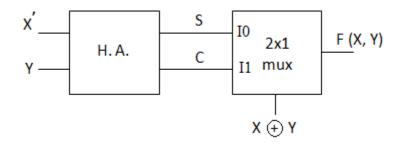
Ain Shams University Faculty of Computer & **Information Sciences**

Second Year, First Term 16/1/2016

Subject: LOGIC DESIGN

(CHW 261)

Examiner: Dr. Manal Tantawi Final Exam Time: 3 hour


It is forbidden to change the name of the variables or their order.

Question One (13 mark

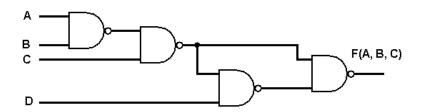
<u>iest</u>	ion One (13 marks)						
A)	.) Choose the correct answer (10 marks)						
1)	11011 – 101 using 1's complement equals						
	a) 10101	b) 10110	c)	00010	d)	11101	
2)	If F (A, B, C) = (A B' + 0	C) ' , then F' (A, B, C) =			•		
	a) ((A'+B).C')'	b) ((A+B').C)'	c)	(A'+B).C'	d)	((A'+B)+C)	
3)	b) F(X, Y, Z) = (XY+Z)'+Y'Z, if DeMorgan's law is applied then the whole expression will be				plem	ented term,	
4)	For a 4Mx16 RAM, the	e number of address lir	nes w	ill be equal to			
	a) 12	b) 16	c)	22	d)	4	
5)	For a 4Mx16 RAM, the	e size of the internal de b) 16x2 ¹⁶	c)	r is 22x2 ²²	d)	4x2 ⁴	
6)	For a 4Mx16 RAM, the	e number of input or o	utput	lines equals to			
	a) 4M	b) 16	c)	22	d)	8	

7) To construct 8Mx32 RAM, we need 4Mx16 RAMs

a) 2	b) 8	c) 12	d) 4

8) According to the above circuit, the output S (X, Y) =

a) $\Sigma(0, 3)$ b) $\Sigma(1, 2)$ c) $\Sigma(1, 3)$ d) $\Sigma(0, 2)$


9) According to the above circuit, the output C (X, Y) =

a) $\sum (0, 3)$ b) $\sum (3)$	c) Σ(1)	d) $\sum (1, 2)$
--------------------------------	---------	------------------

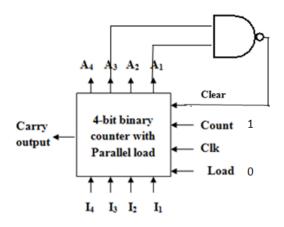
10) According to the above circuit, the F (X, Y) =......

a) $\sum (1, 2, 3)$ b) $\sum (0, 1, 3)$	c) 0	d) $\sum (0, 3)$
---	------	------------------

B) Convert the following NAND circuit to AND \ OR circuit (3 marks)

Question Two (14 marks)

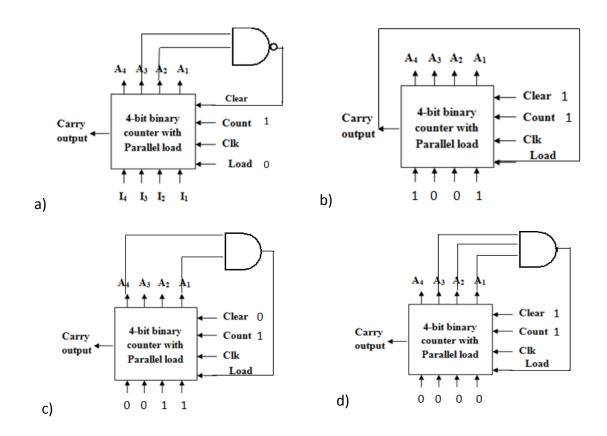
A) Choose the correct answer (10 marks)


1) If the function $F(A, B, C) = \sum (0, 4, 6, 7)$ is implemented using 4x1 mux with A and C on selections then the inputs from I_0 to I_3 will be equal to respectively.

a) B', 0, B', 1	b) 0, 1, 0, 1	c)	B', 0, 1, B	d)	B', B, B', B

2) The simplest form for the Function F (A, B, C, D) = (A+B'). (A+C'+D) in sum of product equals.......

a)	A' B+A' C D'
b)	A + B' D +B' C'
c)	A + B' D + B' C' D'
d)	A + A' B' D + A' B' C'


3) Using the following 4 bit programmable counter with the given function table, It will count

Clear	Clk	Load	Count	Function
0	X	X	X	Clear all
1	X	0	0	No change
1	†	1	X	Load input
1	†	0	1	count

a) From 0 to 15	b) From 0 to 10	c) From 0 to 5	d) From 0 to 4

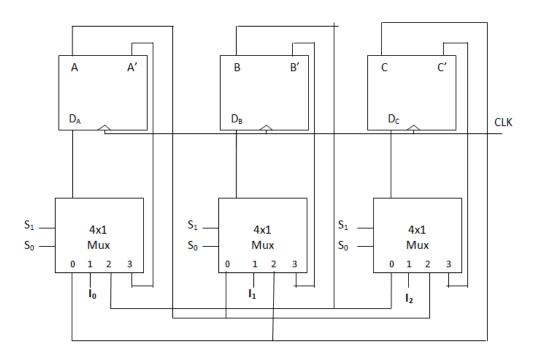
4) Using a 4 bit programmable counter with the same function table provided in the previous question, which case can give f/7?

5) Given a **lowest** priority 4x2 encoder, in order to have a value 1 0 on its outputs, its inputs D0 – D3 can be equal to respectively.

a) x, x, 1, 0 b) 0, 1, x, x c) x, 1, 0, 0 d) 0, 0, 1, x

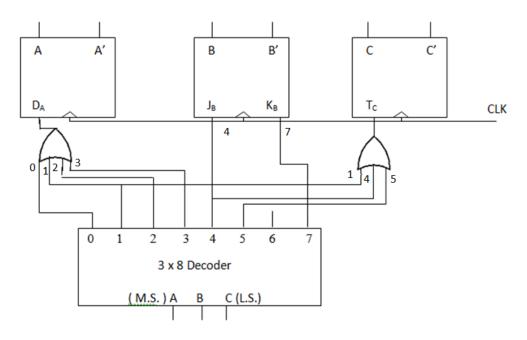
B) Construct a 4 bit parallel load \ no change Register with the following function table using D flipflops and any needed external gates (4 marks).

Select	Function
0	Parallel load
1	No change

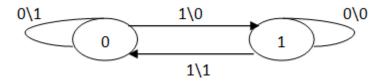

Question Three (15 marks)

A) For the following Decimal-Code converter table from decimal code $X_3 X_2 X_1 X_0$ to decimal code $Y_3 Y_2 Y_1 Y_0$, find the Min-terms of the outputs and don't cares if exist. (6 marks)

Decimal	X ₃	X_2	X_1	X_0
0	0	0	0	0
1	1	0	0	0
2	0	1	0	0
3	1	1	0	0
4	0	0	0	1
5	1	1	1	0
6	0	0	1	1
7	1	0	1	1
8	0	1	1	1
9	1	1	1	1

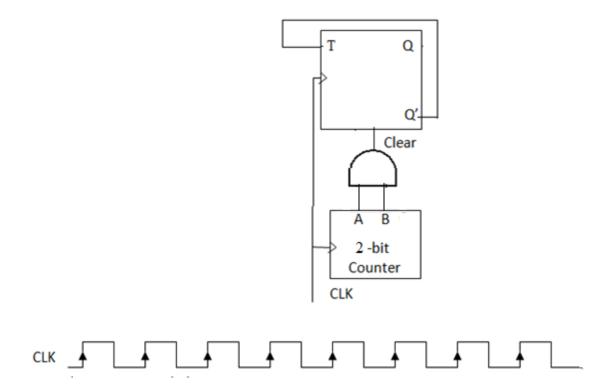

Decimal	Y ₃	Y ₂	Y ₁	Y ₀
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	1	1	0
9	1	1	1	1

- B) Construct a 8x1 multiplexer using 4x1 multiplexers and one 2x1 multiplexer. (4 marks)
- C) Follow the circuit connections, then find the function table of the given universal shift register of 4-different functions. (All muxs have the same selection control). (5 marks)


Question Four (18 marks)

- A) Design a counter that counts the following sequence 1, 6, 7, 3, 2 using T flipflops. (8 marks)
- B) Analyze the following sequential circuit then find state table, state diagram and finally find the repeated sequence. Is it a self correcting counter (state your reasons)? (10 marks)

Question Five (15 marks)


A) Design a sequential circuit using JK flipflop according to the following state diagram. (5 marks)

B) Find the content for the two 4 bit shift registers of the following sequential circuit during 4 clocks. [the initial value for Q is zero] (5 marks)

C) Draw the output waveform Q for the given clock signal CLK. If the frequency of the CLK is 500 HZ what will be the frequency of the output Q? [the initial value for Q is zero] (5marks)

Good Luck ☺

Dr. Manal Tantawi