
Reading EEG Signals to Determine Hand

Motion

Intro to Machine Learning

CS-UY 4563

Zonayed Rahman

Elijah Whittle



Introduction

In the final project, we used a dataset from Kaggle that contained the brainwaves of

participants who are performing activities in order to determine whether they are moving their

left arm, right arm, or neither. The deeper question this poses is whether we can successfully use

machine learning techniques from this course to understand simple brain signal data. The dataset

contains 113 columns (including the target column, which indicates the user’s intended

movement). The original columns consists of the mean and standard deviation of reading alpha,

beta, delta, and theta waves from the following 14 electrode channels: AF3, F7, F3, FC5, T7,

P7, O1, O2, P8, T8, FC6, F4, F8 and AF4. This is a multi-class classification problem, with the

goal of predicting what movement one is making based on the hand-movement data.The

movement is encoded as 0 for left arm movement, 1 for right arm movement, and 2 for no

movement. In this project, we experiment with three different classification models: logistic,

support vector machines (SVM), and neural networks.

Data Preparation

The 4 raw datasets included no incomplete features with null entries. We decided to train

the 4 datasets separately, as it gives a brighter insight into how different individuals’ neural

signals differ. The only categorical column was “Class,” which is the target movement, with

three categories ranging from 0 to 2. To ensure none of the categories heavily weighted in, their

occurrence was analyzed. In all the tested models, the features were scaled using the

StandardScaler package from sklearn.preprocessing, which zero-centered the data and scaled

https://www.kaggle.com/datasets/fabriciotorquato/eeg-data-from-hands-movement


data points by calculating the z-score of that point and transforming the data in each feature to

normally distributed data. This allowed for a reduction of bias within the data. The data was split

into a training set, a validation set, and a testing set. For logistic regression and SVMs, the

training set was 80% of the original set, while the test set was both 20% of the original set. For

neural networks, the training set was 60% of the original set, while the test set was 40% of the

original set. There were also versions of the training set prepared only providing the mean values

or the standard deviation values for training with the neural network.

Analysis

Logistic Regression

The first model used for movement prediction with this data set is logistic regression. The

outline for acquiring the best hyperparameters was as follows:

1. Create polynomial transforms of the feature matrix of different degrees with no

regularization.

2. Using the best feature transformation from the previous step, experiment with both L1

regularization and L2 regularization. The optimal regularization strength hyperparameter

for L1 and L2 regularization shall be found with K-fold cross validation.

In the first two models, Sklearn’s PolynomialFeatures was utilized, as its “degree”

parameter allowed for easy transformation of the features. Thus, it allowed for comparison

between degrees 1 and 2. Since the original feature matrix already begins with 112 features, any

number of degrees higher resulted in too many features, resulting in too much time being

consumed during training. Therefore, only the first two transformations had to suffice. This



resulted in a logistic regression model with polynomial transformation degree 1 and no

regularization in an average of the 4 training accuracies of 64.68% and average testing accuracy

of 57.86%. Logistic regression model with polynomial transformation degree 2 and no

regularization resulted in perfect accuracy for all 4 datasets and average testing accuracy of

82.73%.

Models of Polynomial Degree 1 and 2

Datasets Degree = 1 Degree = 2

User A 0.63021 0.85938

User B 0.63715 0.89063

User C 0.50868 0.71181

User D 0.53819 0.84722

Datasets Degree = 1 Degree = 2

Precision
(0,1,2)

Recall
(0,1 2)

Precision
(0,1,2)

Recall
(0,1 2)

User A 0.71
0.61
0.57

0.68
0.54
0.67

.87

.84

.86

.89

.81

.88

User B 0.64
0.63
0.63

0.64
0.68
0.60

.95

.86

.87

.87

.91

.89

User C 0.54
0.52
0.46

.53

.55

.45

.73

.72

.68

.7
.74
.7

User D .61
.5
.5

.57

.49

.55

.89

.84
.8

.84

.86

.84



There was considerable increase in accuracy with the second model, almost over 20% across the

board. Therefore, regularization was applied to this model to further improve the accuracy.

Regularization with K-fold validation

As stated, both L1 and L2 regularization were performed on the model with 2nd degree

polynomial transformation. K-fold validation where K ranges from 2 to 10 was utilized. C values

ranging from 0.001 to 10000 were tested on each fold and the best validation and C values were

recorded of each dataset.

L1 Regularization

User_a User_b User_c User_d

K C Score C Score C Score C Score

2 0.1 0.80972 100 0.84236 10 0.63333 1000 0.77222

3 10 0.85 100 0.87708 1000 0.68333 1 0.80208

4 10000 0.8625 1 0.88888 0.1 0.69444 100 0.82638

5 1 0.87673 1 0.91145 1000 0.72569 10 0.85416

6 1 0.8875 10 0.93333 1 0.74375 1 0.86875

7 100 0.90776 10 0.92214 1000 0.73058 10 0.85922

8 1 0.91111 10 0.93333 0.01 0.74722 1000 0.86667

9 100 0.90937 1 0.9375 0.1 0.76875 1 0.89063

10 1 0.89930 10 0.9375 10000 0.75347 100 0.89236



L2 Regularization

User_a User_b User_c User_d

K C Score C Score C Score C Score

2 0.01 0.81389 0.01 0.86597 1 0.65 0.01 0.79930

3 0.01 0.85416 0.1 0.90313 0.1 0.70520 1 0.82917

4 0.1 0.86805 0.01 0.90556 1 0.71528 0.01 0.83611

5 1 0.88368 0.1 0.91146 10 0.74306 1 0.87152

6 0.1 0.8875 1 0.93542 0.01 0.74583 0.1 0.87292

7 0.1 0.90754 0.1 0.92700 0.01 0.74029 1 0.88107

8 100 0.90833 0.01 0.94166 0.1 0.76667 0.1 0.88611

9 0.01 0.91563 100 0.93438 0.1 0.75313 0.1 0.8875

10 1 0.90278 0.01 0.93056 10000 0.76736 10 0.89583

The best scores were:

L1 L2

User A 0.91111 0.91563

User B 0.93333 0.94166

User C 0.75347 0.76667

User D 0.89236 0.89583



Conclusion

Based on the results presented in the L1 and L2 regularization tables, the best logistic

regression model for the datasets is the model with 2nd degree polynomial feature transformation

with L2 regularization. A large increase was observed once the degree was increased from 1 to 2,

which suggests the data is not very linearly separable. Both L1 and L2 regularization also

showed an improvement on the 2nd degree polynomial transformation with no regularization of

almost 4-5% across all 4 dataset. However, the L2 model did prove to be superior in the K-fold

results. This suggests no regularization model was overfitting the data, which was unexpected

from preprocessing analysis.

SVM

With the Scikit-Learn python library, linear kernel learning models with L1 and L2

normalization and polynomial kernels with degrees ranging from 2 to 10 were developed to

attempt to accomplish a higher accuracy score. Linear kernels of L1 and L2 normalization

models were implemented with various C values ranging from 0.001 and 1000000.

Linear Kernels



L1 Norm L2 Norm

C Score C Score

User A: Train 1 0.68099 0.1 0.67014

User A: Test 10 0.64583 0.1 0.64063

User B: Train 100 0.71224 1 0.71181

User B: Test 0.01 0.64410 0.01 0.64757

User C: Train 100 0.59071 0.1 0.58681

User C: Test 1 0.50868 0.1 0.51042

User D: Train 100 0.60807 0.1 0.60547

User D: Test 0.1 0.55729 0.001 0.55208

For some of the L2 norm results, C values around 1 and above resulted in the model failing to

converge, even when max_iter(max iterations for gradient) was set 20 times the default value and

all the features had been scaled. Thus, it was concluded the models with such high C value were

just non-optimal.

SVM with a polynomial kernel of degrees 1 to 10 were also tested on the dataset. The models

with degree 2 and 3 performed best and larger degrees continually performed worse, which

usually results due to overfitting. Lower degrees performing better can also show a strong

correlation between the features and target.



User A:

Degree Training Test

1 0.63454 0.58854

2 0.84418 0.73438

3 0.84983 0.72049

4 0.75477 0.61979

5 0.65972 0.56597

6 0.66970 0.57465

7 0.58116 0.49132

8 0.53472 0.47049

9 0.51606 0.44097

10 0.50477 0.42708

User B:

Degree Training Test

1 0.69618 0.64930

2 0.93837 0.82986

3 0.96658 0.86458

4 0.81944 0.66319

5 0.6875 0.56424

6 0.65104 0.53472

7 0.61979 0.51389

8 0.60199 0.48264

9 0.58159 0.46701

10 0.57204 0.44444



User C:

Degree Training Test

1 0.57421 0.51562

2 0.76909 0.61111

3 0.82204 0.61631

4 0.64539 0.48090

5 0.60763 0.42361

6 0.55989 0.38888

7 0.54383 0.36979

8 0.53211 0.36631

9 0.52907 0.35069

10 0.52517 0.35763

User D:

Degree Training Test

1 0.59635 0.54513

2 0.89583 0.76736

3 0.89149 0.76736

4 0.69487 0.54513

5 0.62586 0.47222

6 0.60329 0.45138

7 0.61328 0.44270

8 0.65321 0.47048

9 0.58420 0.41666

10 0.54644 0.39930



Best performing polynomial kernel models’ degrees and score:

Datasets Training Test

Users Degree Score Degree Score

User A 3 0.84983 2 0.73438

User B 3 0.96658 3 0.86458

User C 3 0.82204 3 0.61631

User D 2 0.89583 2 0.76736

As can be seen from each user’s respective best performing polynomial kernel models, the

degrees vary between 2 and 3. The difference between the two degrees amongst each user is also

significant by almost 5% difference in accuracy. K-fold validation with K=10 was implemented

with degrees varying from 2 to 10. Polynomial kernel of a degree of 3 almost dominated all the

folds for all 4 datasets. It also reaffirms our idea of the data not being very linearly separable

from logistic regression analysis.



Best Results of K-fold validation with Degrees 2 to 10

K User A User B User C User D

Degree Score Degree Score Degree Score Degree Score

2 2 0.72152 3 0.79722 3 0.56388 3 0.72291

3 2 0.75625 3 0.87187 3 0.62083 3 0.76979

4 2 0.775 3 0.88055 3 0.62222 3 0.79444

5 2 0.77951 3 0.90104 3 0.64583 3 0.80902

6 3 0.79583 3 0.90416 3 0.65833 3 0.8125

7 2 0.79318 3 0.90510 3 0.64563 3 0.82281

8 3 0.8 3 0.90833 3 0.65277 3 0.82777

9 3 0.80625 3 0.90625 3 0.675 3 0.83125

10 3 0.80208 3 0.90972 3 0.67361 3 0.83333

The accuracy score also increased as the fold numbers increased, which is expected. As fold

numbers increase, the training set also increases, resulting in better fitting and risking overfitting.

However for us, this seemed to prove useful.

Conclusion

The effectiveness of L1 and L2 regularization is almost negligible on the linear kernel

SVM. Furthermore, it proved to be very inefficient in capturing the arm movements. The highest

accuracies of the polynomial kernel SVM models were observed with degrees 2 and 3, however,

even their best results were incomparable to the polynomial logistic regression models. The best

results for each user were observed at the highest fold where K=10. A substantial improvement



amongst scores was also observed through the K-fold validation. And it proved the 3rd degree

model to be superior to any other polynomial kernel model, but it is still yet to beat logistic

regression highest scores.

Neural Network

The neural network structures trained used 1 hidden layer of 112 nodes, 3 hidden layers

of 112 nodes, or 4 hidden layers of nodes having the following structure: (112, 56, 30, 10). We

trained models using the logistic function with L2 regularization and the tanh function with L2

regularization. We used alpha values ranging from 0.001 to 1.0, and lambda values ranging from

0.00001 to 1000.

Here are the top testing accuracies for each user and neural network structure for a

training size of 60%, and the most accurate models’ structures, alpha values, and lambda values:

Top testing accuracy information for Users A-D

User A
(logistic)

User A
(tanh)

User B
(logistic)

User B
(tanh)

User C
(logistic)

User C
(tanh)

User D
(logistic)

User D
(tanh)

Test
accuracy

85.1563% 86.8056% 88.6285% 91.4063% 70.4861% 67.1007% 81.3368% 81.5972%

Precision
%
(0, 1, 2)

83.8,
84.3,
84.0

87.1,
86.3,
84.2

90.5,
85.1,
88.9

84.9,
79.9,
80.1

70.0,
70.0,
61.7

68.2,
66.1,
65.1

83.7,
81.7,
82.5

81.6,
80.4,
79.2

Recall %
(0, 1, 2)

86.7,
80.9,
84.4

86.2,
83.3,
88.3

88.6,
88.5,
87.3

85.8,
77.4,
81.7

68.4,
72.6,
60.7

71.0,
68.7,
59.8

82.4,
83.4,
82.2

82.7,
82.4,
76.2

Confusion
Matrix

332 28
23
32 305
40
32 29
331

332 32
21
27 333
40
22 21
324

334 27
16
17 337
27
18 32
344

337 27
29
36 291
49
24 46
313

268 46
78
46 284
61
69 76
224

274 53
59
56 263
64
72 82
229

318 36
38
27 318
29
35 35
316

305 22
42
33 324
36
36 57
297

Alpha 1.0 0.1 0.1 1.0 1.0 0.001 1.0 0.01

Lambda 0.1 1.0 0.1 0.1 0.1 1.0 0.1 1.0



Hidden
Layer
Structure

(112) (112) (112, 112,
112)

(112) (112) (112) (112) (112, 112,
112)

Features
used

all all all all all all all all

# models
above 85%
test
accuracy

1
(0.1736%)

2
(0.3472%)

22
(3.8194%)

41
(7.1181%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

During testing, neural networks trained using the tanh activation function produced

roughly twice as many models with test accuracy above 85% than neural networks trained using

the logistic activation function for users A and B. There is little difference in accuracy between

the logistic activation function and the tanh activation function for users C and D. Overall, it

appears that the activation functions performed roughly equally, even when comparing precision

and recall.

Among the models above 85% testing accuracy, many only have one hidden layer of 112

nodes, though it is important to note that there was much more variability in structure for the

tanh activation neural networks. The top performing models also often used all features, although

there were some which used only the mean features (which account for half of the features

provided).

Using the data from User A, here are plots showing the effect of lambda on the mode top

alpha score and the effect of alpha on the mode top lambda score:





Figures: effect of alpha and lambda on User A

As the graph shows, an alpha score around 0.1 improves the accuracy of all models, and low

lambda scores contribute to the accuracy as well.



Results Table

Logistic Regression

Best Logistic Regression Model Precision and Recall(2nd Degree Polynomial Feature

Transformation with L2 Regularization):

Precision
(0,1,2)

Recall
(0,1 2)

Confusion Matrix

User A .87
.84
.85

.89

.79

.89

186 16 7
17 145 21
10 11 163

User B .94
.88
.87

.87

.92

.90

182 12 15
5 169 10
6 12 165

User C .71
.70
.67

.67

.74

.68

139 30 40
25 136 22
32 27 125

User D .89
.86
.81

.86

.85

.84

179 11 19
9 156 18
14 15 155



SVM

Best Model(3rd degree Polynomial Kernel):

Precision
(0,1,2)

Recall
(0,1 2)

Confusion Matrix

User A .84
.68
.67

.6
.77
.82

125 44 40
10 140 33
13 21 150

User B .97
.76
.90

.82

.96

.82

171 26 12
2 177 5
4 29 150

User C .71
.58
.59

.48

.75

.63

101 50 58
23 138 22
18 50 116

User D .94
.91
.61

.70

.66

.95

147 5 57
6 121 56
3 7 174



Neural Networks

The following tables show the training and testing accuracy of neural networks trained

with differences in alpha values, lambda values, and layer structure. The neural networks were

trained using either the logistic function with L2 regularization or the tanh function with L2

regularization. Each neural network corresponding to the accuracy score shown was trained on

60% of the data for a particular user, and tested using data from the same user. The neural

networks were trained using all 112 features of the dataset. For additional training data, see our

GitHub link here: neural network data can be found in the nn_data folder.

The alpha values tested were from the following list: [0.001, 0.01, 0.1, 1.0]. The lambda

values tested were from the following list: [0.00001, 0.0001, 0.001, 0.01, 0.1, 1.0, 100, 1000].

The following tables show the accuracy for users A and B. Users C and D are not included here,

but their data can be found in the GitHub repository as mentioned above.

https://github.com/zonayedrahman/ML


User A accuracy with logistic activation function

Lambda \
best model
info

data 0.00001 0.0001 0.001 0.01 0.1 1 100 1000

a=0.001 train (1)* 0.807292 0.826389 0.824074 0.826968 0.815394 0.62037 0.34375 0.338542

a=0.001 test (1)* 0.744792 0.692708 0.727431 0.703125 0.704861 0.59809 0.317708 0.325521

a=0.001 train (3)*** 0.33912 0.340856 0.346065 0.334491 0.339699 0.338542 0.336227 0.344329

a=0.001 test (3)*** 0.320313 0.322049 0.333333 0.328125 0.323785 0.325521 0.328993 0.31684

a=0.001 train (4)**** 0.33912 0.333912 0.336227 0.337963 0.341435 0.340278 0.336806 0.329861

a=0.001 test (4)**** 0.324653 0.332465 0.328993 0.326389 0.321181 0.322917 0.328125 0.338542

a=0.01 train (1)* 1 1 1 1 0.998843 0.806134 0.341435 0.340278

a=0.01 test (1)* 0.800347 0.815972 0.828125 0.820313 0.822917 0.751736 0.321181 0.322917

a=0.01 train (3)*** 0.359375 0.333333 0.332755 0.342014 1 0.340856 0.339699 0.334491

a=0.01 test (3)*** 0.358507 0.333333 0.334201 0.320313 0.779514 0.322049 0.323785 0.331597

a=0.01 train (4)**** 0.340278 0.336806 0.340856 0.353009 0.343171 0.339699 0.339699 0.337384

a=0.01 test (4)**** 0.322917 0.328125 0.322049 0.303819 0.318576 0.323785 0.323785 0.327257

a=0.1 train (1)* 1 1 1 1 1 0.844907 0.338542 0.326389

a=0.1 test (1)* 0.821181 0.838542 0.815104 0.817708 0.842882 0.721354 0.325521 0.34375

a=0.1 train (3)*** 1 1 1 1 1 0.321759 0.33912 0.329861

a=0.1 test (3)*** 0.821181 0.8125 0.802951 0.820313 0.830729 0.350694 0.324653 0.338542

a=0.1 train (4)**** 0.337384 0.335069 0.341435 0.340278 0.344907 0.334491 0.339699 0.340278

a=0.1 test (4)**** 0.327257 0.330729 0.321181 0.322917 0.315972 0.331597 0.323785 0.322917

a=1.0 train (1)* 1 1 1 1 1 0.805556 0.344329 0.333912

a=1.0 test (1)* 0.828125 0.805556 0.8125 0.830729 0.851563 0.719618 0.31684 0.332465

a=1.0 train (3)*** 0.333912 0.326968 0.342014 0.340278 0.966435 0.323495 0.320602 0.347222

a=1.0 test (3)*** 0.332465 0.342882 0.320313 0.322917 0.678819 0.34809 0.352431 0.3125

a=1.0 train (4)**** 0.331019 0.340856 0.33044 0.337384 0.340278 0.336227 0.346644 0.30787

a=1.0 test (4)**** 0.336806 0.322049 0.337674 0.327257 0.322917 0.328993 0.313368 0.315104

* 1-layer structure: (112)

*** 3-layer structure: (112, 112, 112)

**** 4-layer structure: (112, 56, 30, 10)

✝Models shown have been trained on all features and 60% of the data. Additional models have been trained but are not shown.



User A accuracy with tanh activation function

Lambda \
best model
info

data 0.00001 0.0001 0.001 0.01 0.1 1 100 1000

a=0.001 train (1)* 0.998843 0.998843 0.999421 0.998843 0.998843 0.991898 0.414931 0.329282

a=0.001 test (1)* 0.824653 0.809896 0.803819 0.789931 0.822049 0.826389 0.377604 0.33941

a=0.001 train (3)*** 1 1 1 1 1 1 0.336806 0.326968

a=0.001 test (3)*** 0.790799 0.801215 0.799479 0.782986 0.813368 0.845486 0.328125 0.342882

a=0.001 train (4)**** 1 1 1 1 1 1 0.342014 0.337384

a=0.001 test (4)**** 0.789931 0.760417 0.789063 0.789931 0.784722 0.820313 0.320313 0.327257

a=0.01 train (1)* 1 1 1 1 1 0.998264 0.40625 0.342014

a=0.01 test (1)* 0.806424 0.799479 0.831597 0.835938 0.820313 0.84375 0.391493 0.320313

a=0.01 train (3)*** 1 1 1 1 1 1 0.340856 0.342593

a=0.01 test (3)*** 0.815104 0.80816 0.788194 0.811632 0.78559 0.835938 0.322049 0.319444

a=0.01 train (4)**** 1 1 1 1 1 1 0.346644 0.339699

a=0.01 test (4)**** 0.796875 0.796875 0.789931 0.811632 0.806424 0.853299 0.313368 0.323785

a=0.1 train (1)* 1 1 1 1 1 0.999421 0.427083 0.339699

a=0.1 test (1)* 0.814236 0.824653 0.810764 0.814236 0.84375 0.868056 0.407118 0.323785

a=0.1 train (3)*** 1 1 1 1 1 0.876157 0.336227 0.335648

a=0.1 test (3)*** 0.801215 0.819444 0.84375 0.825521 0.842014 0.733507 0.328993 0.329861

a=0.1 train (4)**** 1 1 1 1 0.393519 0.996528 0.335648 0.337384

a=0.1 test (4)**** 0.819444 0.821181 0.802951 0.83941 0.381076 0.837674 0.329861 0.327257

a=1.0 train (1)* 1 1 1 1 0.855324 0.622685 0.339699 0.298032

a=1.0 test (1)* 0.710069 0.730035 0.697049 0.799479 0.676215 0.546007 0.323785 0.286458

a=1.0 train (3)*** 0.295139 0.449074 0.404514 0.370949 0.402199 0.435764 0.338542 0.320602

a=1.0 test (3)*** 0.274306 0.417535 0.396701 0.331597 0.389757 0.421007 0.325521 0.323785

a=1.0 train (4)**** 0.690394 0.397569 0.509838 0.474537 0.712963 0.346065 0.326968 0.273727

a=1.0 test (4)**** 0.555556 0.386285 0.449653 0.434028 0.618056 0.314236 0.342882 0.298611

* 1-layer structure: (112)

*** 3-layer structure: (112, 112, 112)

**** 4-layer structure: (112, 56, 30, 10)

✝Models shown have been trained on all features and 60% of the data. Additional models have been trained but are not shown.



User B accuracy with logistic activation function

Lambda \
best model
info

data 0.00001 0.0001 0.001 0.01 0.1 1 100 1000

a=0.001 train (1)* 0.882523 0.87963 0.869213 0.877894 0.851273 0.702546 0.344907 0.339699

a=0.001 test (1)* 0.770833 0.758681 0.778646 0.769965 0.772569 0.632813 0.315972 0.323785

a=0.001 train (3)*** 0.340278 0.340278 0.343171 0.354167 0.340278 0.34375 0.342593 0.33912

a=0.001 test (3)*** 0.322917 0.322917 0.318576 0.302083 0.322917 0.317708 0.319444 0.324653

a=0.001 train (4)**** 0.336806 0.338542 0.337384 0.323495 0.342593 0.33912 0.336806 0.336227

a=0.001 test (4)**** 0.328125 0.325521 0.327257 0.326389 0.345486 0.324653 0.328125 0.328993

a=0.01 train (1)* 1 1 1 1 1 0.911458 0.331597 0.327546

a=0.01 test (1)* 0.875868 0.840278 0.858507 0.868924 0.878472 0.769965 0.335938 0.342014

a=0.01 train (3)*** 0.33912 0.34375 0.337384 0.337963 0.340278 0.345486 0.343171 0.328125

a=0.01 test (3)*** 0.324653 0.317708 0.327257 0.326389 0.322917 0.315104 0.318576 0.341146

a=0.01 train (4)**** 0.340856 0.339699 0.337963 0.339699 0.338542 0.335648 0.342593 0.338542

a=0.01 test (4)**** 0.322049 0.323785 0.326389 0.323785 0.325521 0.329861 0.319444 0.325521

a=0.1 train (1)* 1 1 1 1 1 0.915509 0.340278 0.326968

a=0.1 test (1)* 0.874132 0.861111 0.880208 0.864583 0.883681 0.790799 0.322917 0.342882

a=0.1 train (3)*** 1 1 1 1 1 0.335069 0.346644 0.322917

a=0.1 test (3)*** 0.847222 0.837674 0.859375 0.872396 0.886285 0.330729 0.313368 0.348958

a=0.1 train (4)**** 0.34375 0.341435 0.332755 0.343171 0.34838 0.345486 0.340278 0.336227

a=0.1 test (4)**** 0.317708 0.321181 0.334201 0.318576 0.310764 0.315104 0.322917 0.328993

a=1.0 train (1)* 1 1 1 1 1 0.907986 0.34375 0.32581

a=1.0 test (1)* 0.857639 0.862847 0.847222 0.864583 0.875868 0.81684 0.317708 0.34809

a=1.0 train (3)*** 0.333912 0.331597 0.335069 0.328704 0.963542 0.326968 0.324653 0.335648

a=1.0 test (3)*** 0.332465 0.335938 0.330729 0.340278 0.773438 0.342882 0.346354 0.329861

a=1.0 train (4)**** 0.333912 0.341435 0.340278 0.342593 0.331597 0.328125 0.343171 0.33044

a=1.0 test (4)**** 0.332465 0.321181 0.322917 0.319444 0.335938 0.341146 0.318576 0.326389

* 1-layer structure: (112)

*** 3-layer structure: (112, 112, 112)

**** 4-layer structure: (112, 56, 30, 10)

✝Models shown have been trained on all features and 60% of the data. Additional models have been trained but are not shown.



User B accuracy with tanh activation function

Lambda \
best model
info

data 0.00001 0.0001 0.001 0.01 0.1 1 100 1000

a=0.001 train (1)* 1 1 1 1 1 1 0.435185 0.340278

a=0.001 test (1)* 0.841146 0.826389 0.84375 0.831597 0.823785 0.836806 0.405382 0.322917

a=0.001 train (3)*** 1 1 1 1 1 1 0.340278 0.335069

a=0.001 test (3)*** 0.829861 0.782986 0.8125 0.790799 0.80816 0.868924 0.322917 0.330729

a=0.001 train (4)**** 1 1 1 1 1 1 0.333333 0.33912

a=0.001 test (4)**** 0.824653 0.829861 0.807292 0.799479 0.806424 0.855903 0.333333 0.324653

a=0.01 train (1)* 1 1 1 1 1 1 0.436921 0.337384

a=0.01 test (1)* 0.832465 0.81684 0.850694 0.84809 0.865451 0.898438 0.407118 0.327257

a=0.01 train (3)*** 1 1 1 1 1 1 0.335648 0.342014

a=0.01 test (3)*** 0.805556 0.822917 0.835069 0.81684 0.826389 0.898438 0.329861 0.320313

a=0.01 train (4)**** 1 1 1 1 1 1 0.345486 0.340278

a=0.01 test (4)**** 0.81684 0.793403 0.828125 0.844618 0.83941 0.894097 0.315104 0.322917

a=0.1 train (1)* 1 1 1 1 1 1 0.439236 0.340278

a=0.1 test (1)* 0.822917 0.863715 0.852431 0.862847 0.872396 0.901042 0.397569 0.322917

a=0.1 train (3)*** 1 1 1 1 1 1 0.339699 0.335648

a=0.1 test (3)*** 0.844618 0.836806 0.84375 0.831597 0.867188 0.908854 0.323785 0.329861

a=0.1 train (4)**** 1 1 1 1 1 1 0.337963 0.337384

a=0.1 test (4)**** 0.866319 0.855903 0.84375 0.84375 0.877604 0.902778 0.326389 0.327257

a=1.0 train (1)* 1 1 1 1 1 0.745949 0.33912 0.302662

a=1.0 test (1)* 0.822049 0.828993 0.828993 0.87934 0.914063 0.676215 0.324653 0.28559

a=1.0 train (3)*** 0.550347 0.509838 0.550926 0.418403 0.551505 0.395833 0.333333 0.321759

a=1.0 test (3)*** 0.524306 0.458333 0.507813 0.401042 0.522569 0.416667 0.333333 0.321181

a=1.0 train (4)**** 0.609375 0.82581 0.566551 0.646412 0.57581 0.638889 0.337963 0.300926

a=1.0 test (4)**** 0.560764 0.743056 0.53125 0.605035 0.552083 0.59375 0.326389 0.306424

* 1-layer structure: (112)

*** 3-layer structure: (112, 112, 112)

**** 4-layer structure: (112, 56, 30, 10)

✝Models shown have been trained on all features and 60% of the data. Additional models have been trained but are not shown.



Conclusion

Using EEG mean and std readings, we were able to classify users A and B with high

levels of accuracy, precision, and recall. However, training for users C and D proved difficult for

every model, with most achieving below 85% accuracy. Here are the test accuracy results for

each user’s best model:

User A

Logistic SVMs Neural Networking

0.91944 0.80208 0.86806

User B

Logistic SVMs Neural Networking

0.94166 0.90972 0.91406

User C

Logistic SVMs Neural Networking

0.76667 0.67361 0.70486

User D

Logistic SVMs Neural Networking

0.89583 0.83333 0.81597



Overall, the best-performing models used logistic regression; particularly, using 2nd

degree polynomial transformation, L2 regularization, and K-fold cross validation. This could

have worked best due to the relatively low sample size, with each classification only having 960

x-values for one user.

It is important to note, however, that the neural network competed well with the other

models despite being trained on 25% less data.

There is a likelihood that noise in the EEG readings accounted for some level of variance

in the models. This could have been accounted for by removing outliers during preprocessing.

Although we did not have time to test it, we also believe that it would be difficult to

generalize the model to work accurately on all users. As the data shows, there are already lower

levels of success when predicting the movement of users C and D, even though the models were

specially trained for them. Training one model on every user’s data may lead to underfitting. One

reason for this may be the variability from one brain to the next; like how the weights and biases

between neural nets can vastly differ, each brain is unique, and that can make it hard to parse

brain waves without specializing to a particular user.


