
on ‘computability’​

define
function f: (bool) -> bool, such that:​

f (TRUE) = TRUE​

​ f (FALSE) = FALSE​
​
assume

f is computable, and that program F has been written:​
​
bool F(bool b) {

return b;​
}​

define
natural program D such that:

bool D() {
​ if F(D())
​ ​ return FALSE;

else
​ return TRUE;

}

argue​
​ if F(D()) is TRUE, then D() is FALSE, so F(D()) should have been FALSE
​ if F(D()) is FALSE, then D() is TRUE, so F(D()) should have been TRUE​
​ therefore we have a guaranteed, pre-determinable inconsistency​
​
conclude
 ​ program F does not exist
​ function f is not computable

now, do you really think our function h is uncomputable? it’s literally just a pass through function
that maps the boolean argument to itself, there are only two simpler input->output mappings that
exist, the two functions that map both boolean inputs to one output. it seems completely absurd
to make the claim that such a program isn’t computable, because if this isn’t computable, what
meaning does the definition of computability actually have?

see, the problem with allowing such a paradox as an uncomputability proof, is that we could
construct an analogous proof, for *any* partially terminating program with multiple return values
that are deterministically selected by the input. all we need to construct the paradox are two
different outputs, respectively selected deterministically, by two different input, to devise a
corresponding uncomputability proof by paradox

https://docs.google.com/document/d/19zlJZQMfAZ_920M0Iwzj222Y_74-w--Gh-EDEOgOHsg
https://docs.google.com/document/d/19zlJZQMfAZ_920M0Iwzj222Y_74-w--Gh-EDEOgOHsg
https://docs.google.com/document/d/19zlJZQMfAZ_920M0Iwzj222Y_74-w--Gh-EDEOgOHsg

and so Turing did, to probably the *first* novel computation-related question he thought of:
does this program halt?​

​
let’s compare the paradox to Turing’s halting ‘problem’, a foundational problem defining major
limits to computing theory:

define

function halts: (string) -> bool, where string is the text of a program, such that when halts is
applied to the text, and that text represents a terminating program, the result is TRUE, and
if that text represents a non-terminating program, the result is FALSE.​
​
examples:

halts (‘foo() return’) = TRUE​
halts (‘bar() loop_forever’) = FALSE

assume
halts is computable, and that program H has been written:​
​
bool Halts(string program) {
​ if (/* program represents a terminating program */)

return TRUE
else // program represents a non-terminated program

return FALSE
}​

define

natural program D such that:

D() {
​ if Halts(D)
​ ​ loop_forever

else
​ return

}

argue​
​ if Halts(D) is TRUE, then D() is non-terminating, so Halts(D) should have been FALSE
​ if Halts(D) is FALSE, then D() is terminating, so Halts(D) should have been TRUE​
​ therefore we have a guaranteed, pre-determinable inconsistency​
​
conclude
 ​ program H does not exist
​ function halts is not computable
​
and so, by an analogous form of constructed paradox, halts is deemed uncomputable, and a
computational device cannot objectively compute if another program halts, or not. i guess.​

but, by this point, i’m not sure what computability even means. is *almost* nothing computable in
theory? are humans just being delusional, in ‘theory’, when they sit down to write meaningful
software? ​

… an interesting corollary of this paradox, is that the halting oracle (halts) can actually know what
will happen. by the nature of the constructed paradox, it’s actually given the choice to decide
whether program D will terminate or not, as D is a-priori guaranteed to terminate if the oracle
returns FALSE, or run indefinitely if the oracle returns TRUE. the halting oracle can actually decide
and know what will happen, it just can’t return that information to D, while maintaining its choice
in tact. ​
​
but it could, for example, send that knowledge to a 3rd, unaffiliated party with no influence on D,
and then lie to D, to get the result it told that 3rd, unaffiliated party ... such as you.​
​
reference

Alan M. Turing, on Computable Numbers with an Application to the

Entscheidungsproblem, 1937​
Eric C.R. Hehner, Problems with the Halting Problem, 2013

https://doi.org/10.1112%2Fplms%2Fs2-42.1.230
https://doi.org/10.1112%2Fplms%2Fs2-42.1.230
https://www.cs.utoronto.ca/~hehner/PHP.pdf

