
Mobile Take: Modals 
Original pub date: November 9, 2018 
 

Since working on previous iterations of modal dialogs and from my experience working in native 
mobile, one thing has always bothered me: how large modal dialogs are handled on mobile. In a 
previous iteration, the modal container was stretched to the available viewport area with an 8px 
margin so that the overlay shown through. I believe there is a better way to handle such a modal that 
would maximize available real estate and provide an experience more suitable to mobile. 

First, let’s take a look at what’s currently going on with the native platforms… 

Material Design 
Material does a good job of talking about the concept of Dialogs, and even go as far as to break them 
out into four different types: an Alert dialog, a Simple dialog, a Confirmation dialog, and a Full-Screen 
dialog. For our purposes, it’s the full-screen dialog that we’re interested in, but for the sake of being 
thorough, let’s cover all four. 

https://material.io/design/components/dialogs.html




Alert dialogs interrupt users with urgent information, details, or action. 





Simple dialogs display a list of items that take immediate effect when selected. 





Confirmation dialogs require users to confirm a chose before the dialog is dismissed. 





Full-screen dialogs fill the entire screen, containing actions that require a series of tasks to complete. 

Dialogs, regardless of the type, need to be focused, direct, and helpful. We don’t want to interrupt the 
user’s experience unnecessarily. 

 

Compared to Snackbars and Banners, which I wrote about previously, Dialogs are high priority and 
highly interruptive, requiring a user action in order to be dismissed. 

This is helpful when considering what event or circumstances should trigger one and not the other. 

In a similar vein, it might be worth considering the concepts of Bottom Sheets and Side Sheets as 
other examples of modality in the Android platform. 

Bottom sheets are described as supplementary surfaces that are used mainly on mobile and are 
intended for three different use cases: a Standard bottom sheet, a Modal bottom sheet, and an 
Expanding bottom sheet. 

https://material.io/design/components/snackbars.html
https://material.io/design/components/banners.html
https://pages.ghe.coxautoinc.com/DDC-Dont-Panic/nsemble-docs/research/alert-banners-vs-snackbars
https://material.io/design/components/sheets-bottom.html




Standard bottom sheets display content that complements the screen’s primary content. They remain 
visible while user interact with the primary content. 





Modal bottom sheets are an alternative to inline menus or simple dialogs on mobile and provide room 
for additional items, longer descriptions, and iconography. They must be dismissed in order to 
interact with the underlying content. 





Expanding bottom sheets provide a small, collapsed surface that can be expanded by the user to 
access a key feature or task. They offer the persistent access of a standard sheet with the space and 
focus of a modal sheet. 

Bottom sheets should be supporting, flexible, and ergonomic. 

Side sheets are described as surfaces containing supplementary content that are anchored to the left 
or right edge of the screen and also come in two types: a Standard side sheet and a Modal side sheet. 

 

Standard side sheets display content that complements the screen’s primary content. They remain 
visible while users interact with primary content, often used to display a list of actions that affect the 
primary content or to display supplemental content and features. 

https://material.io/design/components/sheets-side.html




Modal side sheets are used on mobile instead of standard side sheets, due to limited screen size. 
They can display the same types of content as standard side sheets, but must be dismissed in order 
to interact with the underlying content. 

Similar to bottom sheets, side sheets should also be supporting and flexible, but they should be 
contextual as well, being hidden or visible depending on screen size. 

iOS 
In the HIG, they don’t speak specifically to Dialogs the way that Material does, but they do describe 
Modality as an app architecture concept. 

“Modality creates focus by preventing people from doing other things until they complete a task or 
dismiss a message or view. Action Sheets, Alerts, and Activity Views provide modal experiences … A 
modal view can occupy the entire screen, an entire parent view, such as a Popover, or a portion of the 
screen. A modal view typically includes completion and cancel buttons that exit the view.” 

In general, a modal view is described as one of four styles: 

 

https://developer.apple.com/design/human-interface-guidelines/ios/views/action-sheets/
https://developer.apple.com/design/human-interface-guidelines/ios/views/alerts/
https://developer.apple.com/design/human-interface-guidelines/ios/views/activity-views/
https://developer.apple.com/design/human-interface-guidelines/ios/views/popovers/


Page sheets partially cover the primary content on larger devices and cover the entire screen on 
smaller devices. They are used for a potentially complex task that can be completed within the 
context of the modal view. 

 

Full screens, as the name suggests, cover the entire screen and are used for a potentially complex 
task that can be completed within the context of the modal view. 



 

Form sheets appear centered on screen with all uncovered areas dimmed and may cover the entire 
screen on smaller devices. They are used for gathering information. 

 

Current context modals appear at the same size as their parent view and are used for displaying 
modal content within a split view pane, popover, or other view that is not full-screen. 

With the general patterns in mind, let’s take a look at more specific instances. 





Action sheets appear in response to a control or action, presenting two or more choices related to the 
current context. They should be used to initiate tasks or to confirm a potentially destructive operation. 





Alerts convey important information about the state of the app or device, requiring some sort of 
action for dismissal. They consist of a descriptive title, a short message (optional), and one or more 
buttons with clear titles. 





Activity views manage a task, such as Copy, Favorite, or Find, that’s useful in the current context. 
They should be used to give users access to custom services or tasks. 

 

Popovers are transient views that appear over the primary content in response to a control or an 
action. They can be modal or nonmodal, are most appropriate for larger screens, and should be used 
to show options or information related to the primary content. 

Other Patterns 
There are a few places where Material Design and the HIG fall short in describing all the various 
patterns and components in their respective design systems. Here are a couple of modal variations 
that aren’t described as well as the could be. 





Modal view for filters in Mail. 





Modal view for account in Music. 





Modal view for calendar management in Calendar. 





Modal view for new event in Calendar. 

Modal views (iOS) have the same general appearance as a child view with the exception of 
transitioning in from the bottom of the screen (instead of the right) and the bottom tab bar, which 
may be replaced by a context-specific tool bar or omitted altogether. The Android equivalent would be 
the Full-Screen dialog. 





Bottom drawer for player details in Music, iOS. 





Bottom drawer for places in Maps, iOS. 





Bottom drawer for places in Google Maps, Android. 





Bottom drawer for account in Google News, Android. 





Bottom drawer for tweet actions in Twitter, iOS. 





Bottom drawer for message authoring in Slack, iOS. 

Bottom drawers are a relatively new pattern on both iOS and Android that seem to be gaining 
popularity due to their ergonomic appeal of thumb-friendly interactions. They are variation of the 
modal view (iOS) or full-screen dialog (Android) that similarly cover the entire screen on smaller 
devices, but usually have a distinct “pull bar” at the top of the component as an affordance for 
expanding and collapsing and sometimes present with rounded corners to further emphasize their 
modality. 

nSemble 
Currently in nSemble, we have a one-size-fits-all approach to modal dialogs. While that works for a 
basic experience and meets the minimum requirements, as someone who also works in native 
mobile, I feel obligated to push the envelope a bit further. 



 

Currently for a situation like the desktop experience above, we would just shrink the dialog container 
to fit the available screen space within the viewport (see below). 





While this works well enough, it has its limits. If, for example, there is more content than what can fit 
within the available screen space, things start to feel a bit cramped. 





With the narrow margin running between the edges of the dialog container and the viewport and the 
content scrolling behind the dialog footer and out of view, we begin to feel the modal dialog wanting 
to take up the maximum space available. But before we do that, let’s lay down some guiding 
principles to help us evaluate. 

Consistent 

The modal dialog in the mobile context needs to have a consistent experience with the desktop 
version. This keeps the experience within the expectations of the multi-device user and lessens the 
learning curve. It also limits complexity of the design system, making it easier to scale and maintain. 

Optimal 

Although we want an experience that is consistent, we can’t be beholden to consistency for 
consistency’s sake. We need to make sure that we’re still designing according to context. Since the 
form factor between mobile and desktop changes, it makes since to change the design with it and 
offer an improved experience within that device’s context. 

Practical 

The tug-of-war between being consistent and being optimal is inevitable, so we will defer to 
practicality to find balance. If the mobile experience diverges too greatly from that of desktop, not 
only will it be a burden for designers as they put their prototypes together, but it will also be a pain 
point for developers as they implement the solution. 

With these principles in mind, let’s take a look at a possible recommendation for modal dialogs on 
mobile. 





After reviewing the prior art from native design systems above, this feels a bit more at home on 
mobile than the current solution. This is even more notable when we add scrolling content. 





To really drive the point home, let’s do a side-by-side comparison. 











Comparing the two, the updated modal dialog (right) is more optimal for mobile, while remaining 
consistent with the desktop experience and practical for implementation. 

This does, however, raise the concern of differentiating between an instance where a smaller, more 
compact version of the modal dialog is the better solution for mobile (like an Alert) and an instance 
where a larger, more expanded version of the updated modal dialog is better (like a Full-Screen 
Dialog). But that is something we can sort out after we come to an agreement on the 
recommendation at hand. 

 


	Mobile Take: Modals 
	Material Design 
	iOS 
	Other Patterns 
	nSemble 
	Consistent 
	Optimal 
	Practical 


