## Цеолиты в ГТС

Цеолиты находят широкое применение в качестве адсорбентов и катализаторов в процессах нефтепереработки, нефтегазохимии и тонкого органического синтеза, благодаря широкой вариабельности структур и химического состава, а также превосходной термической и гидротермической стабильности. Структура пор, химический состав, а также размер и морфология кристаллов — ключевые параметры, влияющие на селективность процесса, стабильность катализатора и выход целевого продукта. Например, в случае синтеза пара-ксилола из толуола проведение реакции в диффузионном режиме при использовании крупных кристаллов цеолита ZSM-5 способствует увеличению селективности, обусловленной геометрией пор цеолитного катализатора. Однако в большинстве реакций, особенно с участием крупных молекул, высокая степень использования катализатора и длительный срок его службы требуют снижения диффузионных ограничений за счет использования нанокристаллических цеолитов. Также, вследствие анизотропии диффузии внутри микропор цеолита форма кристаллов значительно влияет на их адсорбционные и каталитические свойства. Синтез кристаллов определенного размера требует умения пользоваться рычагами управления процессами зародышеобразования и роста кристаллов.

Группа темплатного синтеза имеет большой задел по синтезу различных структурных типов фазовочистых цеолитов (MFI, TON, MEL), силикоалюмофосфатов (CHA, AEL, AFI, AFO), а также полиморфов beta и ZSM-48 (Таблица 1). В ГТС накоплен богатый опыт в синтезе цеолитов с заданными свойствами — структурным типом, химическим составом, размером и формой кристаллов. Цеолитные материалы могут быть приготовлены в виде порошков, гранул и блоков требуемой формы, в том числе без связующего компонента, а также суспензий монодисперсных нанокристаллов.

В ГТС развиваются ресурсосберегающие подходы к синтезу цеолитных материалов — парофазная кристаллизация и бестемплатный синтез. Метод парофазной кристаллизации (ПФК) заключается в приготовлении и высушивании геля для синтеза цеолитного материала с последующей обработкой паром при повышенных температуре и давлении в условиях отсутствия прямого контакта твердой и жидкой фаз в автоклаве. Метод ПФК позволяет получать агрегаты из наноразмерных цеолитов различных структурных типов с высокой кристалличностью и высоким выходом, снизить затраты времени и энергии по сравнению традиционным гидротермальным синтезом, благодаря отсутствию стадии центрифугирования для отделения нанокристаллов.

Для синтеза многих структурных типов цеолитов, используемых в качестве катализаторов в нефтегазохимии, требуется использование молекулярных темплатов, таких как амины, аммониевые соли и основания и др. Высокая стоимость импортных темплатов, а также их токсичность и необходимость удаления из структуры цеолита путем прокаливания является лимитирующим фактором для производства цеолитов в России. Мы предлагаем бестемплатный цеолит ZSM-5 с модулем Si/Al=20 с узким распределением кристаллов по размерам (относительное стандартное отклонение <20%) и требуемым размером кристаллов (от 200 нм до 15 мкм).

ГТС имеет успешный опыт масштабирования синтезов цеолитов: SAPO-11 (автоклав 10 л, 1 кг SAPO за синтез) и бестемплатный ZSM-5 (автоклав 5 л, 0.5 кг цеолита за синтез).

Таблица 1. Цеолитные материалы, разработанные в группе темплатного синтеза.

| Структурный тип/мерност ь/ размер микропор | Материал    | Форма     | Метод синтеза               | Si/Al    | Диапазон размера кристаллов, коэффициент вариации $(S_R)$ / диапазон $S_{\text{БЭТ}}$ | Форма кристаллов                                |
|--------------------------------------------|-------------|-----------|-----------------------------|----------|---------------------------------------------------------------------------------------|-------------------------------------------------|
|                                            |             | порошок   | ГТО                         | $\infty$ | $2-5$ mkm/ $350-400$ m <sup>2</sup> / $\Gamma$                                        | псевдосферическая                               |
| MFI/ 3D                                    | силикалит-1 | порошок   | ПФК                         | $\infty$ | 50 - 100 нм/ $480 - 500$ м <sup>2</sup> /г                                            | псевдосферическая                               |
| [100]                                      |             | суспензия | ГТО                         | $\infty$ | Диапазон 120 – 250 нм, $S_R < 10\%$                                                   | псевдосферическая                               |
| [100]:<br>5,1×5,5 Å                        | ZSM-5       | порошок   | ГТО                         | 20 – 200 | $0,5-5$ мкм/ $350-450$ м $^2$ /г                                                      | Псевдосферическая,<br>«гробик», «яйца»,<br>«ёж» |
| [010]:<br>5,3×5,6 Å                        |             |           | ГТО<br>латекс               |          |                                                                                       | 3D макропористая<br>структура                   |
|                                            |             |           | ГТО<br><b>бестемплатный</b> | 20       | a = 3,3 - 14,3, b = 1,2 - 7,6,<br>$a/b = 1,7 - 2,6, S_R < 20\%$                       | «гробик»                                        |

|                      |                |                       |                          |                         | а – длина, b – ширина                     |                                               |
|----------------------|----------------|-----------------------|--------------------------|-------------------------|-------------------------------------------|-----------------------------------------------|
|                      |                |                       |                          |                         | $350-370~\mathrm{m}^2/\Gamma$             |                                               |
|                      |                |                       | ПФК <b>бестемплатный</b> | 20                      | <100 нм                                   | псевдосферическая                             |
|                      |                |                       | ПФК                      | 20 – 200                | $50-100$ нм $480-500$ м $^2$ /г           | псевдосферическая                             |
|                      |                | суспензия             | ГТО                      | 20 – 200                | $120 - 250$ нм, $S_R < 10\%$              | псевдосферическая                             |
|                      | Fe-силикалит-1 | порошок               | ГТО                      | 1–2% Fe                 | 4 - 5 мкм/ $350 - 380$ м <sup>2</sup> /г  | псевдосферическая                             |
|                      |                |                       | ГТО<br>латекс            | 1,1 %                   | $150$ — $200$ нм/ $450$ — $550$ м $^2$ /г | 3D макропористая<br>структура                 |
|                      |                |                       | ПФК                      | 0,25 – 2,0 %<br>Fe      | $20 - 50$ нм/ $480 - 500$ м $^2$ /г       | псевдосферическая                             |
|                      |                | суспензия/<br>порошок | ГТО                      | 1,0 – 1,3 % Fe          | $100-180$ нм/ $\approx 500$ м $^2$ /г     | псевдосферическая                             |
|                      | Fe-ZSM-5       | порошок               | ГТО                      | 1,0 % Fe,<br>Si/Al = 20 | 4—5 мкм/ $350 - 400$ м <sup>2</sup> /г    | псевдосферическая                             |
|                      | Ті-силикалит-1 | порошок               | ГТО                      | 2 – 3 % Ti              | 0,3-0,4 MKM                               | псевдосферическая                             |
| Полиморф<br>*BEA/ 3D | Бета           | порошок               | ГТО                      | 50                      | 0,5 – 3,0 мкм                             | псевдосферическая,<br>усеченная<br>бипирамида |
| <100>:<br>6,6×6,7 Å  |                | суспензия/<br>порошок | ГТО                      | 30                      | $80$ нм/ $520 - 550$ м $^2$ /г            | псевдосферическая                             |

| [001]:<br>5,6×5,6 Å                | Ті-бета    | порошок | ГТО | 1,5 –2,5 % Ti | 0,1-0,4 мкм                              |                                           |
|------------------------------------|------------|---------|-----|---------------|------------------------------------------|-------------------------------------------|
| Композит                           | ZSM-5/бета | порошок | ГТО |               |                                          | «ядро-оболочка»                           |
| TON/ 1D<br>[001]:<br>4,6×5,7 Å     | ZSM-22     | порошок | ГТО | 25–100        | 5 – 40 мкм                               | «снежинка», «сноп»                        |
| Полиморф<br>ZSM-48/1D<br>5,3×5,6 Å | ZSM-48     | порошок | ГТО | 40            | > 5 mkm                                  | «гантель»                                 |
| MEL/ 3D<br>5,3×5,4 Å               | ZSM-11     | порошок | ПФК | 60            | $15$ — $20$ нм/ $\approx 500$ м $^2$ /г  | псевдосферическая                         |
| CHA/ 3D<br>3,8×3,8 Å               | SAPO-34    | порошок | ГТО | 0,1 - 0,3     | $0,25-10$ мкм/ $520-700$ м $^2$ /г       | кубическая                                |
|                                    | SAPO-34    | порошок | ПФК | 0,15          | $< 50$ HM/ $650 - 700$ M $^2$ / $\Gamma$ | кубическая                                |
| AEL/ 1D<br>6,4×3,9 Å               | SAPO-11    | порошок | ГТО | 0-0,15        | $1-20$ мкм/ $290-330~{ m m}^2/{ m f}$    | псевдосферическая,<br>«шурупы», «палочки» |
| AFI/ 1D<br>7,3×7,3 Å               | SAPO-5     | порошок | ГТО |               |                                          |                                           |
| AFO/ 1D<br>7,0×4,3 Å               | SAPO-41    | порошок | ГТО |               |                                          |                                           |

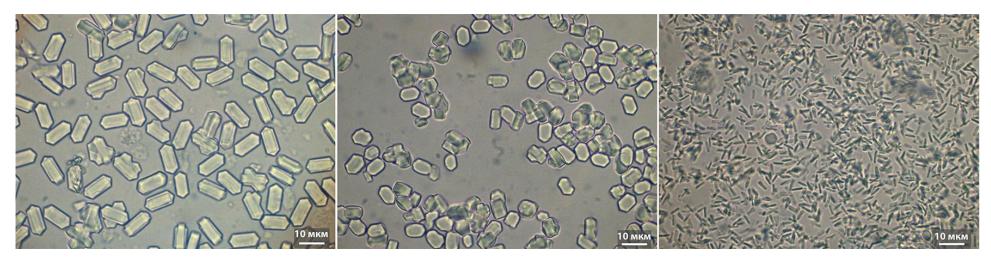



Рис. 1. Снимки оптической микроскопии бестемплатного цеолита ZSM-5 с модулем Si/Al = 20 с различными размером и аспектным соотношением.

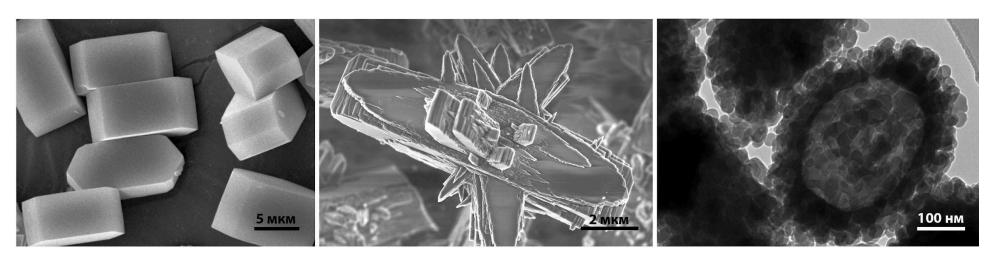



Рис. 2. Снимки микроскопии образцов цеолита ZSM-5 с различной формой кристаллов.

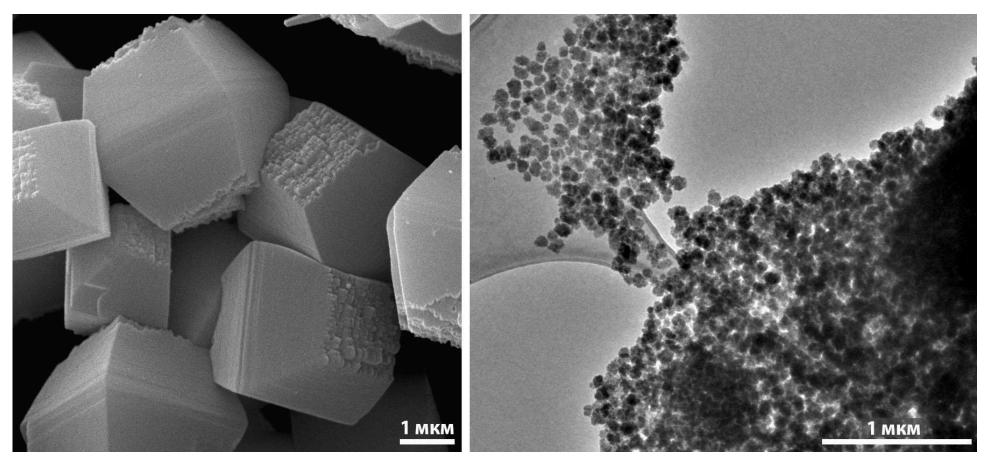



Рис. 3. Снимки микроскопии образцов цеолита бета с различным размером кристаллов.

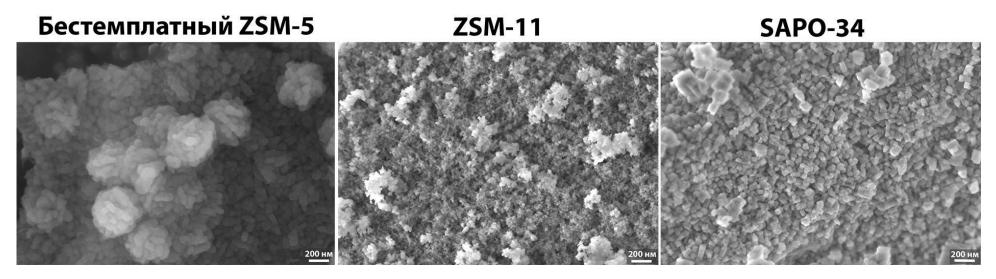



Рис. 4. Снимки сканирующей электронной микроскопии наноразмерных цеолитов, полученных методом парофазной кристаллизации.

## **ZSM-22**

## **ZSM-48**

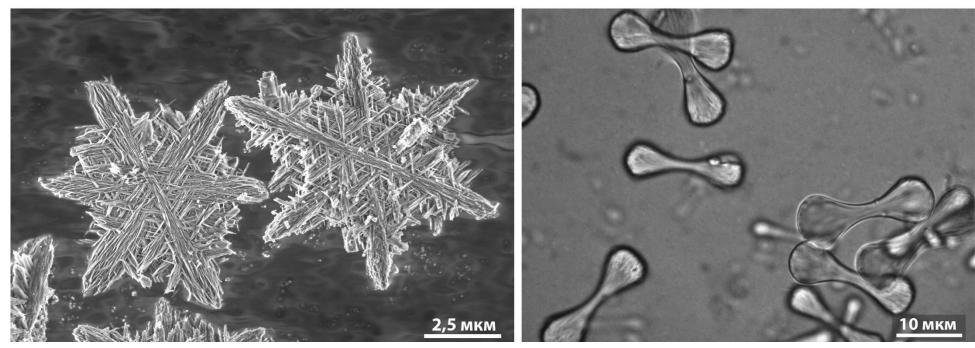



Рис. 5. Снимки микроскопии одномерных цеолитов.

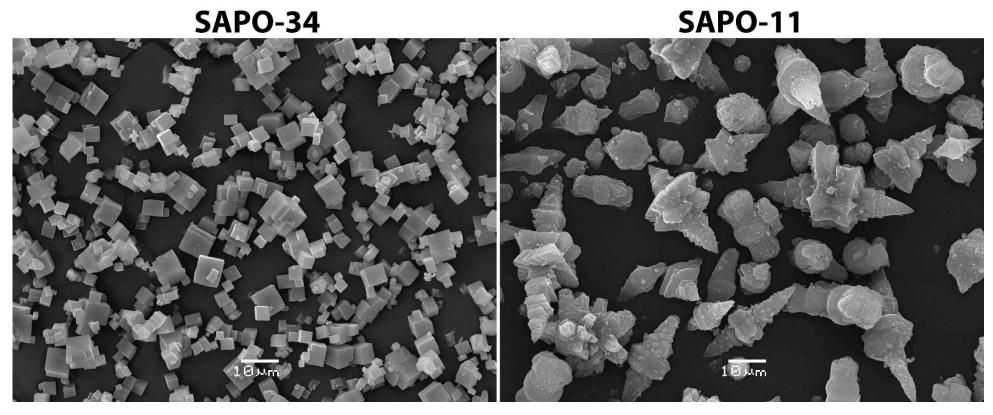



Рис. 6. Снимки микроскопии силикоалюмофосфатов.

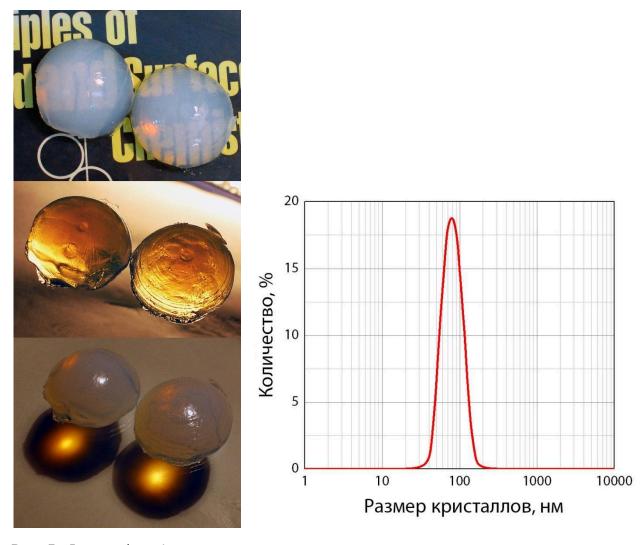



Рис. 7. Фотография блоков из плотно упакованных монодисперсных нанокристаллов цеолита бета и распределение частиц по размеру в суспензии.