
on ‘computability’​
 

define  
function f: (bool) -> bool, such that:​

 
f (TRUE) = TRUE​

​ f (FALSE) = FALSE​
​
assume  

f is computable, and that program F has been written:​
​
bool F(bool b) { 

return b;​
}​
 

define 
natural program D such that: 

 
bool D() { 
​ if F(D()) 
​ ​ return FALSE; 

else 
​ return TRUE; 

} 
 

argue​
​ if F(D()) is TRUE, then D() is FALSE, so F(D()) should have been FALSE 
​ if F(D()) is FALSE, then D() is TRUE, so F(D()) should have been TRUE​
​ therefore we have a guaranteed, pre-determinable inconsistency​
​
conclude 
 ​ program F does not exist 
​ function f is not computable 
 
 
now, do you really think our function h is uncomputable? it’s literally just a pass through function 
that maps the boolean argument to itself, there are only two simpler input->output mappings that 
exist, the two functions that map both boolean inputs to one output.  it seems completely absurd 
to make the claim that such a program isn’t computable, because if this isn’t computable, what 
meaning does the definition of computability actually have? 
 
see, the problem with allowing such a paradox as an uncomputability proof, is that we could 
construct an analogous proof, for *any* partially terminating program with multiple return values 
that are deterministically selected by the input. all we need to construct the paradox are two 
different outputs, respectively selected deterministically, by two different input, to devise a 
corresponding uncomputability proof by paradox 
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and so Turing did, to probably the *first* novel computation-related question he thought of:  
does this program halt?​

​
let’s compare the paradox to Turing’s halting ‘problem’, a foundational problem defining major 
limits to computing theory: 
 
define  

function halts: (string) -> bool, where string is the text of a program, such that when halts is 
applied to the text, and that text represents a terminating program, the result is TRUE, and 
if that text represents a non-terminating program, the result is FALSE.​
​
examples: 

 
halts (‘foo() return’) = TRUE​
halts (‘bar() loop_forever’) = FALSE 
 

assume  
halts is computable, and that program H has been written:​
​
bool Halts(string program) { 
​ if (/* program represents a terminating program */) 

return TRUE 
else // program represents a non-terminated program  

return FALSE 
}​

 
define 

natural program D such that: 
 

D() { 
​ if Halts(D)  
​ ​ loop_forever 

else 
​ return 

} 
 

argue​
​ if Halts(D) is TRUE, then D() is non-terminating, so Halts(D) should have been FALSE 
​ if Halts(D) is FALSE, then D() is terminating, so Halts(D) should have been TRUE​
​ therefore we have a guaranteed, pre-determinable inconsistency​
​
conclude 
 ​ program H does not exist 
​ function halts is not computable 
​
and so, by an analogous form of constructed paradox, halts is deemed uncomputable, and a 
computational device cannot objectively compute if another program halts, or not.  i guess.​
 



but, by this point, i’m not sure what computability even means. is *almost* nothing computable in 
theory? are humans just being delusional, in ‘theory’, when they sit down to write meaningful 
software? ​
 
… an interesting corollary of this paradox, is that the halting oracle (halts) can actually know what 
will happen. by the nature of the constructed paradox, it’s actually given the choice to decide 
whether program D will terminate or not, as D is a-priori guaranteed to terminate if the oracle 
returns FALSE, or run indefinitely if the oracle returns TRUE. the halting oracle can actually decide 
and know what will happen, it just can’t return that information to D, while maintaining its choice 
in tact. ​
​
but it could, for example, send that knowledge to a 3rd, unaffiliated party with no influence on D, 
and then lie to D, to get the result it told that 3rd, unaffiliated party ... such as you.​
​
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