
Istio RFC: Istio and MCS

Shared with Istio Community

Owner: nathanmittler@
Working Group: Environments Status: WIP | In Review | Approved | Obsolete​

Created: 2020-08-26
Approvers: costin [x], sdake [x], ...

Objective
The Kubernetes Multi-cluster Services (MCS) proposal defines an API (CRDs) for exporting
services and their endpoints across multiple clusters. The objective of this proposal is to
gradually add support for MCS in Istio. Doing so will allow Istio to build upon the service
import/export semantics of MCS and simplify the overall user experience for multicluster.

This proposal is broken down into phases that begin by making Istio work with another MCS
provider. By the final phase Istio is a MCS provider, itself.

Background
The MCS API has two fundamental parts:

●​ ServiceExport is created (either manually or automatically) in a cluster containing a
Service of the same name to mark it for export to other clusters in the clusterset.

●​ ServiceImport is created for an exported service, along with its associated
EndpointSlices, by an MCS controller in all other clusters in the clusterset.

These primitives can also be used as the basis for Istio’s multicluster service management. By
default, Istio exports all services to all clusters in the mesh. There are, however, options that
allow services to opt out, remaining cluster-local.

Requirements
Istio’s implementation of MCS must:

●​ Export all services by default, but allow the default to be configurable.
●​ Allow services to opt-in/out of auto-export.

Shared with Istio Community

https://github.com/kubernetes/enhancements/tree/master/keps/sig-multicluster/1645-multi-cluster-services-api
https://github.com/kubernetes-sigs/mcs-api
https://github.com/kubernetes/enhancements/tree/master/keps/sig-multicluster/1645-multi-cluster-services-api#exporting-services
https://github.com/kubernetes/enhancements/tree/master/keps/sig-multicluster/1645-multi-cluster-services-api#importing-services

●​ Process ServiceImport and associated EndpointSlices.
●​ Optionally generate ServiceImport and EndpointSlices where appropriate for each

exported service.
●​ Support multiple networks. Typically this means that endpoints in remote networks are

reached via a gateway.
●​ Support even load balancing across clusters. For example, if both Cluster X and Y have

2 endpoints for Service A, traffic to Service A should be evenly load balanced across all
4 endpoints, regardless of whether the services are accessed directly or via gateways
(as in the case of multi-network).

Design Ideas
The work for supporting MCS can be broken down into phases, where each phase adds
additional features, ultimately leading to a full implementation of MCS within Istio:

Phase 1: Handle ServiceImport (ETA: Istio 1.8)

This phase assumes that Istio is running an MCS-enabled clusterset. In this case, the MCS
controller (not part of Istio) would be responsible for generating ServiceImport and associated
EndpointSlices in each cluster.

Istio can already read EndpointSlices. The change here would allow Istio to read ServiceImport
as well as all endpoints in the mesh from the control plane’s configuration cluster. This would
require that endpoints identify the cluster and network where they reside (and possibly the
east-west ingress used to reach them from other networks).

Phase 2: Generate ServiceExport (ETA: Istio 1.8.x/1.9)

In this phase, Istio would be responsible for auto-generating ServiceExport resources in each
cluster for all non-cluster-local services. The choice of auto-generating ServiceExport will be
based on some auto-export policy, but will likely just rely on the existing cluster-local setting in
MeshConfig at first. If running on an MCS-enabled clusterset, the MCS controller (not part of
Istio) would automatically handle those resources and generate ServiceImport and
EndpointSlices in all other clusters.

Phase 3: Multi-Network Support

Need to investigate how we can sensibly add multi-network support to MCS/K8s.

Phase 4: Read ServiceExport and Generate ServiceImport (ETA: Istio 1.9)

In this phase, Istio effectively becomes a full MCS controller. Istio will read ServiceExport in
each cluster and will automatically generate ServiceImport and EndpointSlices in every other
cluster. We will have to figure out how best to deal with duplication of work between multiple
istiod instances.

Shared with Istio Community

Phase 5: Auto-Export Policy (ETA: ?)

In this phase, we build out a better method for auto exporting services. This may be a
Kubernetes or an Istio CRD. This can be used to establish the default export policy (e.g.. export
everything/nothing)

Shared with Istio Community

	Istio RFC: Istio and MCS
	
	Objective
	Background
	Requirements
	Design Ideas
	Phase 1: Handle ServiceImport (ETA: Istio 1.8)
	Phase 2: Generate ServiceExport (ETA: Istio 1.8.x/1.9)
	Phase 3: Multi-Network Support
	Phase 4: Read ServiceExport and Generate ServiceImport (ETA: Istio 1.9)
	Phase 5: Auto-Export Policy (ETA: ?)

