Primes in Base 4

In "normal" (base 10) numbers 2132 means 2 \times 10 3 + 1 \times 10 2 + 3 \times 10 + 2 \times 1

In base 4 2132 means $2 \times 4^3 + 1 \times 4^2 + 3 \times 4 + 2 \times 1$

So 2132 base 4 = 158 base 10

Task 1

Convert from base 4 to base 10

- a) 32 14
- b) 1000 64
- c) 333 63
- d) 112233 1455

To convert 483 base 10 we need to write it as the sum of the powers of 4.

Start with the highest power of four and then the next. You end up with:

$$1 \times 4^4 + 3 \times 4^3 + 2 \times 4^2 + 0 \times 4 + 3 \times 1 = 13203$$

Task 2

Convert from base 10 to base 4

- a) 12 30
- b) 35 203
- c) 221 3131

Task 3

Prove or disprove this conjecture:

"A prime number in base 10 always makes a prime number in base 4 (in base 10))"

E.g. 19 in base 10 is 103 in base 4. 103 is a prime number in base 10. Is this true for every prime number?