OSWorld Setup Tutorial

1. VM Environment Setup

Please be careful about whether the following commands/steps are conducted on the VM
running instance or your host machine.

Prerequisites

1. Download and install the latest version of VMWare on the host machine
e For Windows/Linux, install VMWare Workstation Pro
e For MacOS, install VMWare Fusion
e Serial numbers can be found online
2. Download and install Ubuntu 22.04 LTS image on VMWare
e Download link: https://cdimage.ubuntu.com/jammy/daily-live/current/
e Pay attention to the machine architecture of the host (amd64 or arm64). For armé64
architecture (such as MacOS), please install the aarch64 version
e During installation, allocate at least 50G disk space, create an account with the
name user (the home directory should be /home/user/) and password ‘password’
(° not included) and choose English as the default language
e About GUI display, please ensure Xorg (X11) is chosen instead of wayland
o This step is significant to Ul operations such as click, press and scroll!

o Tutorial on how to check and change the GUI display

Install Dependencies on VM

1. Firstly, in the VM running instance, open the terminal and install VM tools:
e This allows you to manipulate VM instances through shell commands in the host

sudo apt-get install open-vm-tools

2. Then, in the host machine, clone the OSWorld git repository and copy the entire
desktop_env/server directory to the running VM. For example, we can use the vmrun
CopyFile command:
e [abspath_to_vmx file] is the absolute path to the .vmx file, e.g.,
o on Windows, it should be like:
C:\Users\tianbaox\Documents\Virtual\ Machines\Ubuntu\Ubuntu.vmx
o on MacOS, it should be like:

[/Users/rhythmcao/Virtual_Machines.localized/ubuntu.vmwarevm/ubuntu.vmx
e for more vmrun commands, see VMWare official doc for reference

vmrun -T ws -gu user -gp password CopyFileFromHostToGuest

[abspath_to vmx_ file] desktop env/server /home/user/server

2. Next, in the VM running instance, install the following dependencies:
e apt-get install:
o python3-pip, python3-tk, python3-dev
o git, vim, jq, curl, wmctrl, ffmpeg, socat, net-tools

https://www.vmware.com/hk/products/workstation-player/workstation-player-evaluation.html
https://www.vmware.com/go/getfusion
https://cdimage.ubuntu.com/jammy/daily-live/current/
https://helpdesk.psionline.com/hc/en-gb/articles/13470827149332-How-to-perform-the-switch-from-the-Wayland-display-server-to-Xorg-X11-on-Linux-Ubuntu-22-04-LTS
https://github.com/xlang-ai/Spider2.0-GUI
https://docs.vmware.com/en/VMware-Fusion/13/com.vmware.fusion.using.doc/GUID-A28FA25B-5529-4D95-9F7B-4CFBB8DF2AA7.html

o gnome-screenshot, accerciser
e pip3dinstall -r ~/server/requirements.txt

3. Start the Flask service in the backend of the running VM instance:

e Please ensure this command is executed before saving VM snapshots (next
Section)

cd /home/user/server/

you can close the terminal window after running the following command

nohup python3 -u main.py > out.log 2>&1 &

VM Snapshots

e Whatis a VM snapshot?

a. VMWare uses snapshot trees to manage different states. We can save and
revert to the complete state of one VM running instance. (The checklist of all
snapshots can be found in the ,ymsd file under the same directory as .vmx)

000 © ubuntu: RE&

(C]

?

2 MRER, EfEF 30.9GB

When you work on Spider2.0 GUI, please follow steps below:
a. Install the following tools in the VM instance:
m VSCode (take care of platform infos, e.g., amd64 or arm64)
m Google Chrome or Chromium (Google Chrome is not available on
Mac-OS hosted Ubuntu, you can only install Chromium instead)
e ensure that the browser can be launched via terminal
command ‘google-chrome’ or “chromium-browser
m anaconda3, the installed path is ‘/home/user/anaconda3
docker, ensure that the current user is added into docker group to

avoid sudo (you need to restart the VM machine)
m TO BE CONTINUED: other tools

b. To avoid being interrupted by warning or pop-up alerts during debugging or
testing, disable the following functions in VM:
| |

Login in and auto-translation reminder for Chromium/Chrome

https://code.visualstudio.com/download
https://docs.anaconda.com/free/anaconda/install/linux/
https://docs.docker.com/engine/install/ubuntu/#prerequisites
https://docs.docker.com/engine/install/linux-postinstall/

Disable screen lock/protection for Ubuntu system
Auto-update reminder of Ubuntu software mangement
Disable the “unlock login keyring” prompt: change password to empty
m TO BE CONTINUED: other operations
c. Take a snapshot and name it. This name will be used in the “snapshot” field in
one data example to revert the VM instance to a prepared state

Running Test

e Take one snapshot and name it as you like, e.g., “chrome”.

e Run the following script in the root directory of DesktopEnv on your host machine:
replace [xxx] with concrete values
if error “python is not found” is raised, create a symbolic link “python” for
“python3” in VM and save the snapshot (note that adding an alias
python=python3 in ~/.bashrc is useless)

conda create -n [env_name] python=3.11 -y && conda activate [env_name]
pip install -r requirements.txt

playwright install chromium
python main.py -p [abspath_to vmx file] -s [snapshot_name]

2. Format of Data Fields

A typical annotated data example .json dict: (partly simplified)

"id": "6 ¢ 344-C F-96ec3ffb3ba2 # unique example id

"snapshot": "libreo (VM snapshot to revert to

"instruction": "P1 e he me remove & highlighted words.

"source": ["url link to the source that this example comes from"],

"counterpart": "xx X XXX~ XXXX # the verbose example id of the current
abstract example, or vice versa

"config": [

load the initial file

"related apps": ["libreoffice wri

https://askubuntu.com/questions/867/how-can-i-stop-being-prompted-to-unlock-the-default-keyring-on-boot

"

"tags": ["cli", "abstract", "a
"evaluator": {
"postconfig": [
{
"type": "activate

"parameters": {

"window name": "sample-recruitment-phon

"strict":

"func": "check highlig
"expected":
"type": "cloud file",
"path": "google drive link to
"dest": none
s
"result":
"type": "vm file",
"path": /home /user/D top/sample-recruitment-phone-script.odt
"dest": "sample-recruitment-phone ipt.odt"
s

"options":

Among all fields, the most significant is instruction, config and evaluator.

instruction field

This field is exactly the user input which tells the agent what to resolve. Notice that the
instruction should be natural, realistic and clear. It comes from online realistic scenarios and
reflects real-world user intention. For easy setup and precise evaluation, it can be slightly
adapted. See B Spider2.0 GUI: Write Task Instructions on how to write task instructions.

config field

This field defines how the environment is set up or prepared for each example. Itis a list of
dict. Each dict invokes one setup function to prepare the initial VM environment.
e Functions are invoked sequentially according to the list order.
e All functions are defined in “desktop _env/controllers/setup.py’, e.g.,
o in the example above, dict with type="“download” will call the setup function
below to download and upload initial files to the VM machine
e UPDATE: Now, we add one package “desktop env/configs” for easier config

extension. Remember to add the suffix “_setup” for your customized config function

and import it in “desktop env/configs/ _init _.py”.
_download setup(self, files: List[Dict[str, str]]):

https://docs.google.com/document/d/1o715VrJ3c5PY42g4JImBUyYov6gwfEvsFYJvdy6mk9A/edit

wuon

Args

files (List[Dict[str, strl]):

I
1

"url": str, the url to
"path": str, the path on the VM

wwon

evaluator field

This complex field defines how the predicted/golden result is obtained and how the
automatic evaluation is conducted. It can be further composed into 5 parts:

postconfig field

This field is similar to config setup. The only difference is that each operation in the list is
applied after the agent/human has completed the task.
e For example, in the example above, the “activate_window” function makes the
specified “window_name” the current activated/focused window in the desktop
e |t reuses setup functions defined in “deskfop_env/controllers/setup.py”

"tvpe" . "Sc R
"parameters": {

"window name": "s T .odt

LibreOffice

"strict":

func field

This field defines the metric name that will be invoked to obtain the result (usually 0 or 1).
Different examples may use quite different functions. All available metrics are defined in
“desktop env/evaluator/metrics/ _init__.py”. In the example above, it refers to the function
“check_hightlighted words”:

check highlighted words (file pathl, file path2):

if compare docx files(file pathl, file path2):

return O

doc = load(file pathl)
highlighted =

for span in doc.getElementsByType (Span) :
style name = span.getAttribute (' lename')
if style name:

for automatic style in doc.automaticstyles.childNodes:

if automatic style.getAttribute('name') == style name:

for property in automatic style.childNodes:

if property.getAttribute ('backgroundc
highlighted =
break
if highlighted:

break

return 0 if highlighted else 1

result field

This field is used to extract the expected/predicted “output”. The output can be a literal
string, structured file or some ending states in the running VM. The “fype” field of the dict
gives the function name to retrieve the result. The checklist of all functions is provided in
“desktop env/evaluators/qetters/ _init__.py’. In the example above, it calls the “get vm file
function to copy the desired file from the VM to a local file path.

"result":

lltypeﬂ : "
"path": "/home ~/Desktop/sam cruitment-phone-script.odt",

"dest": "sample-recruitment-pho script.odt"

expected field

This field is similar to the “result’ field with the only difference that it is used to obtain the
golden reference, e.g., an output file, expected state or literal answer. It also reuses the
functions in “desktop env/evaluators/qetters/ _init__.py”. In the example above, it calls the
“get_cloud_file” function to download the gold file from the google drive link to a local path.
Notice that, the fetched outputs of both “resulf’ and “expected” fields serve as inputs of the

metric function in the “func” field.
"expected":

"type": "
"path":

"dest":

options field

This field provides the keyword arguments for the metric function “func”. Key-values in this
field do not depend on the predicted or golden output. It is optional and will be set to an
empty dict if not provided.

metric func(result state, expected state, **options)

Evaluation Extension

To support extra hard evaluation and encourage re-use of function modules (e.g., some
examples may need to invoke multiple metric functions and only all results are correct, the
task is successful), the original “evaluator” field is extended to support logical operators

“and’/“or”. That is, values of the following 4 fields (“func”, “result’, “expected’ and “options”)
are extended from a single string/dict to a list of the same length.

e “conf’ is chosen from [“and”, “or”] and will be set to “and” if not provided

"func": ["funcl", "func2", "func3"],

"conj": "and",

"result": [{"type": ""}, {"type": ""}, glWg W,

"expected": [{"type": ""}, {"type": ""},] g WUWRT,

"options"™: [{}, {}, {}] # if not provided, will be set to a list containing only
empty dicts with the same length as other fields
}

To sum up:
e both “config” and “evaluator->postconfig” fields will search setup functions in
“desktop env/controllers/setup.py” to set up and post-process the environment
e evaluation metrics are defined in the field “evaluator->func”, which can be retrieved in
“desktop env/evaluators/metrics/ _init __.py”
e ‘“evaluator->result’ and “evaluator->expected” fields will invoke functions in
“desktop env/evaluators/qetters/ _init__.py” to obtain the expected and golden
outputs respectively
Remember: reuse defined functions whenever possible, but feel free and be creative to add
necessary functions if unavoidable.

def check_highlighted words(file_pathl, file_path2):
if not compare docx_files(file pathl, file path2):
return

doc = load(file pathl)
highlighted = False

for span in doc.getElementsByType(Span):
style name = span.getAttribute('stylename")
if style_name:
for automatic_style in doc.automaticstyles.childNodes:
if automatic_style.getAttribute('name') == style name:
for property in automatic_style.childNodes:
if property.getAttribute('backgroundcolor') ==
"#ffffee’:

highlighted = True
break
if highlighted:
break

return @ if highlighted else

	OSWorld Setup Tutorial
	1. VM Environment Setup
	Prerequisites
	Install Dependencies on VM
	VM Snapshots
	Running Test

	2. Format of Data Fields
	instruction field
	config field
	evaluator field
	postconfig field
	func field
	result field
	expected field
	options field
	Evaluation Extension

