
WebNN implementation in
Chromium

9/17/2021

Overview
As we know, the deep learning (DL) workload has been deployed to web with emerging JavaScript

framework, e.g. Google’s TensorFlow.js / TenSorFlow-Lite Web and Microsoft's ONNX.js /

ONNXRuntime Web, OpenCV.js. These frameworks utilize WebAssembly API to compute on CPU and

WebGL / WebGPU API to compute on GPU, but can’t access the platform capabilities beneficial for

ML with dedicated ML hardware accelerators. So Web Neural Network (WebNN) was incubated,

which is a new web standard API for accessing hardware accelerators from web browsers, WebNN

defines the JavaScript API that allows Web applications to build the neural network computation

graphs and execute the graphs with hardware acceleration. So these frameworks can improve

inference efficiency by using WebNN to access hardware accelerators.

The WebNN API is being standardized by the W3C Web Machine Learning Working Group (WebML

WG) after a two-year incubation period in the Community Group. The Working Group has published

a First Public Working Draft of the WebNN API and plans to release the Candidate Recommendation

in Q2 2022. The WebNN API can be implemented in Chromium browser by using the available native

operating system machine learning APIs such as Android / ChromOS Neural Network API, Windows

DirectML API and macOS/iOS ML Compute API, these native API will talk with drivers to run WebNN

primitives on various machine learning hardware including CPU, GPU and dedicated Machine

Learning hardware accelerators.

Summary

Propose to implement WebNN standard API in Chromium browser to improve JavaScript inference

efficiency by using the available native operating system machine learning APIs. There are three

approaches to implement WebNN in Chromium:

1. Implement CPU backend in render process

2. Implement WebNN GPU backend in the GPU process with a service which communicates

with the render process with mojo infrastructure.

3. WebNN-native is one native implementation of WebNN API, the infrastructure is reused with

Dawn including code generation tool, validation and error handling. The implementation is to

use WebNN-native to implement WebNN API in GPU process for GPU backend and use

Command Buffer for Inter-process-communication.

Platforms

Mac, Windows, Linux, Chrome OS, Android, Android WebView, iOS.

https://www.w3.org/groups/wg/webmachinelearning
https://www.w3.org/groups/cg/webmachinelearning
https://www.w3.org/2020/Process-20200915/#fpwd
https://www.w3.org/2020/Process-20200915/#RecsCR
https://developer.android.com/ndk/guides/neuralnetworks
https://docs.microsoft.com/en-us/windows/ai/directml/dml-intro
https://developer.apple.com/documentation/mlcompute/
https://github.com/webmachinelearning/webnn-native
https://dawn.googlesource.com/dawn/


Contributors

Junwei Fu (junwei.fu@intel.com), Ningxin Hu (ningxin.hu@intel.com) (WebNN Spec editor), Belem

Zhang (belem.zhang@intel.com), , Jiawei Shao (jiawei.shao@intel.com ) (WebGPU contributor)

Reviewers

Corention Wallez (WebGPU chair)

Bug

There is an overall issue filed in the WebNN native repository.

Code affected

Implement WebNN WebIDL in blink/modules/webnn, and add command buffer for WebNN in

gpu/command_buffer, Implement ContextProvider that provides a WebNN implementation over

command buffer to GPU process in

services/viz/public/cpp/gpu/context_provider_command_buffer.cc.

mailto:junwei.fu@intel.com
mailto:ningxin.hu@intel.com
mailto:belem.zhang@intel.com
mailto:jiawei.shao@intel.com
https://bugs.chromium.org/p/chromium/issues/detail?id=1273291


Design

High Level overview
Figure 1 illustrates where WebNN API fits in the software stack. It defines a set of common building

blocks including constant trained values, base operations such as convolution, pooling, activation. For

other operations which WebNN does not support will be delegated to WebAssembly or WebGPU. By

using WebNN primitives, the JavaScript machine learning framework can define a computational

graph which represents part or whole of a machine learning inference model. Using WebNN API to

compile and execute the graph with hardware acceleration, of course, the execution of the WebNN

graph can interact with kernels written in WebAssembly  or WebGPU compute shader. With that,

the frameworks can be flexible by using the WebNN for hardware acceleration and using

WebAssembly, WebGPU for other operations support.

Figure 1 WebNN in software stack

So Web Browsers need to implement the WebNN API using native machine learning API available in

the operating system. The primitives of WebNN can be mapped to the native machine learning API

available on different operating systems, such as Android Neural Network API, DirectML on Windows,

ML Compute on macOS/iOS, and OpenVINO on Linux. Eventually, these native APIs will talk with

compilers and drivers to run these primitives on various machine learning hardwares CPU, GPU and

dedicated Machine Learning hardware. For the deep learning frameworks or libraries which are not

embedded in the OSes, such as OpenVINO, we need to compile and install them for use in advance.

Otherwise, WebNN will throw an error if the user wants to use the corresponding framework to

accelerate.

WebNN API workflow
We have implemented the WebNN API proposal in JavaScript WebNN-polyfill, which can be

understood as an emulated implementation of proposed functionality using pre-existing

mechanisms. Polyfills are commonly used by the Web community and standards organizations to

understand and illustrate proposed APIs.

https://webmachinelearning.github.io/webnn-polyfill/


In the WebNN API, the MLContext object represents a global state of neural network execution, the

MLGraphBuilder defines a set of operations to build a computational graph, such operations may be

accelerated with dedicated hardware such as the GPUs, CPUs with extensions for deep learning, or

dedicated ML accelerators. The WebNN API provides interfaces to build a computational graph,

compile the graph and execute the graph, the compute function in MLGraph provides inputs/outputs

to interact with other frameworks.

Implement CPU backend in Render process
WebNN CPU backend depends on XNNPACK library and runs in the Renderer process. The
MLGraphXnnpack inherits the MLGraph interface. It implements the graph building and
computation methods by using XNNPACK APIs for both synchronous and asynchronous
execution modes.

All MLGraphXnnpack instances share a cross-threads reference-counted
SharedXnnpackContext class that manages the initialization and deinitialization of
XNNPACK library and potential pthreadpool. The memory allocation of XNNPACK library
would be intercepted to PartitionAlloc In Chromium build. The SIMD buffer would be
allocated in the aligned partition. The pthreadpool needs to be integrated into
base::ThreadPool. The design is to be done.

XNNPACK Subgraph is an abstract representation of a neural network model. The
MLGraphXnnpack graph building method creates the XNNPACK Subgraph object and
defines XNNPACK Values for MLGraph’s operands and Nodes for MLGraph’s operators.

XNNPACK Runtime is a combination of an execution plan for Subgraph Nodes and a
memory manager for Subgraph Values. MLGraphXnnpack creates a XNNPACK Runtime
object from this Subgraph object. The XNNPACK Runtime object is kept within
MLGraphXnnpack for graph computation.

For the MLGraph compute method, MLGraphXnnpack firstly sets up the data pointers of
inputs and outputs of the XNNPACK Runtime object to the user-supplied array buffers. Then

https://webmachinelearning.github.io/webnn/#api-mlcontext
https://webmachinelearning.github.io/webnn/#api-mlcontext
https://github.com/google/XNNPACK


MLGraphXnnpack invokes the XNNPACK Runtime that executes the forward pass for all
operators in the runtime. After the execution, the results are available in the output array
buffers.

For synchronous execution mode, MLGraphXnnpack executes the XNNPACK APIs in the
caller’s thread. For asynchronous execution mode, MLGraphXnnpack executes the
XNNPACK APIs in a background worker thread that avoids blocking the main thread.

Implement GPU backend using mojo for IPC
For security and stability, modern web engines usually employ multi-process architecture that isolate

web content (HTML/JavaScript/CSS) execution in sandboxed processes and access platform resources

and devices in privileged processes. The rendering engine and JavaScript engine run in the

unprivileged process hardened by sandbox and rely on privileged processes to access hardware

acceleration. We extended the Chromium rendering engine, “Blink” which runs inside a renderer

process, to expose the WebNN JavaScript API. The WebNN JavaScript API was proxied to gain

privileged access to the GPU process so that it could make use of hardware acceleration. We used

shared-memory inter-process-communication (IPC) to improve the efficiency of transferring

(pre-)trained data, inputs, and outputs.

Please get a more detailed design from WebNN implementation with mojo.

https://docs.google.com/document/d/1TMs36IE9wL9rNuh8lriGr51S8MU1JezU2SCZy-YqJ3Y/edit?usp=sharing


Implement DirectML backend on Windows

https://docs.google.com/document/d/1TMs36IE9wL9rNuh8lriGr
51S8MU1JezU2SCZy-YqJ3Y/edit?usp=sharing

Implement MLService backend on Chrome OS

https://docs.google.com/document/d/1KzuWAhQCXATiD_h3HT
uCm-nuGg0mooMMZvalLnJ152M/edit?usp=sharing

Implement GPU backend using Command Buffer for IPC
WebNN-native is one native implementation of the Web Neural Network API, the infrastructure is

reused with Dawn including code generator tool, validation and error handling. The code generation

tool is to generate WebNN interface definition and Wire Layer, there are some files that are reused

from Dawn and some files are copied and modified from Dawn.

By reusing Dawn's infrastructure:

1. WebNN can interoperate easily with WebGPU to shared GPU buffer

2. There are the same security mechanism to access GPU device

3. It’s easy to develop because some code are generated by tools from webnn. json.

4. It’s easy to integrate into Chromium / framework as a component.

The building blocks are:

● WebNN C/C++ headers that applications and other building blocks use.

○ The Webnn.h is a one-to-one mapping with the WebNN IDL.

○ webnn_cpp.h isa wrapper of C pointer as handle to expose C++ object that will

inherit ml::ObjectBase, but it doesn’t hold reference count, it will add/decrease

https://docs.google.com/document/d/1TMs36IE9wL9rNuh8lriGr51S8MU1JezU2SCZy-YqJ3Y/edit?usp=sharing
https://docs.google.com/document/d/1TMs36IE9wL9rNuh8lriGr51S8MU1JezU2SCZy-YqJ3Y/edit?usp=sharing
https://docs.google.com/document/d/1KzuWAhQCXATiD_h3HTuCm-nuGg0mooMMZvalLnJ152M/edit?usp=sharing
https://docs.google.com/document/d/1KzuWAhQCXATiD_h3HTuCm-nuGg0mooMMZvalLnJ152M/edit?usp=sharing


reference count with C API when calling Derived::MLReference(mHandle)

/Derived::MLRelease(mHandle)

● Backend Implementations that use platform’s ML APIs

● A client-server implementation of WebNN for applications that are in a sandbox without

access to native drivers

The WebNN-native implementation inside the GPU process has multiple backends for different host
OS API/framework combinations including: (1) NNAPI for Android; (2) ML Compute for macOS; (3)
DirectML for Windows; (4) OpenVINO/oneDNN for Linux.

Life of a WebNN call in Chrome in simple terms:
webnn.h->WebNNImplementation->WebNNCmdHelper...SharedMemory...->WebNNDecoderImpl->W
ebNN-native->DirectML/OpenVINO/Android NN / MLCompute

CommandBuffer is responsible for coordinating communication between WebNNCmdHelper and

WebNNDecoderImpl. It has methods for creating and deleting shared memory as well as

communicating the current state back and forth. Specifically sending the latest 'put' pointer from the

client through AsyncFlush() or Flush() and for getting the latest 'get' pointer through the results of

'Flush'

Please get a more detailed design from WebNN implementation with command buffer.

Rollout plan

Core principle considerations

https://docs.google.com/document/d/1wE3TeSoV8h2UJfN86_vzI7ec51RAAHqtGvdXiI5BE8I/edit?usp=sharing


Security Considerations
This section is referring to Partial WebGPU security doc

Arbitrary user inputs
WebNN exposes three new types of user-input that directly get forwarded to native code.

Risk: WebNN commands in JavaScript will map one-to-one with WebNN/Dawn-native
function calls in the GPU process. This means that all commands must be checked for
validity and well-formedness on the GPU process side.
Mitigation: The WebNN specification will have strict validation rules that will be tested in the
CTS, and the frontend will be fuzzed to discover code paths the test suite might have
missed. Well-formedness will be guaranteed by WebNN/Dawn-wire that will produce errors
on malformed commands. This part will be fuzzed too.

Risk: WebNN graph (model) will be created by JavaScript by calling WebNN commands
(GraphBuilder) and consumed by the graph validator/translator/transforms that are in the
GPU process. Everything must be checked on the GPU process side.
Mitigation: all graphs will be validated before they are passed to the translator or
transforms. All these components will be fuzzed and the WebGPU CTS will have extensive
shader testing.

Risk: arbitrary data uploaded to the GPU (and even AI accelerator) by the application to
populate buffers. This data will be given as an ArrayBuffer so it can contain anything, such
as values that would cause OOB accesses in GPU operations, or non-finite floats. The same
issue arises with arbitrary data being generated on the GPU.
Mitigation: the GPU doesn’t care about exact values, and non-finite floats will just produce
bad results. OOB indices are in the “GPU Risks” class and treated below.

Architectural risks
The way WebNN is implemented in Chromium might introduce some architectural risks.

Risk: use of shared-memory for passing data and WebNN commands around. Using
shared memory is important for speed but will let the renderer process modify data while the
GPU process is using it (TOCTOU).
Mitigation: depends on the type of data.

● Data uploaded to the GPU: values don’t matter so there is no TOCTOU possible.
● graph (model): compiling graph is expensive, but the graph would be constructed in

the server side, so probably there is no TOCTOU issue.
● WebNN commands: they need to be fast, so simple commands (no pointers except

to WebNN objects) will be parsed in-place from a volatile pointer to shmem, then
validated and executed. More complex commands (e.g., graph build and compute)
will be parsed in a temporary buffer.

https://docs.google.com/document/d/1xp_z8AGVg7YeJa2GBBf0aBN4oUREb7QK26m0Qf70POw/edit


Risk: performance as a feature. One of the selling points of WebNN is that it will be faster
for ML graph compute. This means will need to do some low-level optimizations (e.g.,
operation fusion etc.,) that are more difficult to reason about and could cause bugs (including
security bugs).
Mitigation: use good judgement, have these optimizations separable for unit-testing.

Risk: additional attack surface for the GPU process. WebNN will likely add thousands of
lines of code to the GPU process as well as some new GPU driver shared libraries.
Exploitation of the GPU process gives access to all the GPU data of other pages and of the
browser’s chrome.
Mitigation: none, or everything in this document depending on how you see it. WebNN will
be simpler to validate than WebGPU and GPU drivers are already present for other APIs so
hopefully the attack surface increase isn’t that big.

Risk: GPU/AI accelerator drivers are buggy. They are often fine-tuned for popular ML
frameworks (e.g., ONNXRuntime and TensorFlow) and benchmarks and other applications
have to adapt to their bugs. It is possible to imagine that a driver bug could cause more than
just bad results and leak data that shouldn’t be accessible.
Mitigation: we will push GPU/AI accelerator vendors to integrate the WebNN CTS as part of
their driver testing process, like we did for WebGPU. WebNN/Dawn will implement
workarounds for bugs if at all possible, and otherwise blacklist hardware-accelerated
WebNN on specific driver versions.

Spectre
WebNN may use the software fallback (such as software backend of DirectML, or even a
CPU backend), however, given the user graph is less arbitrary and fully validated, the
spectre risk is likely minimum.

Out-of-bounds resource access
“Graphs” running on the GPU/AI accelerator access memory through “resources” that are
“buffers” of untyped linear memory or “textures” (when context is created from a GPU
device) containing typed 1D/2D/3D memory. Resources are bound to a graph execution by
the WebNN implementation; their contents can be accessed by operations of the graph.
Because each operation is defined by WebNN spec, the implementation could validate the
resources before the graph execution. This would avoid the memory access with a user
defined dynamic offset, thus out-of-bounds resource access risk is likely minimum.

Undefined behavior
WebNN targets native OS ML API (such as DirectML) to build and compute a computational
graph. The operations defined by WebNN spec would be mapped and tested on native OS
ML API. Given the fixed set of functionalities, the risk of undefined behavior is likely
minimum. (Need Chai’s inputs here)



High precision timers
WebNN spec doesn’t provide a way to measure how long the execution of a graph. We
should re-assess this risk once WebNN spec provides high-precision timing data.

Overflow validation
Chromium has provided some security tools such as the base/numerics for developers
which can avoid overflow errors and so on.

This directory contains a dependency-free, header-only library of templates providing
well-defined semantics for safely and performantly handling a variety of numeric operations,
including most common arithmetic operations and conversions.

Abuse
This section discusses how the WebNN API could be used for bad things.

Fingerprinting
The root object for WebNN is MLContext, which represents an open connection to one of the
compute device, such as GPU or an AI accelerator. Because some computers have two
GPUs, we want applications to be able to choose which one to use: the power-efficient or
the fast one.

WebNN doesn’t expose device information like device names, driver versions and memory
size etc.,.

The graph execution timings could be fingerprintable and the precision of results could be
fingerprintable. This issue is being raised to WG for discussion:
https://github.com/webmachinelearning/webnn/issues/85

Denial-of-service
An application will be able to use WebNN to acquire system resources, such as GPU
processing time and GPU memory. We can control how much memory an application uses.
And we can calculate the FLOPS of a graph by examining the operations and their
parameters (e.g., weights), so we can estimate the GPU processing time before execution.

Cryptomining
It is unclear how WebNN can be used for crypto mining.

Privacy considerations

https://chromium.googlesource.com/chromium/src/base/+/refs/heads/main/numerics
https://github.com/webmachinelearning/webnn/issues/85


Testing plan

Followup work


