Allow Oilpan in V8

Attention: Shared Google-externally

Status: Work in progress ~
Author(s): Michael Lippautz
Tracking bug: v8:13754

LGTMs

Name Write (not) LGTM in this row
Leszek Swirski LGTM
Adam Klein LGTM

Proposal

Allow Oilpan (cppgc) types to be used in V8 internally and on V8’s API surface. Currently such
types are prohibited from being used via a basic DEPS rule. The dependency makes CppHeap
mandatory for a V8 isolate. See below for instantiation details.

E.g., this would allow V8 to expose base classes that it could use itself that embedders can
extend and work with.

C/C++
namespace v8 {

class ResourceBase : public cppgc::GarbageCollectedMixin {
public:
void Trace(cppgc::Visitor* visitor) const { visitor->Trace(v8_resource_);

}

protected:
v8::TracedReference<v8: :Data> v8_resource_;

Hs

} // namespace v8

V8 could then keep references to such objects internally, staying within GC semantics (see
limitations). The main idea is that this can be used to more easily model lifetimes involving ]S


mailto:mlippautz@chromium.org
mailto:leszeks@chromium.org
mailto:adamk@chromium.org
https://bugs.chromium.org/p/v8/issues/detail?id=13754
https://source.chromium.org/chromium/chromium/src/+/main:v8/src/DEPS;l=78
https://source.chromium.org/chromium/chromium/src/+/main:v8/include/v8-cppgc.h;l=112;bpv=1;bpt=1

objects on the embedder side. E.g., this could avoid passing around roots (v8::Global) on the
API surface which is prone to creating memory leaks.

Similar requests came up in the past in design discussions (sorry, Google-only).

Background

Oilpan is implemented in V8 and is integrated with V8’s JavaScript garbage collector to provide
the unified heap where objects with JS and C++ object graphs. Oilpan infrastructure is
implemented behind the cppgc namespace and available through V8’s API.

There’s currently different ways to configure and use V8/Qilpan:
A. Unified heap (JS+0Oilpan): Blink
B. V8 JS-only: Node
C. Stand-alone Oilpan: PDFium

The high level unified heap design (case A) suggests that JS and C++ heaps already go hand in
hand. In practice, this is not the case as Blink requires an Oilpan heap early on during
initialization before a V8 isolate is set up. The initialization sequence in Blink is as follows:

1. Initialize Oilpan (CppHeap)

2. Allocate objects on CppHeap

3. Initialize Isolate

4. Attach CppHeap to Isolate

In 1. and 2. CppHeap is in a detached state where we allow allocations but don’t perform any
garbage collection (except in testing configurations where the CppHeap is treated as stand-alone
Oilpan heap).

3. and 4. are separate steps to allow for configuration A. In Blink there should be no allocations
(and garbage collections) of any sort in between these steps (although it would be supported to
do a JS-only collection as the heaps are still independent).

Changes

Dependencies

Allowing internals and API types to depend on Oilpan implies that it is not optional anymore.
While initialization makes this transparent, all embedders start using Oilpan automatically this
way.

Cost:
e There’s minimal runtime performance cost in the GC that has to consider objects on an
empty CppHeap. This cost should be negligible.
e There’s cost in allocating a virtual memory cage of 4G for initializing a CppHeap. If this
becomes a problem, we could lazily set up the cage on first allocation.


https://docs.google.com/document/d/1Vj-Y8T4xCpLF-4TeaJ7htXkOyvyYCEQfbuqcTKX0uy4/edit

Initialization

v8::Isolate construction receives an additional parameter (via some sort) to a CppHeap. If
CppHeap is not provided, V8 will create one implicitly that is available via
v8::Isolate: :GetCppHeap().

A path for moving the API forward

Since migrating a class should go through regular V8 deprecation cycles, wrapper objects can be
used to temporarily forward calls to malloced objects.

C/C++
namespace v8 {

// Malloced and currently in use by the embedder.
class 0OldFooBase {

public:

virtual void Bar() = 0;

+s

// The new GC'ed API we want.

class NewFooBase : public GarbageCollectedMixin {
public:
virtual void Bar() = 0;

+s

// Non public wrapper class.
class NewFooWrapper : public GarbageCollected<NewFoo>, NewFooBase {

public:
NewFoo (unique_ptr<0ldFoo> foo) : foo_(std::move(foo)) {}

void Bar() override { foo_->Bar(); }
void Trace(cppgc::Visitor* visitor) const {}

private:
unique_ptr<0ldFoo> foo_;

Hs

// 0ld API.
V8_DEPRECATE_SOON("Use RegisterFoo(NewFooBase*)")
void RegisterFoo(unique_ptr<0ldFoo> old_foo) {



auto* new_foo =
MakeGarbageCollected<NewFooWrapper>(
GetAllocationHandle(), std::move(old_foo));
RegisterFoo(new_foo);

}

// New APTI.
void RegisterFoo(NewFooBase* new_foo_base) {
/1

} // namespace v8

Limitations

JS to C++ references

JS to C++ references are currently modeled via wrapper/wrappable semantics using embedder
fields. To directly point to C++ objects from regular JS objects another primitive needs to be
added to the V8 GC.

Helpers

Blink provides a bunch of helper utilities to aid writing Oilpan code that are not directly available
to V8:
e Clang plugin that helps finding mistakes in Oilpan usage: The plugin is built into the clang
binary that is shipped via llvm-build. We could probably also use it on V8 code.
e Allocation helpers: Oilpan doesn’t know about threads. Blink uses globals/TLS to pass
around a heap handle that is used for allocation.
e Helpers around wrapping objects in roots.

Collections

As of today, the Oilpan core provided through V8 does not ship any collections. These are purely
implemented in Blink with specific API helpers where necessary. Blink collections include vectors
and hashmaps with support for weakness and even ephemerons. Moving (at least some of) them
to Qilpan’s core is a long-standing TODO for the team.



https://source.chromium.org/chromium/chromium/src/+/main:third_party/blink/renderer/platform/heap/BlinkGCAPIReference.md;l=441

	Allow Oilpan in V8 
	LGTMs 
	Proposal 
	Background 
	Changes 
	Dependencies 
	Initialization 
	A path for moving the API forward 

	Limitations 
	JS to C++ references 
	Helpers 
	Collections 


