Web Image Analysis

Introduction:

Organization: Stony Brook University Biomedical Informatics
Name: Gunjan Shrivastava

This Project is done as a part of GSoC 2016 under the supervision of Prof. Jonas Almeida. The initial
proposal can be found here https://summerofcode.withgoogle.com/projects/#6491824516497408

Contact Info: jonas.almeida@stonybrook.edu , gunjan.sh123@gmail.com

| would like to thank GSoC community for giving me this opportunity to work on this project. | would also
like to thank my mentor and my organization who provided me a lot of support and helped me to stay
positive. Lastly, | would like to thank the Emscripten group who took their time to answer my questions
and reply and helped me to solve many bugs. | have learned many things from this project and hope to
continue my contributions.

Important links:
GitHub: https://github.com/gunjan-sh/webimg

Git Commits(master branch): https://github.com/gunjan-sh/webimg/commits/master

Git Commits (gh branch): https://github.com/gunjan-sh/webimg/commits/gh-pages

Served at https://gunjan-sh.github.io/webim

Log Book:
https://docs.google.com/document/d/1mKnoXTemK6b6tyTjrQNtfzZUNC6VOxdjMi9z)5tAtCOU/edit
GSoC Proposal: https://summerofcode.withgoogle.com/projects/#6491824516497408
Emscripten-- https://kripken.github.io/emscripten-site/docs/getting_started/Tutorial.html

Emscripten Google Group: https://groups.google.com/forum/#!forum/emscripten-discuss

Webassembly Module - https://github.com/WebAssembly/design/blob/master/Modules.md

Objective:

The main task of this project is to develop a web API for Image analysis for algorithms like Image
segmentation, Edge detection etc. to make these transformation easier. With the development of new
web platform “Webassemly” which will serve as a new language as well as a compile target to transform
c/c++ to low level binary format, this task could be made much easier. We tried to experiment how it
can be done and evaluate the performance of the three web languages namely, JS, Asm.js and
Webassembly. The final product of this experiment would be a web page with three paths to analyze the
image (Via. js, Asm.js and webassembly) and give you the fastest of them.

https://summerofcode.withgoogle.com/projects/#6491824516497408
mailto:jonas.almeida@stonybrook.edu
mailto:gunjan.sh123@gmail.com
https://github.com/gunjan-sh/webimg
https://github.com/gunjan-sh/webimg/commits/master
https://github.com/gunjan-sh/webimg/commits/gh-pages
https://gunjan-sh.github.io/webimg/
https://docs.google.com/document/d/1mKnoXTemK6b6tyTjrQNtfzUNC6V0xdjMi9zJ5tAtCOU/edit
https://summerofcode.withgoogle.com/projects/#6491824516497408
https://kripken.github.io/emscripten-site/docs/getting_started/Tutorial.html
https://groups.google.com/forum/#!forum/emscripten-discuss
https://github.com/WebAssembly/design/blob/master/Modules.md
https://github.com/WebAssembly/design/blob/master/Modules.md

What is Webassembly?

Webassembly is a joint initiation by Mozilla, Microsoft, Google and Apple to set a new standard for the
Web. Its goal is to be load-time efficient binary compiler target to achieve near-native computational
performance. WebAssembly code defines an AST (Abstract Syntax Tree) represented in a binary format.
It is a low-level asm.js subset of Java Script. It’s still in its initial phase of development so while using it
we may face a lot many errors even when the C/C++ codes are running correctly.

Browser Support for Webassembly:

Firefox nightly and Canary (Chrome) are the only browsers which support webassembly currently. If you
recently downloaded any of these, you need to go to their config setting and enable webassembly
support. For enabling webassembly in Firefox nightly you can do the following:

> Open a new tab in firefox nightly and open ‘about:config’ , then set
javascript.options.wasm to true.

How to get started!

The first step is to get acquainted with Emscripten, which is the tool for converting C/C++ code to asm.js.
An extension to it is Binaryen which compiles C/C++ to Wasm.js. Below is the stepwise description of
how to install it and the problems | faced. | worked in Linux environment so all the commands and
description refers to it.

Pre-download installs:

#Update the package lists

sudo apt-get update

Install *gec* (and related dependencies)
sudo apt-get install build-essential

Install cmake

sudo apt-get install cmake

Install Python

sudo apt-get install python2. 7

Install node.js

sudo apt-get install nodejs

Install Java (optional, only needed for Closure Compiler minification)
sudo apt-get install default-jre

Download:

Emscripten

You can directly download portable Emscripten SDK for Linux from
https://kripken.github.io/emscriptensite/docs/getting_started/downloads.html. After extracting the file
go inside the directory and run the following commands:

cd Downloads/emsdk_portable

JSJemsdk update

Download and install the latest SDK tools.

JSemsdk install latest

Set up the compiler configuration to point to the "latest” SDK.
Jemsdk activate latest

Linux/Mac 05 X only: Set the current Emscripten path

source JSemsdk envsh

https://kripken.github.io/emscriptensite/docs/getting_started/downloads.html

Note: these commands will install and activate the latest master branch. You need to run the last four
commands every time you start to use emscripten for the first session.

A lot of problem which | faced were because | used master branch and not the incoming branch. The
incoming branch of Emscripten has the latest developments after which they get merged to the master
branch. So to work with the latest issues so that we don’t face errors, you must install the
‘sdk-incoming-64bit’ branch of Emscripten. That can be done in the following way.

Jemsdk update

Jemsdk install sdk-incoming-64bit
Jfemsdk activate sdk-incoming-64bit
source .Jemsdk_env.sh

OpenCv Installation:
Followed: https://github.com/kakukogou/opencv/tree/opencvis

Binaryen:
Binaryen is a compiler and toolchain infrastructure library for WebAssembly, written in C++. It can be
used with Emscripten’s incoming branch and making the flag equal to 1 like follows:

.Jemcc sobel.c -0 sobel.html -s BINARYEN=1

Installation: https://github.com/kripken/emscripten/wiki/WebAssembly

Running the first program:

In the incoming directory run the following command to verify the install.

Jemee —v

As an introductory tutorial Emscripten official site has given Hello World tutorial.

Jemcc tests/hello_world.c -o hello js

This would generate a asm.js file. If you want to generate a html file which can run on your browser:

Jemece tests/hello_world.c —o hello.html

This would give us an html file as well as a .js file.

firefox hello.htmil

https://github.com/kakukogou/opencv/tree/opencvjs
https://github.com/kripken/emscripten/wiki/WebAssembly

this will open the html file in the browser.

This is a simple test program which will show you a .js file being generated from a C/C++ code, which is
pretty amazing. But | took this to next step by trying to convert an Edge detection code written in C/C++
to .js.

Tasks Completed:

The first task was building a web page using web picker API. | attended a workshop on Java script
conducted by my mentor which helped me a lot in developing this.

| wrote the Sobel Edge Detection algorithm in 4 languages C, C++, java script and MATLAB and compiled
the C and C++ code to Asm.js and wasm.js. | also compiled them to the html format.

Task Done:

JS code for image processing algorithm (Edge detection using Sobel Filter).
Matlab code for Edge Detection

C++ code for Edge detection using OpenCv.
Matlab code for Segmentation.

Setup Emscripten and tested for simple C codes.
Setup Emscripten for OpenCv platform.

Create a code in asm.js (using Emscripten)
Writing Hello World! in WebAssembly.

. Ccode for Edge detection without openCV

10. Compiled Asm.js from C code

11. Compiled Wasm.js, wasm.html from C code

©oNOU AWM P

Working on:

1. Compare the runtime performance
2. Create a JS application with 3 buttons, each to use the different implementation in JS, Asm.js,
WebAssembly.

Problems faced:

1. Installing Opencv: OpenCv is a very useful library when we talk about image processing. It
simplifies a major coding part mainly in reading the image, loading the image saving it, etc.
When | installed OpenCv | ran into the following error which took a lot of my time to solve but |
couldn’t. Finally | posted my query to the Emscripten group and in reply | was told to use the
‘incoming branch’ and not the master branch. After installing the incoming branch | got an error
saying it can’t find the header files. This issue is still unresolved and | am working on it.
https://groups.google.com/d/msg/emscripten-discuss/uaRH2R62WOk/hujMVI-WAQAJ

2. | tried to run the segmentation demos which is available here so that | can see if it could
generate asm.js code via Emscripten. But | faced the following error, which is still unresolved.
https://groups.google.com/d/msg/emscripten-discuss/uaRH2R62WOk/BaHVxOkfBwA)

https://github.com/kripken/emscripten/wiki/WebAssembly
https://groups.google.com/d/msg/emscripten-discuss/uaRH2R62WOk/hujMVl-WAQAJ
https://groups.google.com/d/msg/emscripten-discuss/uaRH2R62WOk/BaHVxOkfBwAJ

3. As | was getting a lot of errors using OpenCy, | decided to write new C code for Sobel edge
detection without using any library. The program asks for the input file name. The code gets
compiled correctly by running the following command:

.Jemcc sobel.c -o sobel.js

4.
This generates the asm.js file which when executed using ‘node’ like:
node sobel.js
It is not able to read the input when the input file name is entered. | posted the error to
Emscripten group (https://groups.google.com/forum/#!topic/emscripten-discuss/LuMkNzLuUBS8
) and in reply | came to now that Emscripten uses a virtual file system (so that it can work on the
web). So you must either preload or embed the files you want to access,
http://kripken.github.io/emscripten-site/docs/porting/files/packaging files.html
or use NODEFS whlch in node.j JS specnﬁcally lets you directly access files,
-nodefs
A tutorial preloading the data file can be found here:
http://kripken.github.io/emscripten-site/docs/getting_started/Tutorial.html#tutorial-files
Unfortunately, when | tried to preload the image, it still could not find the image.

Snapshots

gunjan@gunjan-Lenovo-Y700: ~/gsoc/emsdk-07-26-2016/emsdk portahle[emscrlpten[lncaming

gunjan@gunjan-Lenovo-Y700:
E gunjan@gunjan-Lenovo-Y700:

Generating sobel.html with file preloading. This will give asm.js and html file

https://groups.google.com/d/msg/emscripten-discuss/uaRH2R62WOk/BaHVxOkfBwAJ
https://groups.google.com/forum/#!topic/emscripten-discuss/LuMkNzLuUB8
http://kripken.github.io/emscripten-site/docs/porting/files/packaging_files.html
http://kripken.github.io/emscripten-site/docs/api_reference/Filesystem-API.html#filesystem-api-nodefs
http://kripken.github.io/emscripten-site/docs/api_reference/Filesystem-API.html#filesystem-api-nodefs
http://kripken.github.io/emscripten-site/docs/getting_started/Tutorial.html#tutorial-files

n-Lenovo-‘r’TGO:~/gsoc,’emsdk-0?-26-EG16,’en‘usdk;p.ortab1e/‘emscrtpten/incon'uingi. [|

gunjan@qunjan-Lenova-Y700: ~/gsoc/emsdk-07-26-2016/emsdk_portable/emscripten/incoming

gunjan@gunjan-Lenovo-Y700:~/gsoc/ensdk-07-26-2016/ensdk_portable/enscripten/incoming ./emcc te
gunjan@gunjan-Lenovo-Y700:~/gsoc/ensdk-07-26-2016/ensdk_portable/emscripten/incoming$ 1s

Generating Hello_world in wasm.htm with Binaryen

Conclusion

The experiment was only half successful as it was unable to produce asm.js and wasm.js code which
generate correct result. The reason being Emscripten and Binaryen are still in there developing phase
and Webassembly has still a long way to go to be used as a working language. Through this experiment |
learned that Webassembly can be a very powerful tool as it breaks the boundaries between the native
languages and Web languages.

Future work

The last step to complete this work would be to resolve the issues, most important being reading the
input image. After this is resolved, the performance evaluation between the three routes can be easily
done.

One can take the work one step further by building the algorithm for colored images without using any
library and convert it into asm.js and wasm.js for measuring performances.

References:

8.

9.

https://medium.com/javascript-scene/what-is-webassembly-the-dawn-of-a-new-era-61256ec5a

8f6#.3yxphom2e

https://hacks.mozilla.org/2015/12/compiling-to-webassembly-its-happening/

https://github.com/kripken/emscripten/wiki/WebAssembl

https://kripken.github.io/talks/wasm.html#/

https://wasm.news

https://github.com/mayflower/webassembly

https://github.com/WebAssembly/binaryen#buildin

http://cultureofdevelopment.com/blog/build-your-first-thing-with-web-assembly/

https://www.sitepoint.com/understanding-asm-js

10. Webassembly Module- https://github.com/WebAssembly/design/blob/master/Modules.md

Good Reads

https://hacks.mozilla.org/2016/03/a-webassembly-milestone/

https:

www.infog.com/presentations/webassembl

https://medium.com/javascript-scene/what-is-webassembly-the-dawn-of-a-new-era-61256ec5a8f6#.3yxphom2e
https://medium.com/javascript-scene/what-is-webassembly-the-dawn-of-a-new-era-61256ec5a8f6#.3yxphom2e
https://hacks.mozilla.org/2015/12/compiling-to-webassembly-its-happening/
https://github.com/kripken/emscripten/wiki/WebAssembly
https://kripken.github.io/talks/wasm.html#/
https://wasm.news/
https://github.com/mayflower/webassembly
https://github.com/WebAssembly/binaryen#building
http://cultureofdevelopment.com/blog/build-your-first-thing-with-web-assembly/
https://www.sitepoint.com/understanding-asm-js/
https://github.com/WebAssembly/design/blob/master/Modules.md
https://hacks.mozilla.org/2016/03/a-webassembly-milestone/
https://www.infoq.com/presentations/webassembly
https://hacks.mozilla.org/2016/03/a-webassembly-milestone/
https://hacks.mozilla.org/2016/03/a-webassembly-milestone/

	Web Image Analysis
	Introduction:
	Important links:
	Objective:
	What is Webassembly?
	Browser Support for Webassembly:

	How to get started!
	Pre-download installs:
	Download:
	Emscripten
	OpenCv Installation:
	Binaryen:

	Running the first program:

	Tasks Completed:
	Problems faced:
	Snapshots
	Conclusion
	Future work
	References:

