Units & Modules
A Wargame Modding Tutorial

How to modify (almost) whatever unit you want in Wargame Airland Battle.

Version: Almost slightly proper
Todo : finish => review => spelling stuffs

Prerequisites

e pen & paper (except if you can do without...)

e basic understanding of Enohka’s tools (tables, classes, instances, using the dictionaries,
installing a mod, etc..)

e Golden rule : never work on an original file, always use copies. Better have something
to make a fresh start than screwing up for all eternity.

e FOR CHRIST SAKE, DON'T TRY TO USE A MOD IN MULTIPLAYER. YOU MIGHT
GET SPANKED HARD ! Seriously we don’t know of the implication yet, so don't, just
don't.

Some stuffs are written in the dreadful language that is French, don’t worry it won’t hurt you and
| can even provide a translation, usually between parentheses.

Prerequisites
1) Understanding the unit structure

a) A unit’s Modules.
b) A module example : the dreadful WWeaponManager hydra.
1) A world of Turrets.
2) The Weapon Descriptor
3) Ammunition rules the nation.
2) The Modeling and TDepiction

Color coding (soon) :
Sure.
Need more investigation but pretty sure.

Just an uneducated guess.

1) Understanding the unit structure

First thing you have to do is to open dev\ndf\patchable\gfx\everything.ndfbin, everything (heh...)
will happen there.

The units are instances of the TUniteAuSolDescriptor (i.e GroundUnitsDescriptor in French)
class (id = 86) but despite its name, the class contains all units in the game, helicopter and
planes included.

The More You Know : the TUniteAuSolDescriptor can be considered as a specialization of the

TUnitDescriptor which contains every other kind of objects you can see in the game like

missiles, companies or smoke.

An instance of this class is constitued of many fields which describe a unit’'s behavior and stats:

Properties ?
Binld Id Name Type Biniary Value WValue
DB 01 00 0C| 475 Descriptorld Guid 0000000000000000000000 [00000000-0000-0000-0000-00008030000
DC 01000C|476 Modules List DE2400005C000000 Collection[23]
DD 01 00 OC{477 _ShortDatabaseMame TableString 220B0000 Descriptor_Unit_152mm_SpGH_Dana
DE 01 0000|478 ClassMameForDebug TableString 83080000 Unit_152mm_SpGH_Dana
DF 01 00 00479 StickToGround Boaolean 01 True
E0 0100 00 | 480 ArmorDescriptorFront ObjectReference DG24000050000000 93 : 9433 - TArmorDescriptor
E1 010000 |481 ArmorDescriptorSides ObjectReference DAZ24000050000000 93 : 9434 - TArmorDescriptor
E2 010000 |482 ArmorDescriptorRear ObjectReference DAZ24000050000000 93 : 9434 - TArmorDescriptor
E3 010000 (483 ArmorDescriptorTop ObjectReference DA2400005D000000 93 : 9434 - TArmarDescriptor
E4 010000 (484 ManageUnitOrientation Boolean o1 True
E5 0100 00 |485 HitRollSizeModifier Float32 CDCC4C3D 0,05
E6 010000 | 488 DeathExplosionAmmo ObjectReference DE2400005E000000 94 : 9435 - TAmmuniticn
E7 010000 |487 IconeType Int32 02000000 2
E8 010000 |488 PositionlnMenu Int32 04000000 4
E9 010000 |489 NamelnMenuToken LocalisationHash 8E14D59D2C0FE600 BE14D59D2C0FE600
EA 010000 490 Category Int32 03000000 3
EB 010000 |491 AcknowUnitType Int32 20000000 32
EC 010000492 TypeForAcknow Int32 77000000 119
ED 010000493 Nationalite Int32 01000000 1
EE 010000 424 MotherCountry TableString 37010000 TCH
EF 0100 00 |495 ProductionYear Ulnt32 B9070000 1977
F0 01 0000 |496 MaxPacks Ulnt32 03000000 3
F1010000 |487 UpgradeRequire ObjectReference 0E22000036000000 86 : 8718 - TUniteAuSolDescriptor
F2010000 |498 Factory Int32 0C000000 12
F3 0100 00 (499 ProductionPrice List OF000000 [Collection[3]
F4 010000 | 500 MaxDeployableAmount List 00000000 Collection[3]
F501 0000 (3501 ShowlnMenu List 01 [Collection[3]

Let’s go through all of them :

Some fields of the Cz Dana SPG descriptor instance.

e DescriptorID : the instance’s Id, nothing much to say and you probably won’t have to

touch this unless you want to remove/add units

e Modules : a list of different special instances of classes called “modules”, modules

control most of a unit’s behavior. They are very important for modding a units specific
part. We ‘ll see later how to work with them.

_ShortDataBaseName : probably useless ? No idea, really.
ClassNameForDebug : useless for modding.

StickToGround : boolean determining... well if a unit stick to the ground | guess ? This
field may have no use at all but seems to separate Helicopters from other kind of units.

The ArmorDescriptor(s) : reference to a TArmorDecriptor instance which determine the
armor value of the selected side. Armor values goes from 0 (null) to 23 (yes, 23) but are

still displayed going from 0 to 20 anyway.

ManageUnitOrientation : true = unit will always show they most armored side to the
greatest threat, false = unit will show whatever side their pathfinding made them to.

HitRollSizeModifier : float determining the accuracy malus/bonus due to the unit’s size
can be 0.05 (% ?) or -0.15.

DeathExplosionAmmo : refer to a TAmmunition instance, is probably used to determine
the explosion animation based on the Ammunition instance supplied. No idea yet about
how it works exactly.

IconeType (IconType) : integer pointing to a unit type list probably.

PositioninMenu : probably the unit’s position in the Armory, dunno if it's in a global list of
just whithin a category (TANK, INF, ect) menu. Might be just a remanent of WEE.

NamelnMenuToken : a localisation hash (hence a reference to the hash table of the unit
dictionary), it probably determine the unit’s name diplayed in the uit’s icon in the armory
and production menu.

Category : point to a category list (INF, REC, etc)

AcknowUnitType : probably determine a unit’'s audio acknow when given an order.
TypeForAcknow : honestly no idea...

Nationalite (Nationality) : determine a unit’s faction, null = NATO, 1 = Pact.

MotherCountry :The actual country of the unit. Thanks to Fleff for this one.

ProductionYear: pretty explicit.
MaxPack : number of card of said unit you can add in a deck.

UppgradeRequire : not formal use in WAB beside putting some vehicle in the same line
in the Armory.

Factory : change a unit’s category in the armory and production menu (in-game). Thanks
to homerfcb.

ProductionPrice: a unit’s cost(s), actually only the top cost of the list actually matter, the
rest are probably remanent of WEE or some old design, just dont care about the rest.

MaxDeployableAmmount : a list of a unit’'s avaibilities, each of the value refer to a
particular veterancy hence the first value is the avaibility at recruit vet'.

ShowInMenu : list of boolean determining if a unit can be viewable in the Armory.

ProductionTime: time need for the unit to appear at a reinforcement point (in seconds ?).
Is the same for all units in WAB vanilla.

CoutEtoile (StarCost) : relic of WEE and WAB early beta, useless.

TextureForinterface: refer to a TUITextureRessource, is basically the unit’s image in the
production menu, the small unit "cards" you see in menu.

TextureMotherCountryForinterface : The country flag used in the small unit "cards" you
see in menu.

UnitTypeToken : list of localisationhash that refer to a unit’s possible deck types
(motorized, etc...). Be sure to look for the hash at a interface_outgame.dic. Thanks to

AJE.

UnitMovingType : determine a unit’s locomotion type (tracked, wheeled...). Might be
useless since a proper module already take care of this.

VitesseCombat (CombatSpeed) : determine a unit’s locomotion speed ? Might be
useless since a proper module already take care of this.

IsPrototype : pretty explicit

TextureTransportForinterface : probably refer to the image used to represent infantry in a
transport.

e Key : absolutely no idea.

a) A unit’s Modules.

HitRollIECMModifier : Malus/bonus to hit roll due to ECM.

All and all, all the fields previously decribed only show a parcel of what is possible to be edited.
To modify specific stats, we need to take a look at the Modules list :

Troperties ?

Binld Id Name Type Biniary Value Walue

DE 01 0000|475 Descriptorld Guid 0000003000000000000000 [20000000-0000-0000-0000-0000 =
DC 01 00 00| 476 Modules List DE2400005C000000 Collection[23] -
Value Type

Map: Typelnit : 88 : 9410 - TModuleSelectar Map

Map: Flags : 89 : 9411 - TFlagsModuleDescriptor Map

Map: CriticModule : 88 : 9412 - TModuleSelector Map

Map: TargetCoordinatorMadule : 88 : 3413 - TModuleSelector Map

Map: Position : 88 : 9414 - TModuleSelector Map

Map: Inflammable : 88 : 9415 - TModuleSelector Map

Map: LinkTearn : 90 : 9416 - TLinkTeamModuleDescripter Map

Map: Experience : 88 : 9417 - TModuleSelector Map

Map: CompanyUnit : 88 : 9418 - TModuleSelector Map =
Map: ApparenceModel : 91 : 9419 - TApparenceModelMeduleDescriptor | Map

Map: Halo : 88 : 9420 - TModuleSelector Map

Map: MouvementHandler : 88 : 9421 - TModuleSelector Map

Map: WeaponManager : 88 : 9422 - TModuleSelector Map

Map: Damage : 88 : 3423 - TModuleSelector Map

Map: Visibility : 88 : 9424 - TModuleSelector Map

Map: Fuel : 88 : 9425 - TModuleSelector Map

Map: ScannerConfiguration : 88 : 9426 - TModuleSelector Map

Map: Scanner : 88 : 9427 - TModuleSelector Map

Map: GhostManager : B8 : 9428 - TModuleSelector Map

Map: Cadavre : B8 : 9429 - TModuleSelector Map 1™

The module list of the Dana.

Modules concern pretty much every aspects of a unit: its movement, its weapons, its fuel
consumption, its (received) damages , etc
Most of these module go first throught a (maybe) facade class (i.e ModuleSelector id = 88) only
a few of them don’t and directly access their module instance (AppearanceModel, LinkTeam,

etc.

).

The More You Know : Apparently, swapping a ModuleSelector with another (even if both point to
the same kind of module like a WeaponManager) makes the game to crash when calling the

modified unit.

List of Modules:
Modules whose content are left blank need more investigations about their nature.

e TypeUnit

e Flags

e CriticModule : manager determining whatkind of critic can a unit receive.
e TargetCoordinatorModule : constant among all unit instances.

e Position

e Inflammable : constant among all unit instances.

e LinkTeam : constant among all unit instances.

e CompanyUnit

e Experience: constant among all unit instances except for supply units.

e AppearanceModel : manage how a unit is rendere in-game, include : sounds, special
effects, models (meshes).

e Halo : probably manage the selection interface (the “halo” around a unit).
e MouvementHandler : control the way a unit moves, its speed and agility.
e WeaponManager : control the behavior and stats of a unit’'s weapons.

e Dammage

e Visibility

e Fuel

e ScannerConfiguration

e Scanner

e GhostManager

e Cadavre (corpse)

e MissileCarriage

e AttacheAeroport

e |AStratModule :

e StatEngine

e Debug : nothing for us to touch.

e Transportable : (for infantries only)
e Capturable : (for supply units only)

e Supply : (for supply units only)

Transporter : (for transport vehicles and helicopters only)

The ModuleSelector :

So you want to play around with a module, let’s say : the weapon manager, then you go
to the instance the module list is pointing you to, something like 88:2158.
And you find this :

Binld Id Name Type Biniary Value Value

1C020000) 540 ControllerName TableString 77120000 WeaponManagerContre
1002 0000|541 Selection List 1040000064000000 Collection[1]
1E020000 | 542 Default OhjectReference 204000006D000000 109: 16429 - TWeaponl
2602 0000|350 [nitStage Unset null

You find there a buch of fields :
e ControllerName : well, it's basically the kind of module you are looking for.

e Selection: is a list of references (but usualy only one and is pretty much alway the same)
to ModuleFilter. Now | have no idea what it exactly filters but | suspect it is the culprit of
crashes when swapping ModuleSelector. It's a mysterious entity but thanksfully you don’t
need it to mod (for now).

e Default : is the module we are looking for, basically when you are working on a
ModuleSelector, that’s the only valuable field for you, you can discard the rest as “Eugen
magic”. For instance, for a WeaponController, this field point to our unit’s
TWeaponManagerModuleDescriptor, just go there.

e InitStage : USELESS EXCEPT FOR IA STUFFS, DON'T BOTHER (yet).
Now you finally manage to get the module descriptor you want, good job !
Next ? Well, it depends on what module you ‘ve selected each work in a specific way, so far I've

only done Mouvement (movement), Weapons and Appearance modules. The other might come
soon in this tutorial but let’s begin with what | bet you want.

b) A module example : the dreadful WeaponManager hydra.
Okay so, are you ready ?

Now that you found a WeaponManager you’d like to modify, let’'s get down to business :

Binld Id Name) Type Biniary Value Value

JE02 0000 638 ControllerMame TableString 77120000 WeaponManagerController
8002 0000|640 Salves List FFFFFFFF Collection[g]

TF0Z2 0000|639 TurretDescriptorList List 595700008 FOO0000 Collection[1]

A WeaponManagerModuleDescriptor, no idea whose unit is it from.

We've got 3 fields:

e ControllerName : pretty explicit huh ?

e Salves (salvos) : it's a list of integer that (may) determine the number of salvos avaible
of a turret (I get about this in a line). Most of the time Salvos = ammo since except for
units that shot many ammo in a single salvo (like autocanons).

e TurretsDescriptorList : contains the list of turretDescriptor a unit have.

The most important part is of course the Turret list, in my example ther is only one turret but it
have bazillion of turret (or more exactly as much as the game can handle); let's see what it is !

1) A world of Turrets.

So | was cool but | didn’t said what is a turret yet. | guess you kinda know already. In real life, a
turret is the stuff that move a tank canon..

In Wargame, it is worse than that. EVERY weapons is mounted on a turret.

And that include, rockets, infantry rifles, ATGM and even bombs. In the game, a turret is a
container for weapons and determines how a unit behave before shooting : for instance, a tank
will turn its turret toward an ennemy using a rotation speed and a plane will put himself at a
certain altitude before bombing. These behaviors are described in these TurretsDescriptor.

How does it do this ?

Well, there are many kind of turret descriptors some are pretty generic :
TTurretTwoAxisDescriptor and TTurretUnitDescriptor and some are more specialized descriptor
: TTurretinfanterieDescriptor (for Infantry units) and TTurretBombardierDescriptor (for bombing
weaponery).

The TTurretTwoAxisDescriptor is the most used kind of turret, it designs a turret that can rotate
over 2 axis like... any tank turret.

For know let’s return to our example:

[Zi TTurretTwolxisDescriptor : =) B |
TTurretTwelxisDescriptor : 22361
Binld Id Mame Type Biniary Value Value
1303 0000|787 MBFX Int32 03000000 3
1403 0000|788 MountedWeaponDescriptorList List CAGE0000ACO00000 Collection[1]
15030000 (782 Tag TableString 20160000 tourellel
1603 0000|790 Taglndex Ulnt32 01000000 1
17030000 7591 VitesseRotation Float32 920AB63F 1047198
1803 0000|792 AngleRotationMax Float32 DBOFC340 6,283185
19030000793 AngleRotationMaxPitch Float32 DBOF493F 07853982
1A030000|794 AngleRotationBasePitch Float32 C2BA323E 01745329
1B 030000 (795 UnitldleManagerDescriptor ObjectReference CB&E0000B7000000 183 : 26827 - TUnitldleManagerDCADescr|
1C030000(796 TargetPasitionPhysicalPropertyMame Unset rull
1003 0000|797 FlyingTimeAndHitPhysicalPropertyName | Unset null
1E 03 0000|798 AngleRotationMinPitch Float32 CZBE32BE -0,1745329
06030000 (918 AngleRotaticnBase Unset null
Type Value

This our turret descriptor, it has quite a few fieds that determine the turret’s “physic”:

VitesseRotation (RotationSpeed)

Various angles

A tag and tag Index for the turret

A idleManagerDescriptor to determine the idle animation (by the name of it, we can
deduce our weapon is a AA weapon since DCA = AA in French).

e And most importantly: a list that contains all the weapons monted on that turret.

A turret can have a lot of weapons, it is usually done for “co-linear” weapons like ATGM tanks,
autocanon and low velocity canon on the BMP3, etc

Here the turret only contains a single weapons, it refers to a TMountedWeaponsDescriptor
instance, let’s go there.

2) The Weapon Descriptor

Her is what you can find in a TMountedWeaponsDescriptor:

8 Tt g W——— e
e —

ThMountedWeaponDescriptor : 26826
Binld Id MNarme Type Biniary Value Value
OE 04 00 00 (1038 Ammunition ObjectReference OFEEQDO0SEOQOO00 94 : 36367 - TAmmunition
OF 04 0000 | 1039 EffectTag TableString BE160000 'weapon_effet_tagl
1004 00 00 (1040 SalvoStocklndex Unset null
11040000 (1041 TirEnMouvement Unset null
1204 00 00 (1042 TirCantinu Unset null
1304 00 00 (1043 AnimateCnlyOneSoldier Unset null
Type Value

It contains fields that determine the weapon’s firing procedures : TirEnMouvement
(FireWhileMoving), TirContinu (SustainedFire), some animation for the infantry for LMGs and
rockets lunchers.

But the most important part is the Ammunition fields, it refers to a TAmmunition instance and
(despite its name) this is where you ‘Il be able to modify whatever you want about the weapon.

3) Ammunition rules the nation.

Okay, there wasn’t much to do gameplay-wise (but that was still interesting, right ? right ?) but
now we ‘ll get into real business. The TAmmunition class is the container of most of the stuff that
have teared apart the official forum and drained much whiney’s tears.

So yeah, it basically looks like this:

Properties Elﬂ ?
Binld Id Name Type Biniary Value Value
2B 020000 [555 Descriptorld Guid 0000000000000000060000 |00000000-0000-0000-0600-0000:
2C02 0000|356 Name LocalisationHash SCF6380000000000 SCFE380000000000
2D 02 00 00357 TypeMame LocalisationHash SCFE380000000000 SCFE380000000000
2E 020000 358 Typehrme LocalisationHash SCF&380000000000 SCFE380000000000
2F 020000 [359 Arme UlInt32 04000000 4
30020000 (360 ProjectileType Ulnt32 03000000 3
31020000 (361 Puissance Float32 0000FA43 500
32020000562 TempsEntreDeuxTirs Float32 0000003F 0,5
33020000363 PortesMaximale Float32 00204B48 208000
34020000564 AngleDispersion Float32 CDCCCC3b 01
350200003565 RadiusSplashSuppressDamages |Float32 00204E47 52000
36020000366 SuppressDamages Float32 00003443 180
37020000367 RayonPinned Float32 00804246 20800
38020000568 Tirlndirect Boolean 01 True
39020000 (569 TirReflexe Boolean 01 True
3402 0000|570 FX_tir_sans_physic Boolean 01 True
3B020000(371 FX _vitesse_de_depart Float32 00401C46 10000
3C020000(572 FX_frottement Float32 6F128334 0,001
D02 0000(573 F¥_tir_tendu Boolean 01 True
ZE020000(574 TempsEntreDeuxSalves Float32 00004040 5
3F020000 (375 MNbrProjectilesSimultanes Ulnt32 01000000 1
40020000|578 NbTirParSalves Ulnt32 01000000 1
41020000577 AffichageMunitionParSalve Ulnt32 01000000 1
42020000]|578 Level Int32 05000000 5
43020000579 HitRollRule ObjectReference 2540000075000000 117 : 168421 - TWargameHitRollRL
4402 0000|380 FireDescriptor ObjectReference 2640000076000000 118: 18422 - TUniteDescriptor
4502 0000|581 FireTriggeringProbability Float32 9AS9193E 0,15

Lot of stuff to see, but we won’t go throught all parameters, Darkmils’s guide will give you more
informations about them. But | will show you the more “correct way to change stuffs.

The more important thing to understand is that changing a TAmmunition instance may change
the stat of more than a single unit. For instance, if you change stuffs on the Stinger Tammunition
instance, you effectvely change stuffs on the Stinger team but also on the OH-58C or the

Avenger.

This happen because those units refer to the same TAmmunition instance, every time you play
around with something that is “refered”, keep in mind that more than one object may be refering
it when modifying the properties. This is the source of many errors.

Stinger Team TTurret TMountedWeapon

\

TAmmunition

Stinger instance

Avenger TTurret TMountedWeapon

Now let’s try to modify something, let’s say you want to modify the accuracy.
The accuracy is determined by the HitRoleRule parameter, it’'s a reference to a
TWargameHitRollRule instance. Let’s go there.

@ TWargameHitRollRule

TWargameHitRcllRule : 46824
Binld Id Mame Type Biniary Value Value
9302 00 00 [665 MinimalHitProbability Float32 CDCC4csD 0,05
94 02 0000|656 MinimalCritProbability Float32 0AD7233C 001
OB 05 0000|1241 HitProbability Float32 CDCCAC3E 0,2
0C 0500001292 HitProbabilityWhileMoving Float3d CDCCAcsD 0,05

You can see many (like, 4...) parameters that define the hit probability and many other things
such as stabilizer efficiency and critical probability...

Please note that the accuracy (just like many other parameter) isn’t put in the same way as you
can read it in-game. Here it's a pure proba value (therefore, somewhere between 0 and 1) while
in-game it is a pure unsigned integer (between 0 and 14). The translation between those values
is done automatically, don’t bother about. If you are interested about it, look around the
TWargameUniteDescriptor’s unique intance.

The easiest way to modify it is simply to change the parameter... but remember what |
previously said : you would then not only modify the accuracy of the weapon you want but also

all those that refer to that particular TWargameHitRollIRule instance. It's clearly not what you
want so what you have to do is:
1. Look around the TWargameHitRollRule instances for an instance that match what you
want. (Or if it doesn’t exist, add it when the mod tools will able you to do so).
2. Go back to the TAmmunition instance and change the TWargameHitRollRule.

This way you ‘Il only change this particular TAmmunition.

2) Modeling and Depiction

Interruptions interruptions....
Oh God too much people are watching me, | feel pressured. :s Don’t mind the typos. :<

	Units & Modules
	 A Wargame Modding Tutorial
	Prerequisites
	1) Understanding the unit structure
	​a) A unit’s Modules.
	​b) A module example : the dreadful WeaponManager hydra.
	​​​1) A world of Turrets.
	​​​2) The Weapon Descriptor
	​​​3) Ammunition rules the nation.

	2) Modeling and Depiction
	

