# Morus Rubra Identification Experiment Methodology Summary by Nigel Daniels and Colin Kruse

#### **DNA Extraction**

Mulberry leaves were shipped to the laboratory, packaged in sealed plastic bags containing a moistened paper towel. Upon receipt, the plastic bags containing the leaves were placed in a -20°C freezer. Genomic DNA was extracted from the leaves using the Quick-DNA Miniprep Kit (Zymo Research, Irvine, California, USA) according to the manufacturer's instructions for solid tissue samples. Briefly, leaves were allowed to thaw on ice, before 25 mg of tissue was excised and placed in a 1.5 mL DNase-and RNase-free microfuge tube. The tissue was mechanically homogenized in 500 μL of Quick-DNA Genomic Lysis Buffer using an RNase, DNase and Pyrogen-free Disposable Pellet Pestle (Thermo Fisher Scientific, Waltham, Massachusetts, USA). Genomic DNA was bound to the Zymo-Spin<sup>TM</sup> IICR Column by centrifugation at 12,000 x g for one minute followed by centrifugation washes at the same conditions with 200 μL of DNA Pre-Wash Buffer and 500 μL of g-DNA Wash Buffer. Finally, genomic DNA was collected with 50 μL of DNA Elution Buffer prewarmed to 60°C by centrifugation at 21,000 x g for 30 seconds. Eluted genomic DNA was assessed for purity using a Nanodrop ND1000 Spectrophotometer (Thermo Fisher Scientific) and quantified using a Qubit 3.0 Fluorometer (Thermo Fisher Scientific) before being stored at -20°C until use. Samples numbered 1-16 were extracted previously, following this protocol, by researchers at UVA Wise.

## Genomic Sequencing

Twelve mulberry leaf genomic DNA samples, selected by Weston Lombard as most likely to originate from Morus rubra leaves based on morphology, were assessed for fragment length by analysis using a Bioanalyzer High Sensitivity DNA Assay (Agilent Technologies, Santa Clara, California, USA). Two of the samples that contained the longest average fragments were selected for sequencing: #61 "Spillway, Lucky Pittman" and #91 "Roberts Farm #6, Female M.rubra". These two samples were sent to SegCenter LLC (Pittsburgh, Pennsylvania, USA) for both short-read sequencing using an Illumina NovaSeq X Plus (San Diego, California, USA) and long-read sequencing using either an Oxford Nanopore MinION Mk1B or an Oxford Nanopore GridION (New York, New York, USA). The Illumina sequencing details, according to SeqCenter, were "Illumina sequencing libraries were prepared using the tagmentation-based and PCR-based Illumina DNA Prep kit and custom IDT 10bp unique dual indices (UDI) with a target insert size of 280 bp. No additional DNA fragmentation or size selection steps were performed. Illumina sequencing was performed on an Illumina NovaSeq X Plus sequencer in one or more multiplexed shared-flow-cell runs, producing 2x151bp paired-end reads. Demultiplexing, quality control and adapter trimming was performed with bel-convert (v4.2.4)." The Oxford Nanopore sequencing details, according to SeqCenter, were "Sample libraries were prepared using the PCR-free Oxford Nanopore Technologies (ONT) Ligation Sequencing Kit (SQK-NBD114.24) with the NEBNext® Companion Module (E7180L) to manufacturer's specifications. No additional DNA fragmentation or size selection was performed. Nanopore sequencing was performed on an Oxford Nanopore a MinION Mk1B sequencer or a GridION sequencer using R10.4.1 flow cells in one or more multiplexed shared-flow-cell runs. Run design utilized the 400bps sequencing mode with a minimum read length of 200bp. Adaptive sampling was not enabled. Guppy (v6.5.7) was used for super-accurate basecalling (SUP), demultiplexing, and adapter removal (dna r10.4.1 e8.2 400bps modbases 5mc cg sup.cfg)." The total number of reads

generated for the samples were 98518146 Illumina reads and 968007 Nanopore reads for #61; and 91077715 Illumina reads and 1128209 Nanopore reads for #91.

## Sequence Analysis

A number of assembly and assembly-by-reference strategies were employed to assemble the red mulberry genome. These efforts are ongoing at Los Alamos National Laboratory (LANL) to produce a draft-quality genome despite the complexity of this plant genome. To develop reliable PCR probes to identify the genetic composition of mulberry samples, a variant analysis approach was ultimately the most successful. Samples #61 and #91 were compared against the white mulberry genome (GCA 012066045.3) with a LANL proprietary variant caller for potential primer sites. The LANL variant caller includes a mix of a k-mer based approach and a deep learning variant caller, Deep Variant (Poplin et al., 2018). K-mers are substrings of a nucleotide sequence of k length that elucidate differences that may not be detectable in the full length of the sequence. To ensure no cross-species alignment artifacts caused miscalled variants, a separate DeepVariant analysis using BWA-based alignments was performed. DeepVariant is a variant caller developed by Google and utilizes a convolutional neural network to identify and report variants. Additionally, in the pipeline, the samples were sent through a quality control step using fastp and aligned to the white mulberry reference genome with bwa mem (Chen, 2023, Li, 2013). The two samples were compared against each other in multiple steps of the variant calling process, both before and after the variant calling, to minimize the effect of using an imperfect reference genome as well as find the variants that are shared between the two samples. The variant list was then filtered for insertions or deletions (indels) over 100 base pairs. This variant calling and filtering identified 45 variants found in both samples #61 and #91. These variants were found across 15 mulberry contigs. A total of 36 of the 45 variants were called using the BWA-based variant calling and were selected for primer design. Primers were designed to verify the presence/absence of each indel using the Geneious implementation of Primer3 (Geneious Prime 2025.1).

## **Quantitative PCR**

Primers targeting the genomic regions unique to M. rubra and M. alba were designed using Primer3.

Table 1. Quantitative PCR primers targeting unique genomic regions in *M. rubra* and *M. alba*.

| <u>Primer name</u> | <u>Primer sequence</u>      |
|--------------------|-----------------------------|
| Rub236-5F          | TCCTTGTTGGAGATGGATGTTAG     |
| Rub232-28F         | AAGTCTGGTTGAAAGAATTTATAGTGG |
| Rub236-90R         | AAGATCAGCGCCTACACCTG        |
| Rub232-102R        | TCTTCATGGCTTAAAAAGACTCATAAT |
| Alb233-79F         | CTTACATAAAGTCACATCTCAACTCG  |
| Alb233-165R        | CACGCACCAACTTTAAATAAAAAGTA  |
|                    |                             |

Quantitative PCR (qPCR) reactions were prepared using the KAPA SYBR FAST qPCR Master Mix (2X) Kit (Roche Diagnostics, Indianapolis, Indiana, USA) according to manufacturer's instructions. Reactions of 10 µL total volume were analyzed using an AriaMx Real-time PCR System (Agilent Technologies) with a final concentration of 200 nM for each primer and 10 ng of genomic DNA. Thermocycling conditions were as follows: 95°C for 3 mins, 40 cycles of 95°C for 3 seconds then 60°C for 20 seconds with a fluorescence scan at the end of each cycle. QPCR results are presented as an average of technical duplicates, analyzed using Aria Real-Time PCR Software (Agilent

Technologies) to produce a Threshold Cycle (Ct) value. This is the cycle number at which the fluorescence signal crosses a predetermined threshold above background fluorescence.

## Results

Ct values for each sample were compared for differences between the detection of the species-specific genomic regions labeled Rub232, Rub236, and Alb233. Differences of ~10 cycles between specific-region Ct values were used as an indication of whether a sample was likely *M. rubra*, *M. alba*, or a hybrid. A lower Ct value indicates a higher quantity of genomic DNA containing the region targeted by that primer pair present in the reaction. Thus, values of ~18-21 for the Rub regions and >~28 for the Alb region indicate a likely *M.rubra* species identification. Values opposite to this indicate likely *M.alba*, whereas ~18-21 values for any combination of Rub and Alb regions indicate a likely hybrid.

Table 2. Summary of Quantitative PCR Threshold Cycle (Ct) values for the species-specific genomic regions Rub232, Rub236, and Alb233 produced from Mulberry leaf genomic DNA samples. "Indicated Species" denotes the species of the sample based on the regions tested, but does not absolutely guarantee the absence of DNA from other species in untested regions.

| <u>Sample</u> |                  |           |           |                          |
|---------------|------------------|-----------|-----------|--------------------------|
| <u>ID</u>     | Rub232 Ct        | Rub236 Ct | Alb233 Ct | <b>Indicated Species</b> |
| 1             | 19.02            | 18.99     | 28.37     | Rubra                    |
| 2             | 24.48            | 24        | 34.35     | Mostly Rubra             |
| 3             | 20.56            | 20.99     | 36.5      | Rubra                    |
| 4             | 19.28            | 19.17     | 29.85     | Rubra                    |
| 5             | 21.98            | 21.95     | 21.78     | Hybrid                   |
| 6             | 20.61            | 20.15     | 20.15     | Hybrid                   |
| 7             | 19.42            | 20.02     | 19.94     | Hybrid                   |
| 8             | 20.45            | 19.91     | 27.44     | Mostly Rubra             |
| 9             | 19.84            | 19.32     | 28.12     | Rubra                    |
| 10            | 19.98            | 19.44     | 31.97     | Rubra                    |
| 11            | 24.26            | 24.27     | 37.52     | Rubra                    |
| 12            | Duplicate sample |           |           |                          |
| 13            | 20.17            | 20.51     | 25.84     | Hybrid                   |
| 14            | 20.84            | 20.11     | 20.15     | Hybrid                   |
| 15            | 21.85            | 21.61     | 32.48     | Mostly Rubra             |
| 16            | 21.73            | 21.67     | 23.87     | Hybrid                   |
| 17            | 19.1             | 19.03     | 30.02     | Rubra                    |
| 18            | None             | 35.73     | 19.94     | Alba                     |
| 19            | 18.83            | 18.71     | 30.47     | Rubra                    |
| 20            | 18.92            | 18.81     | 30.08     | Rubra                    |
| 21            | 18.82            | 18.82     | 29.72     | Rubra                    |
| 22            | 19.1             | 18.94     | 29.68     | Rubra                    |
| 23            | 19.52            | 19.06     | 31.31     | Rubra                    |
| 24            | 18.41            | 17.77     | 28.36     | Mostly Rubra             |
| 25            | None             | None      | None      | Unknown                  |
| 26            | 18.91            | 18.42     | 29.25     | Rubra                    |
| 27            | 18.87            | 18.58     | 29.8      | Rubra                    |
| 28            | Duplicate sample |           |           |                          |
| 29            | 18.73            | 18.3      | 29.38     | Rubra                    |

| 30       | Duplicate sample                  |       |       |                 |
|----------|-----------------------------------|-------|-------|-----------------|
| 31       | 18.55                             | 18.64 | 30.69 | Rubra           |
| 32       | 19.08                             | 19.04 | 31.11 | Rubra           |
| 33       | 18.37                             | 18.48 | 30.26 | Rubra           |
| 34       | 20.11                             | 20.02 | 19.89 | Hybrid          |
| 35       | 18.22                             | 18.2  | 29.55 | Rubra           |
| 36       | 18.3                              | 33.33 | 17.03 | Hybrid          |
| 37       | 32.52                             | 33.51 | 19.33 | Alba            |
| 38       | 32.99                             | 33.89 | 20.93 | Alba            |
| 39       | None                              | 30.2  | 17.38 | Alba            |
| 40       | 18.99                             | 19.1  | 18.76 | Hybrid          |
| 41       | 18.19                             | 29.07 | 18.53 | Hybrid          |
| 42       | 33.89                             | 31.21 | 18.86 | Alba            |
| 43       | 19.91                             | 32.96 | 19.28 | Hybrid          |
| 44       | 18.38                             | 17.92 | 28.59 | Mostly Rubra    |
| 45       | 18.37                             | 18.13 | 25.79 | Mostly Rubra    |
| 46       | 19.61                             | 18.98 | 19.19 | Hybrid          |
| 47       | 18.68                             | 32.71 | 17.19 | Hybrid          |
| 48       | 19.5                              | 30.19 | 18.1  | Hybrid          |
| 49       | 33.09                             | 31.83 | 18.98 | Alba            |
| 50       | None                              | 33.66 | 22.28 | Alba            |
| 51       | 20.09                             | 19.9  | 27.29 | Mostly Rubra    |
| 52       | 33.14                             | 30.55 | 19.26 | Alba            |
| 53       | 33.7                              | 33.87 | 18.13 | Alba            |
| 54       | 33.17                             | 32.25 | 18.36 | Alba            |
| 55       | 18.5                              | 28.89 | 18.26 |                 |
| 56       | 19.24                             | 18.77 | 30.52 | Hybrid<br>Rubra |
| 57       |                                   | 10.// | 30.32 | Kubia           |
| 58       | Duplicate sample Duplicate sample |       |       |                 |
| 59       | 19.44                             | 18.99 | 19.14 | Hybrid          |
| 60       | 19.6                              | 19.18 | 27.08 | •               |
| 61       |                                   | 18.07 | 29.57 | Mostly Rubra    |
|          | 19.17                             | 32.82 | 19.08 | Rubra<br>Alba   |
| 62<br>63 | 36.05<br>19.49                    | 18.86 | 35.6  | Rubra           |
| 64       |                                   | 10.00 | 33.0  | Kubia           |
| 65       | Duplicate sample 19.58            | 19.61 | 31.55 | Rubra           |
| 66       | 33.6                              | 21.84 | 20.41 |                 |
| 67       | 18.8                              | 18.53 | 29.92 | Hybrid<br>Rubra |
| 68       | 19.68                             | 19.42 | 30.49 | Rubra           |
| 69       | 20.58                             | 32.86 | 19.89 |                 |
| 70       |                                   | 19.23 | 31.04 | Hybrid<br>Rubra |
| 70<br>71 | 19.33                             | 19.23 |       |                 |
| 72       | 19.56                             |       | 30.93 | Rubra           |
| 73       | 20.89                             | 20.39 | 32    | Rubra           |
|          | 19.73                             | 19.22 | 31.33 | Rubra           |
| 74<br>75 | 18.79                             | 18.43 | 28.94 | Rubra           |
| 75<br>76 | 19.69                             | 19.14 | 30.91 | Rubra           |
| 76<br>77 | 20.34                             | 19.7  | 31.53 | Rubra           |
| 77<br>70 | 19.65                             | 19.51 | 31.66 | Rubra           |
| 78       | 20.27                             | 20.38 | 29.57 | Rubra           |

| 79  | 18.52 | 18.49 | 30.84 | Rubra  |
|-----|-------|-------|-------|--------|
| 80  | 18.77 | 18.7  | 30.66 | Rubra  |
| 81  | 19.25 | 18.91 | 31.19 | Rubra  |
| 82  | 18.85 | 18.77 | 29.68 | Rubra  |
| 83  | 18.52 | 18.18 | 30.25 | Rubra  |
| 84  | 19.89 | 32.95 | 18.88 | Hybrid |
| 85  | 20.72 | 31.06 | 19.51 | Hybrid |
| 86  | 19.97 | 19.45 | 22.6  | Hybrid |
| 87  | 19.18 | 18.54 | 21.96 | Hybrid |
| 88  | 20.7  | 20.22 | 20.52 | Hybrid |
| 89  | 19.01 | 18.87 | 30.74 | Rubra  |
| 90  | 18.27 | 18.45 | 30.62 | Rubra  |
| 91  | 18.92 | 18.92 | 31.18 | Rubra  |
| 92  | 19.2  | 19.2  | 31.94 | Rubra  |
| 93  | 18.98 | 18.93 | 31.49 | Rubra  |
| 94  | 20.35 | 19.28 | 31.58 | Rubra  |
| 95  | 21.35 | 30.7  | 20.94 | Hybrid |
| 96  | 19.66 | 19.44 | 33.1  | Rubra  |
| 97  | 19.3  | 18.81 | 31.68 | Rubra  |
| 98  | 20.62 | 19.2  | 32.65 | Rubra  |
| 99  | 19.8  | 19.42 | 33.05 | Rubra  |
| 100 | 20.19 | 19.59 | 33.29 | Rubra  |
| 101 | 19.16 | 19    | 29.58 | Rubra  |
| 102 | 19.07 | 19.08 | 30.63 | Rubra  |
|     |       |       |       |        |

# References

Chen S. Ultrafast one-pass FASTQ data preprocessing, quality control, and deduplication using fastp. Imeta. 2023 May 8;2(2):e107. doi: 10.1002/imt2.107. PMID: 38868435; PMCID: PMC10989850.

Li, Heng. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv 1303.3997 (2013). https://arxiv.org/abs/1303.3997

Poplin, R., Chang, PC., Alexander, D. et al. A universal SNP and small-indel variant caller using deep neural networks. Nat Biotechnol 36, 983–987 (2018). https://doi.org/10.1038/nbt.4235