
OSWorld Setup Tutorial

1. VM Environment Setup
Please be careful about whether the following commands/steps are conducted on the VM
running instance or your host machine.

Prerequisites
1. Download and install the latest version of VMWare on the host machine

●​ For Windows/Linux, install VMWare Workstation Pro
●​ For MacOS, install VMWare Fusion
●​ Serial numbers can be found online

2. Download and install Ubuntu 22.04 LTS image on VMWare
●​ Download link: https://cdimage.ubuntu.com/jammy/daily-live/current/
●​ Pay attention to the machine architecture of the host (amd64 or arm64). For arm64

architecture (such as MacOS), please install the aarch64 version
●​ During installation, allocate at least 50G disk space, create an account with the

name user (the home directory should be /home/user/) and password ‘password’
(‘ not included) and choose English as the default language

●​ About GUI display, please ensure Xorg (X11) is chosen instead of wayland
○​ This step is significant to UI operations such as click, press and scroll!
○​ Tutorial on how to check and change the GUI display

Install Dependencies on VM
1. Firstly, in the VM running instance, open the terminal and install VM tools:

●​ This allows you to manipulate VM instances through shell commands in the host

sudo apt-get install open-vm-tools

2. Then, in the host machine, clone the OSWorld git repository and copy the entire
desktop_env/server directory to the running VM. For example, we can use the vmrun
CopyFile command:

●​ [abspath_to_vmx_file] is the absolute path to the .vmx file, e.g.,
○​ on Windows, it should be like:

C:\Users\tianbaox\Documents\Virtual_Machines\Ubuntu\Ubuntu.vmx
○​ on MacOS, it should be like:

/Users/rhythmcao/Virtual_Machines.localized/ubuntu.vmwarevm/ubuntu.vmx
●​ for more vmrun commands, see VMWare official doc for reference

vmrun -T ws -gu user -gp password CopyFileFromHostToGuest

[abspath_to_vmx_file] desktop_env/server /home/user/server

2. Next, in the VM running instance, install the following dependencies:
●​ apt-get install:

○​ python3-pip, python3-tk, python3-dev
○​ git, vim, jq, curl, wmctrl, ffmpeg, socat, net-tools

https://www.vmware.com/hk/products/workstation-player/workstation-player-evaluation.html
https://www.vmware.com/go/getfusion
https://cdimage.ubuntu.com/jammy/daily-live/current/
https://helpdesk.psionline.com/hc/en-gb/articles/13470827149332-How-to-perform-the-switch-from-the-Wayland-display-server-to-Xorg-X11-on-Linux-Ubuntu-22-04-LTS
https://github.com/xlang-ai/Spider2.0-GUI
https://docs.vmware.com/en/VMware-Fusion/13/com.vmware.fusion.using.doc/GUID-A28FA25B-5529-4D95-9F7B-4CFBB8DF2AA7.html

○​ gnome-screenshot, accerciser
●​ pip3 install -r ~/server/requirements.txt

3. Start the Flask service in the backend of the running VM instance:
●​ Please ensure this command is executed before saving VM snapshots (next

Section)

cd /home/user/server/

you can close the terminal window after running the following command

nohup python3 -u main.py > out.log 2>&1 &

VM Snapshots
●​ What is a VM snapshot?

a.​ VMWare uses snapshot trees to manage different states. We can save and
revert to the complete state of one VM running instance. (The checklist of all
snapshots can be found in the .vmsd file under the same directory as .vmx)

●​ When you work on Spider2.0 GUI, please follow steps below:

a.​ Install the following tools in the VM instance:
■​ VSCode (take care of platform infos, e.g., amd64 or arm64)
■​ Google Chrome or Chromium (Google Chrome is not available on

Mac-OS hosted Ubuntu, you can only install Chromium instead)
●​ ensure that the browser can be launched via terminal

command `google-chrome` or `chromium-browser`
■​ anaconda3, the installed path is `/home/user/anaconda3`
■​ docker, ensure that the current user is added into docker group to

avoid sudo (you need to restart the VM machine)
■​ TO BE CONTINUED: other tools

b.​ To avoid being interrupted by warning or pop-up alerts during debugging or
testing, disable the following functions in VM:

■​ Login in and auto-translation reminder for Chromium/Chrome

https://code.visualstudio.com/download
https://docs.anaconda.com/free/anaconda/install/linux/
https://docs.docker.com/engine/install/ubuntu/#prerequisites
https://docs.docker.com/engine/install/linux-postinstall/

■​ Disable screen lock/protection for Ubuntu system
■​ Auto-update reminder of Ubuntu software mangement
■​ Disable the “unlock login keyring” prompt: change password to empty
■​ TO BE CONTINUED: other operations

c.​ Take a snapshot and name it. This name will be used in the “snapshot” field in
one data example to revert the VM instance to a prepared state

Running Test
●​ Take one snapshot and name it as you like, e.g., “chrome”.
●​ Run the following script in the root directory of DesktopEnv on your host machine:

○​ replace [xxx] with concrete values
○​ if error “python is not found” is raised, create a symbolic link “python” for

“python3” in VM and save the snapshot (note that adding an alias
python=python3 in ~/.bashrc is useless)

conda create -n [env_name] python=3.11 -y && conda activate [env_name]

pip install -r requirements.txt

playwright install chromium

python main.py -p [abspath_to_vmx_file] -s [snapshot_name]

2. Format of Data Fields
A typical annotated data example .json dict: (partly simplified)
{

 "id": "6a33f9b9-0a56-4844-9c3f-96ec3ffb3ba2", # unique example id

 "snapshot": "libreoffice_writer", # name of VM snapshot to revert to

 "instruction": "Please help me remove all highlighted words.",

 "source": ["url_link_to_the_source_that_this_example_comes_from"],

 "counterpart": "xxxx-xxxx-xxxx-xxxx-xxxx", # the verbose example id of the current

abstract example, or vice versa

 "config": [

 {

 "type": "download",

 "parameters": {

 "files": [

 {

 "url": "google_drive_link_to_download_the_initial_file",

 "path": "/home/user/Desktop/sample-recruitment-phone-script.odt"

 }

]

 }

 }

],

 "related_apps": ["libreoffice_writer"],

https://askubuntu.com/questions/867/how-can-i-stop-being-prompted-to-unlock-the-default-keyring-on-boot

 "tags": ["cli", "abstract", "account"],

 "evaluator": {

 "postconfig": [

 {

 "type": "activate_window",

 "parameters": {

 "window_name": "sample-recruitment-phone-script.odt - LibreOffice Writer",

 "strict": true

 }

 }

],

 "func": "check_highlighted_words",

 "expected": {

 "type": "cloud_file",

 "path": "google_drive_link_to_download_the_golden_file",

 "dest": "sample-recruitment-phone-script_Gold.odt"

 },

 "result": {

 "type": "vm_file",

 "path": "/home/user/Desktop/sample-recruitment-phone-script.odt",

 "dest": "sample-recruitment-phone-script.odt"

 },

 "options": {}

 }

}

Among all fields, the most significant is instruction, config and evaluator.

instruction field
This field is exactly the user input which tells the agent what to resolve. Notice that the
instruction should be natural, realistic and clear. It comes from online realistic scenarios and
reflects real-world user intention. For easy setup and precise evaluation, it can be slightly
adapted. See on how to write task instructions. Spider2.0 GUI: Write Task Instructions

config field
This field defines how the environment is set up or prepared for each example. It is a list of
dict. Each dict invokes one setup function to prepare the initial VM environment.

●​ Functions are invoked sequentially according to the list order.
●​ All functions are defined in “desktop_env/controllers/setup.py”, e.g.,

○​ in the example above, dict with type=“download” will call the setup function
below to download and upload initial files to the VM machine

●​ UPDATE: Now, we add one package “desktop_env/configs” for easier config
extension. Remember to add the suffix “_setup” for your customized config function
and import it in “desktop_env/configs/__init__.py”.

def _download_setup(self, files: List[Dict[str, str]]):

https://docs.google.com/document/d/1o715VrJ3c5PY42g4JImBUyYov6gwfEvsFYJvdy6mk9A/edit

 """

 Args

 files (List[Dict[str, str]]): files to download. list of dict like

 {

 "url": str, the url to download

 "path": str, the path on the VM to store the downloaded file

 }

 """

evaluator field
This complex field defines how the predicted/golden result is obtained and how the
automatic evaluation is conducted. It can be further composed into 5 parts:

postconfig field
This field is similar to config setup. The only difference is that each operation in the list is
applied after the agent/human has completed the task.

●​ For example, in the example above, the “activate_window” function makes the
specified “window_name” the current activated/focused window in the desktop

●​ It reuses setup functions defined in “desktop_env/controllers/setup.py”
{

 "type": "activate_window",

 "parameters": {

 "window_name": "sample-recruitment-phone-script.odt - LibreOffice Writer",

 "strict": true

 }

}

func field
This field defines the metric name that will be invoked to obtain the result (usually 0 or 1).
Different examples may use quite different functions. All available metrics are defined in
“desktop_env/evaluator/metrics/__init__.py”. In the example above, it refers to the function
“check_hightlighted_words”:
def check_highlighted_words(file_path1, file_path2):

 if not compare_docx_files(file_path1, file_path2):

 return 0

 doc = load(file_path1)

 highlighted = False

 for span in doc.getElementsByType(Span):

 style_name = span.getAttribute('stylename')

 if style_name:

 for automatic_style in doc.automaticstyles.childNodes:

 if automatic_style.getAttribute('name') == style_name:

 for property in automatic_style.childNodes:

 if property.getAttribute('backgroundcolor') == '#ffff00':

 highlighted = True

 break

 if highlighted:

 break

 return 0 if highlighted else 1

result field
This field is used to extract the expected/predicted “output”. The output can be a literal
string, structured file or some ending states in the running VM. The “type” field of the dict
gives the function name to retrieve the result. The checklist of all functions is provided in
“desktop_env/evaluators/getters/__init__.py”. In the example above, it calls the “get_vm_file”
function to copy the desired file from the VM to a local file path.
"result": {

 "type": "vm_file",

 "path": "/home/user/Desktop/sample-recruitment-phone-script.odt",

 "dest": "sample-recruitment-phone-script.odt"

}

expected field
This field is similar to the “result” field with the only difference that it is used to obtain the
golden reference, e.g., an output file, expected state or literal answer. It also reuses the
functions in “desktop_env/evaluators/getters/__init__.py”. In the example above, it calls the
“get_cloud_file” function to download the gold file from the google drive link to a local path.
Notice that, the fetched outputs of both “result” and “expected” fields serve as inputs of the
metric function in the “func” field.
"expected": {

 "type": "cloud_file",

 "path": "google_drive_link_to_download_the_golden_file",

 "dest": "sample-recruitment-phone-script_Gold.odt"

}

options field
This field provides the keyword arguments for the metric function “func”. Key-values in this
field do not depend on the predicted or golden output. It is optional and will be set to an
empty dict if not provided.
metric_func(result_state, expected_state, **options)

Evaluation Extension
To support extra hard evaluation and encourage re-use of function modules (e.g., some
examples may need to invoke multiple metric functions and only all results are correct, the
task is successful), the original “evaluator” field is extended to support logical operators

“and”/“or”. That is, values of the following 4 fields (“func”, “result”, “expected” and “options”)
are extended from a single string/dict to a list of the same length.

●​ “conj” is chosen from [“and”, “or”] and will be set to “and” if not provided
"evaluator": {

 "func": ["func1", "func2", "func3"],

 "conj": "and",

 "result": [{"type": ""}, {"type": ""}, {"type": ""}],

 "expected": [{"type": ""}, {"type": ""}, {"type": ""}],

 "options": [{}, {}, {}] # if not provided, will be set to a list containing only

empty dicts with the same length as other fields

}

To sum up:

●​ both “config” and “evaluator->postconfig” fields will search setup functions in
“desktop_env/controllers/setup.py” to set up and post-process the environment

●​ evaluation metrics are defined in the field “evaluator->func”, which can be retrieved in
“desktop_env/evaluators/metrics/__init__.py”

●​ “evaluator->result” and “evaluator->expected” fields will invoke functions in
“desktop_env/evaluators/getters/__init__.py” to obtain the expected and golden
outputs respectively

Remember: reuse defined functions whenever possible, but feel free and be creative to add
necessary functions if unavoidable.

def check_highlighted_words(file_path1, file_path2):​
 if not compare_docx_files(file_path1, file_path2):​
 return 0​
​
​
 doc = load(file_path1)​
 highlighted = False​
​
​
 for span in doc.getElementsByType(Span):​
 style_name = span.getAttribute('stylename')​
 if style_name:​
 for automatic_style in doc.automaticstyles.childNodes:​
 if automatic_style.getAttribute('name') == style_name:​
 for property in automatic_style.childNodes:​
 if property.getAttribute('backgroundcolor') ==

'#ffff00':​
 highlighted = True​
 break​
 if highlighted:​
 break​
​
​

 return 0 if highlighted else 1

	OSWorld Setup Tutorial
	1. VM Environment Setup
	Prerequisites
	Install Dependencies on VM
	VM Snapshots
	Running Test

	2. Format of Data Fields
	instruction field
	config field
	evaluator field
	postconfig field
	func field
	result field
	expected field
	options field
	Evaluation Extension

