order_id, 
   o.transaction_time, 
   o.total_price AS order_total_price, 
   o.total_item AS order_total_item, 
   u.name AS kasir_name, 
   o.payment_method, 
   p.name AS product_name, 
   p.description AS product_description, 
   p.price AS product_price, 
   oi.quantity, 
   oi.total_price AS item_total_price 
FROM order_items oi 
LEFT JOIN orders o ON oi.order_id = o.id 
LEFT JOIN users u ON o.kasir_id = u.id 
LEFT JOIN products p ON oi.product_id = p.id; 

Menampilkan isi tabel order_details dan relasi ke 
tabel orders, users dan products 
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8 UPDATE  UPDATE order_items oi 
JOIN products p ON oi.product_id = p.id 
SET oi.quantity = 5, 
   oi.total_price = 5 * p.price, 
   oi.updated_at = NOW() 
WHERE oi.order_id = 3 
 AND oi.product_id = 3; 
 
 
 

Merubah quantity=5 dan total_price pada tabel 
order_items yang berelasi ke tabel products 

9 DELETE  DELETE FROM order_items WHERE order_id = 3; 
DELETE FROM orders WHERE id = 3; 
 

Menghapus order_id=3 pada tabel orders dan 
order_items 

10 CREATE 
VIEW 

 
CREATE VIEW order_details_view AS 
SELECT 
   a.id AS order_id, 
   a.transaction_time, 
   a.total_price AS order_total_price, 
   a.total_item AS order_total_item, 
   b.name AS kasir_name, 
   a.payment_method, 
   d.name AS product_name, 
   d.description AS product_description, 
   d.price AS product_price, 
   c.quantity, 
   c.total_price AS item_total_price 
FROM orders a 
LEFT JOIN users b ON a.kasir_id = b.id 
LEFT JOIN order_items c ON a.id = c.order_id 
LEFT JOIN products d ON c.product_id = d.id; 
 

Membuat view yang isinya menampilkan data detail 
order  

11 CREATE 
VIEW 

 
CREATE VIEW product_sales_view AS 
SELECT 
   p.id AS product_id, 
   p.name AS product_name, 
   SUM(oi.quantity) AS total_quantity_sold, 
   SUM(oi.total_price) AS total_revenue 
FROM products p 
LEFT JOIN order_items oi ON p.id = oi.product_id 
GROUP BY p.id, p.name; 
 

Membuat view yang isinya menampilkan data sales 
berdasarkan product 
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12 CREATE 
VIEW 

CREATE VIEW daily_sales_summary_view AS 
SELECT 
   DATE(a.transaction_time) AS transaction_date, 
   COUNT(a.id) AS total_orders, 
   SUM(a.total_price) AS total_sales_amount, 
   SUM(a.total_item) AS total_items_sold 
FROM orders a 
GROUP BY DATE(a.transaction_time); 
 

 

13 CREATE 
VIEW 

CREATE VIEW user_orders_view AS 
SELECT 
   u.id AS user_id, 
   u.name AS user_name, 
   COUNT(o.id) AS total_orders 
FROM users u 
LEFT JOIN orders o ON u.id = o.kasir_id 
GROUP BY u.id, u.name; 
 

 

14 CREATE 
VIEW  

CREATE VIEW best_seller_products_view AS 
SELECT 
   p.id AS product_id, 
   p.name AS product_name, 
   SUM(oi.quantity) AS total_quantity_sold 
FROM products p 
LEFT JOIN order_items oi ON p.id = oi.product_id 
GROUP BY p.id, p.name 
ORDER BY SUM(oi.quantity) DESC; 
 

 

15 CREATE 
PROCEDURE 

 

CREATE PROCEDURE `cafe_db`.`spProductList`( 
   IN search_name VARCHAR(255), 
   IN search_category ENUM('food', 'drink', 'snack'), 
   IN page INT, 
   IN page_size INT 
) 
BEGIN 
   DECLARE offset_val INT DEFAULT 0; 
   SET offset_val = (page - 1) * page_size; 
   
   SELECT * 
   FROM products 
   WHERE (search_name IS NULL OR name LIKE CONCAT('%', 
search_name, '%')) 
     AND (search_category IS NULL OR search_category = 
'' OR category = search_category) 
   ORDER BY id 
   LIMIT page_size OFFSET offset_val; 
END; 
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16 CREATE 
PROCEDURE 

 CREATE PROCEDURE `cafe_db`.`spProductDetail`( 
   IN product_id BIGINT UNSIGNED 
) 
BEGIN 
   SELECT * 
   FROM products 
   WHERE id = product_id; 
END 
 

 

17 CREATE 
PROCEDURE 

 CREATE PROCEDURE `cafe_db`.`spProductAdd`( 
   IN p_name VARCHAR(255), 
   IN p_description TEXT, 
   IN p_price INT, 
   IN p_stock INT, 
   IN p_category ENUM('food', 'drink', 'snack'), 
   IN p_image VARCHAR(255) 
) 
BEGIN 
   DECLARE result_code INT; 
   DECLARE error_message VARCHAR(1000); 
   -- Check if name or category is empty 
   IF p_name = '' OR p_name IS NULL OR p_category = '' 
OR p_category IS NULL THEN 
       SET result_code = 39999; 
       SET error_message = 'Semua kolom (nama, 
kategori) harus diisi.'; 
       SELECT result_code, error_message; 
   ELSE 
       -- Check if product name already exists 
       IF EXISTS (SELECT 1 FROM products WHERE name = 
p_name LIMIT 1) THEN 
           SET result_code = 39998; 
           SET error_message = 'Nama produk sudah ada 
dalam database.'; 
           SELECT result_code, error_message; 
       ELSE 
           -- Insert new product 
           INSERT INTO products (name, description, 
price, stock, category, image, created_at, updated_at) 
           VALUES (p_name, p_description, p_price, 
p_stock, p_category, p_image, NOW(), NOW()); 
           SET result_code = 1; 
           SET error_message = ''; 
           SELECT result_code, error_message; 
       END IF; 
   END IF; 
END 
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18 CREATE 
PROCEDURE 

 CREATE PROCEDURE `cafe_db`.`spProductEdit`( 
   IN p_id BIGINT UNSIGNED, 
   IN p_name VARCHAR(255), 
   IN p_description TEXT, 
   IN p_price INT, 
   IN p_stock INT, 
   IN p_category ENUM('food', 'drink', 'snack'), 
   IN p_image VARCHAR(255) 
) 
begin 
       DECLARE result_code INT; 
   DECLARE error_message VARCHAR(1000); 
   DECLARE product_count INT; 
   -- Check if the product exists 
   SELECT COUNT(*) INTO product_count 
   FROM products 
   WHERE id = p_id; 
   IF product_count = 0 THEN 
       SET result_code = 39999; 
       SET error_message = 'Produk dengan ID yang 
diberikan tidak ditemukan.'; 
       SELECT result_code, error_message; 
   ELSE 
       IF p_name = '' OR p_name IS NULL OR p_category = 
'' OR p_category IS NULL THEN 
           SET result_code = 39999; 
               SET error_message = 'Semua kolom (nama, 
kategori) harus diisi.'; 
               SELECT result_code, error_message; 
       ELSE 
           UPDATE products 
           SET name = p_name, 
               description = p_description, 
               price = p_price, 
               stock = p_stock, 
               category = p_category, 
               image = p_image, 
               updated_at = NOW() 
           WHERE id = p_id; 
          
                  SET result_code = 1; 
           SET error_message = ''; 
           SELECT result_code, error_message; 
       END IF; 
   END IF; 
END; 
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19 CREATE 
PROCEDURE 

 CREATE PROCEDURE `cafe_db`.`spProductStockAdd`( 
   IN p_product_id BIGINT UNSIGNED, 
   IN p_add_stock INT 
) 
BEGIN 
   DECLARE result_code INT; 
   DECLARE error_message VARCHAR(1000); 
   DECLARE current_stock INT; 
   -- Check if the product exists 
   IF NOT EXISTS (SELECT 1 FROM products WHERE id = 
p_product_id) THEN 
       SET result_code = 0; 
       SET error_message = 'Product ID does not exist'; 
   ELSE 
       -- Get the current stock 
       SELECT stock INTO current_stock FROM products 
WHERE id = p_product_id; 
       -- Add the new stock 
       UPDATE products SET stock = current_stock + 
p_add_stock, updated_at = NOW() WHERE id = 
p_product_id; 
       SET result_code = 1; 
       SET error_message = ''; 
   END IF; 
   SELECT result_code, error_message; 
END 
 

 

20 RUN 
PROCEDURE 

 CALL spProductList('', null, 1, 10); 
CALL spProductList('', 'food', 1, 10); 
CALL spProductDetail(1); 
 
CALL spProductAdd(null, 'Deskripsi Produk', 10000, 50, 
'food', 'gambar.jpg'); 
CALL spProductAdd('', 'Deskripsi Produk', 10000, 50, 
'food', 'gambar.jpg'); 
CALL spProductAdd('Nama Produk2', 'Deskripsi Produk', 
10000, 50, 'food', 'gambar.jpg'); 
CALL spProductEdit(12, '', 'Nama Produk', 12000, 60, 
'drink', 'gambar_baru.jpg'); 
CALL spProductEdit(11, null, 'Deskripsi Produk Baru', 
12000, 60, 'drink', 'gambar_baru.jpg'); 
CALL spProductEdit(11, '', 'Deskripsi Produk Baru', 
12000, 60, 'drink', 'gambar_baru.jpg'); 
CALL spProductEdit(14, 'Nama Produk', 'Nama Produk', 
12000, 60, 'drink', 'gambar_baru.jpg'); 
 
CALL spProductDelete(1); 
CALL spProductDelete(13);CALL spProductStockAdd(1, 10); 
CALL spProductStockAdd(1, 10); 
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21 CREATE 
PROCEDURE 

 CREATE PROCEDURE `cafe_db`.`spOrderAdd`( 
   IN p_transaction_time TIMESTAMP, 
   IN p_total_price INT, 
   IN p_total_item INT, 
   IN p_kasir_id BIGINT UNSIGNED, 
   IN p_payment_method ENUM('Tunai', 'QRIS') 
) 
begin 
       DECLARE result_code INT; 
   DECLARE error_message VARCHAR(1000); 
  
   INSERT INTO orders (transaction_time, total_price, 
total_item, kasir_id, payment_method, created_at, 
updated_at) 
   VALUES (p_transaction_time, p_total_price, 
p_total_item, p_kasir_id, p_payment_method, NOW(), 
NOW()); 
  
   SET result_code = 1; 
   SET error_message = ''; 
   SELECT result_code, error_message; 
END 
 

 

22 CREATE 
PROCEDURE 

 CREATE PROCEDURE `cafe_db`.`spOrderItemAdd`( 
   IN p_order_id BIGINT UNSIGNED, 
   IN p_product_id BIGINT UNSIGNED, 
   IN p_quantity INT, 
   IN p_total_price INT 
) 
BEGIN 
   DECLARE result_code INT; 
   DECLARE error_message VARCHAR(1000); 
   DECLARE product_stock INT; 
   -- Check if the order exists 
   IF NOT EXISTS (SELECT 1 FROM orders WHERE id = 
p_order_id) THEN 
       SET result_code = 0; 
       SET error_message = 'Order ID does not exist'; 
   
   -- Check if the product exists 
   ELSEIF NOT EXISTS (SELECT 1 FROM products WHERE id = 
p_product_id) THEN 
       SET result_code = 0; 
       SET error_message = 'Product ID does not exist'; 
   
   -- Check if the stock is sufficient 
   ELSE 
       SELECT stock INTO product_stock FROM products 
WHERE id = p_product_id; 
       IF product_stock < p_quantity THEN 
           SET result_code = 0; 
           SET error_message = 'Insufficient stock'; 
       ELSE 
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           -- Insert the order item 
           INSERT INTO order_items (order_id, 
product_id, quantity, total_price, created_at, 
updated_at) 
           VALUES (p_order_id, p_product_id, 
p_quantity, p_total_price, NOW(), NOW()); 
           -- Update the product stock 
           UPDATE products SET stock = stock - 
p_quantity WHERE id = p_product_id; 
           SET result_code = 1; 
           SET error_message = ''; 
       END IF; 
   END IF; 
   SELECT result_code, error_message; 
END 
 

23   CALL spOrderAdd('2024-06-24 14:00:00', 50000, 3, 1, 
'Tunai'); 
CALL spOrderItemAdd(9,1, 1, 10000); 
CALL spProductStockAdd(1, 10); 
 

 

24 CREATE 
PROCEDURE 

 CREATE PROCEDURE `cafe_db`.`spRegister`( 
   IN p_name VARCHAR(255), 
   IN p_email VARCHAR(50), 
   IN p_phone VARCHAR(25), 
   IN p_roles ENUM('admin','staff','user'), 
   IN p_password VARCHAR(255) 
) 
BEGIN 
   DECLARE result_code INT; 
   DECLARE error_message VARCHAR(1000); 
   -- Check if the email already exists 
   IF EXISTS (SELECT 1 FROM users WHERE email = 
p_email) THEN 
       SET result_code = 0; 
       SET error_message = 'Email already exists'; 
   ELSE 
       -- Insert the new user with hashed password 
       INSERT INTO users (name, email, phone, roles, 
password, created_at, updated_at) 
       VALUES (p_name, p_email, p_phone, p_roles, 
SHA2(p_password, 256), NOW(), NOW()); 
       SET result_code = 1; 
       SET error_message = ''; 
   END IF; 
   SELECT result_code, error_message; 
END 
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25 CREATE 
PROCEDURE 

 CREATE PROCEDURE `cafe_db`.`spLogin`( 
   IN p_email VARCHAR(50), 
   IN p_password VARCHAR(255) 
) 
BEGIN 
   DECLARE result_code INT; 
   DECLARE error_message VARCHAR(1000); 
   DECLARE user_id BIGINT UNSIGNED; 
   DECLARE user_name VARCHAR(255); 
   DECLARE user_roles ENUM('admin','staff','user'); 
   -- Check if the email and hashed password match 
   IF EXISTS (SELECT 1 FROM users WHERE email = p_email 
AND password = SHA2(p_password, 256)) THEN 
       -- Get user details 
       SELECT id, name, roles INTO user_id, user_name, 
user_roles FROM users WHERE email = p_email AND 
password = SHA2(p_password, 256); 
       
       SET result_code = 1; 
       SET error_message = ''; 
       
       SELECT result_code, error_message; 
       SELECT user_id, user_name, user_roles; 
   ELSE 
       SET result_code = 0; 
       SET error_message = 'Invalid email or password'; 
      SELECT result_code, error_message; 
   END IF; 
   
END 
 

 

26 RUN 
PROCEDURE 

 select * from users; 
CALL spRegister('John Doe', 'johndoe@example.com', 
'123456789', 'user', 'budi123'); 
CALL spLogin('johndoe@example.com', 'budi123'); 
 

 

27 CREATE 
TRIGGER 

 CREATE TRIGGER trg_after_insert_order_items 
AFTER INSERT ON order_items 
FOR EACH ROW 
BEGIN 
   CALL spOrderTotalUpdate(NEW.order_id); 
END 
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28 CREATE 
TRIGGER 

 CREATE TRIGGER trg_after_update_order_items 
AFTER UPDATE ON order_items 
FOR EACH ROW 
BEGIN 
   CALL spOrderTotalUpdate(NEW.order_id); 
END 
 

 

29 CREATE 
TRIGGER 

 CREATE TRIGGER trg_after_delete_order_items 
AFTER DELETE ON order_items 
FOR EACH ROW 
BEGIN 
   CALL spOrderTotalUpdate(OLD.order_id); 
END 
 

 

30 CREATE 
TABLE 

 CREATE TABLE order_report ( 
   order_id BIGINT UNSIGNED NOT NULL, 
   transaction_time TIMESTAMP NOT NULL, 
   order_total_price INT NOT NULL, 
   order_total_item INT NOT NULL, 
   kasir_name VARCHAR(255) NOT NULL, 
   payment_method ENUM('Tunai', 'QRIS') NOT NULL, 
   product_name VARCHAR(255) NOT NULL, 
   product_description TEXT, 
   product_price INT NOT NULL, 
   quantity INT NOT NULL, 
   item_total_price INT NOT NULL, 
   INDEX idx_transaction_time (transaction_time), 
   INDEX idx_kasir_name (kasir_name), 
   INDEX idx_payment_method (payment_method), 
   INDEX idx_product_name (product_name) 
); 
 

 

31 CREATE 
PROCEDURE 

 CREATE PROCEDURE`cafe_db`.`spOrderReportAdd`() 
BEGIN 
   -- Insert data into order_report if it doesn't 
already exist 
   INSERT INTO order_report ( 
       order_id, 
       transaction_time, 
       order_total_price, 
       order_total_item, 
       kasir_name, 
       payment_method, 
       product_name, 
       product_description, 
       product_price, 
       quantity, 
       item_total_price 
   ) 
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   SELECT 
       v.order_id, 
       v.transaction_time, 
       v.order_total_price, 
       v.order_total_item, 
       v.kasir_name, 
       v.payment_method, 
       v.product_name, 
       v.product_description, 
       v.product_price, 
       v.quantity, 
       v.item_total_price 
   FROM 
       cafe_db.order_details_view v 
   WHERE NOT EXISTS ( 
       SELECT 1 
       FROM order_report r 
       WHERE r.order_id = v.order_id 
         AND r.product_name = v.product_name 
         AND r.quantity = v.quantity 
   ); 
END 
 

32 CREATE 
EVENT 

 

CREATE EVENT IF NOT EXISTS  move_data_to_order_report 
ON SCHEDULE EVERY 1 MINUTE 
STARTS CURRENT_TIMESTAMP 
ON COMPLETION NOT PRESERVE 
ENABLE 
DO 
    CALL spOrderReportAdd(); 
 

 

33 SELECT  

 

SELECT  
    EVENT_NAME,  
    STATUS,  
    LAST_EXECUTED  
FROM  
    information_schema.EVENTS  
WHERE  
    EVENT_SCHEMA = 'cafe_db'  
    AND EVENT_NAME = 'move_data_to_order_report'; 
 

 

34 SET GLOBAL 

 

SET GLOBAL event_scheduler = ON; 
SHOW VARIABLES LIKE 'event_scheduler'; 
SELECT NOW(); 
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