
Units & Modules

 A Wargame Modding Tutorial

How to modify (almost) whatever unit you want in Wargame Airland Battle.

Version: Almost slightly proper

Todo : finish => review => spelling stuffs

Prerequisites

●​ pen & paper (except if you can do without…)
●​ basic understanding of Enohka’s tools (tables, classes, instances, using the dictionaries,

installing a mod, etc..)
●​ Golden rule : never work on an original file, always use copies. Better have something

to make a fresh start than screwing up for all eternity.
●​ FOR CHRIST SAKE, DON’T TRY TO USE A MOD IN MULTIPLAYER. YOU MIGHT

GET SPANKED HARD ! Seriously we don’t know of the implication yet, so don’t, just
don’t.

Some stuffs are written in the dreadful language that is French, don’t worry it won’t hurt you and
I can even provide a translation, usually between parentheses.

Prerequisites
1) Understanding the unit structure

a) A unit’s Modules.
b) A module example : the dreadful WeaponManager hydra.

1) A world of Turrets.
2) The Weapon Descriptor
3) Ammunition rules the nation.

2) The Modeling and TDepiction

Color coding (soon) :
Sure.
Need more investigation but pretty sure.

Just an uneducated guess.

1) Understanding the unit structure

First thing you have to do is to open dev\ndf\patchable\gfx\everything.ndfbin, everything (heh...)
will happen there.

The units are instances of the TUniteAuSolDescriptor (i.e GroundUnitsDescriptor in French)
class (id = 86) but despite its name, the class contains all units in the game, helicopter and
planes included.

The More You Know : the TUniteAuSolDescriptor can be considered as a specialization of the
TUnitDescriptor which contains every other kind of objects you can see in the game like
missiles, companies or smoke.

An instance of this class is constitued of many fields which describe a unit’s behavior and stats:

Some fields of the Cz Dana SPG descriptor instance.

Let’s go through all of them :

●​ DescriptorID : the instance’s Id, nothing much to say and you probably won’t have to
touch this unless you want to remove/add units​

●​ Modules : a list of different special instances of classes called “modules”, modules

control most of a unit’s behavior. They are very important for modding a units specific
part. We ‘ll see later how to work with them.​

●​ _ShortDataBaseName : probably useless ? No idea, really.​

●​ ClassNameForDebug : useless for modding.​

●​ StickToGround : boolean determining… well if a unit stick to the ground I guess ? This
field may have no use at all but seems to separate Helicopters from other kind of units.​

●​ The ArmorDescriptor(s) : reference to a TArmorDecriptor instance which determine the
armor value of the selected side. Armor values goes from 0 (null) to 23 (yes, 23) but are
still displayed going from 0 to 20 anyway.​

●​ ManageUnitOrientation : true = unit will always show they most armored side to the
greatest threat, false = unit will show whatever side their pathfinding made them to.​

●​ HitRollSizeModifier : float determining the accuracy malus/bonus due to the unit’s size
can be 0.05 (% ?) or -0.15.​

●​ DeathExplosionAmmo : refer to a TAmmunition instance, is probably used to determine
the explosion animation based on the Ammunition instance supplied. No idea yet about
how it works exactly.​

●​ IconeType (IconType) : integer pointing to a unit type list probably.​

●​ PositionInMenu : probably the unit’s position in the Armory, dunno if it’s in a global list of
just whithin a category (TANK, INF, ect) menu. Might be just a remanent of WEE.​

●​ NameInMenuToken : a localisation hash (hence a reference to the hash table of the unit
dictionary), it probably determine the unit’s name diplayed in the uit’s icon in the armory
and production menu.​

●​ Category : point to a category list (INF, REC, etc)​

●​ AcknowUnitType : probably determine a unit’s audio acknow when given an order.​

●​ TypeForAcknow : honestly no idea…​

●​ Nationalite (Nationality) : determine a unit’s faction, null = NATO, 1 = Pact.​

●​ MotherCountry :The actual country of the unit. Thanks to Fleff for this one.​

●​ ProductionYear: pretty explicit.​

●​ MaxPack : number of card of said unit you can add in a deck.​

●​ UppgradeRequire : not formal use in WAB beside putting some vehicle in the same line
in the Armory.​

●​ Factory : change a unit’s category in the armory and production menu (in-game). Thanks
to homerfcb.​

●​ ProductionPrice: a unit’s cost(s), actually only the top cost of the list actually matter, the
rest are probably remanent of WEE or some old design, just dont care about the rest.​

●​ MaxDeployableAmmount : a list of a unit’s avaibilities, each of the value refer to a
particular veterancy hence the first value is the avaibility at recruit vet’.​

●​ ShowInMenu : list of boolean determining if a unit can be viewable in the Armory.​

●​ ProductionTime: time need for the unit to appear at a reinforcement point (in seconds ?).​
Is the same for all units in WAB vanilla.​

●​ CoutEtoile (StarCost) : relic of WEE and WAB early beta, useless.​

●​ TextureForInterface: refer to a TUITextureRessource, is basically the unit’s image in the
production menu, the small unit "cards" you see in menu.​

●​ TextureMotherCountryForInterface : The country flag used in the small unit "cards" you
see in menu.​

●​ UnitTypeToken : list of localisationhash that refer to a unit’s possible deck types
(motorized, etc…). Be sure to look for the hash at a interface_outgame.dic. Thanks to
AJE.​

●​ UnitMovingType : determine a unit’s locomotion type (tracked, wheeled…). Might be
useless since a proper module already take care of this.​

●​ VitesseCombat (CombatSpeed) : determine a unit’s locomotion speed ? Might be
useless since a proper module already take care of this.​

●​ IsPrototype : pretty explicit​

●​ TextureTransportForInterface : probably refer to the image used to represent infantry in a
transport.​

●​ Key : absolutely no idea.​

●​ HitRollECMModifier : Malus/bonus to hit roll due to ECM.

​ a) A unit’s Modules.

All and all, all the fields previously decribed only show a parcel of what is possible to be edited.
To modify specific stats, we need to take a look at the Modules list :

The module list of the Dana.

Modules concern pretty much every aspects of a unit: its movement, its weapons, its fuel
consumption, its (received) damages , etc
Most of these module go first throught a (maybe) facade class (i.e ModuleSelector id = 88) only
a few of them don’t and directly access their module instance (AppearanceModel, LinkTeam,
etc…).

The More You Know : Apparently, swapping a ModuleSelector with another (even if both point to
the same kind of module like a WeaponManager) makes the game to crash when calling the

modified unit.

List of Modules:
Modules whose content are left blank need more investigations about their nature.

●​ TypeUnit​

●​ Flags​

●​ CriticModule : manager determining whatkind of critic can a unit receive.​

●​ TargetCoordinatorModule : constant among all unit instances.​

●​ Position​

●​ Inflammable : constant among all unit instances.​

●​ LinkTeam : constant among all unit instances.​

●​ CompanyUnit​

●​ Experience: constant among all unit instances except for supply units.​

●​ AppearanceModel : manage how a unit is rendere in-game, include : sounds, special
effects, models (meshes).​

●​ Halo : probably manage the selection interface (the “halo” around a unit).​

●​ MouvementHandler : control the way a unit moves, its speed and agility.​

●​ WeaponManager : control the behavior and stats of a unit’s weapons.​

●​ Dammage​

●​ Visibility​

●​ Fuel​

●​ ScannerConfiguration​

●​ Scanner​

●​ GhostManager​

●​ Cadavre (corpse)​

●​ MissileCarriage​

●​ AttacheAeroport​

●​ IAStratModule : ​

●​ StatEngine​

●​ Debug : nothing for us to touch.​

●​ Transportable : (for infantries only)​

●​ Capturable : (for supply units only)​

●​ Supply : (for supply units only)​

●​ Transporter : (for transport vehicles and helicopters only)

The ModuleSelector :
​ So you want to play around with a module, let’s say : the weapon manager, then you go
to the instance the module list is pointing you to, something like 88:2158.
And you find this :

You find there a buch of fields :

●​ ControllerName : well, it’s basically the kind of module you are looking for.​

●​ Selection: is a list of references (but usualy only one and is pretty much alway the same)
to ModuleFilter. Now I have no idea what it exactly filters but I suspect it is the culprit of
crashes when swapping ModuleSelector. It’s a mysterious entity but thanksfully you don’t
need it to mod (for now).​

●​ Default : is the module we are looking for, basically when you are working on a

ModuleSelector, that’s the only valuable field for you, you can discard the rest as “Eugen
magic”. For instance, for a WeaponController, this field point to our unit’s
TWeaponManagerModuleDescriptor, just go there.​

●​ InitStage : USELESS EXCEPT FOR IA STUFFS, DON’T BOTHER (yet).

Now you finally manage to get the module descriptor you want, good job !​
Next ? Well, it depends on what module you ‘ve selected each work in a specific way, so far I’ve
only done Mouvement (movement), Weapons and Appearance modules. The other might come
soon in this tutorial but let’s begin with what I bet you want.​

​ b) A module example : the dreadful WeaponManager hydra.

Okay so, are you ready ?

Now that you found a WeaponManager you’d like to modify, let’s get down to business :

A WeaponManagerModuleDescriptor, no idea whose unit is it from.

We’ve got 3 fields:

●​ ControllerName : pretty explicit huh ?
●​ Salves (salvos) : it’s a list of integer that (may) determine the number of salvos avaible

of a turret (I get about this in a line). Most of the time Salvos = ammo since except for
units that shot many ammo in a single salvo (like autocanons).

●​ TurretsDescriptorList : contains the list of turretDescriptor a unit have.

The most important part is of course the Turret list, in my example ther is only one turret but it
have bazillion of turret (or more exactly as much as the game can handle); let’s see what it is !

​ ​ ​ 1) A world of Turrets.

So I was cool but I didn’t said what is a turret yet. I guess you kinda know already. In real life, a
turret is the stuff that move a tank canon..
In Wargame, it is worse than that. EVERY weapons is mounted on a turret.
And that include, rockets, infantry rifles, ATGM and even bombs. In the game, a turret is a
container for weapons and determines how a unit behave before shooting : for instance, a tank
will turn its turret toward an ennemy using a rotation speed and a plane will put himself at a
certain altitude before bombing. These behaviors are described in these TurretsDescriptor.

How does it do this ?

Well, there are many kind of turret descriptors some are pretty generic :
TTurretTwoAxisDescriptor and TTurretUnitDescriptor and some are more specialized descriptor
: TTurretInfanterieDescriptor (for Infantry units) and TTurretBombardierDescriptor (for bombing
weaponery).
The TTurretTwoAxisDescriptor is the most used kind of turret, it designs a turret that can rotate
over 2 axis like… any tank turret.

For know let’s return to our example:

This our turret descriptor, it has quite a few fieds that determine the turret’s “physic”:

●​ VitesseRotation (RotationSpeed)
●​ Various angles
●​ A tag and tag Index for the turret
●​ A idleManagerDescriptor to determine the idle animation (by the name of it, we can

deduce our weapon is a AA weapon since DCA = AA in French).
●​ And most importantly: a list that contains all the weapons monted on that turret.

A turret can have a lot of weapons, it is usually done for “co-linear” weapons like ATGM tanks,
autocanon and low velocity canon on the BMP3, etc
Here the turret only contains a single weapons, it refers to a TMountedWeaponsDescriptor
instance, let’s go there.

​ ​ ​ 2) The Weapon Descriptor

Her is what you can find in a TMountedWeaponsDescriptor:

It contains fields that determine the weapon’s firing procedures : TirEnMouvement
(FireWhileMoving), TirContinu (SustainedFire), some animation for the infantry for LMGs and
rockets lunchers.
But the most important part is the Ammunition fields, it refers to a TAmmunition instance and
(despite its name) this is where you ‘ll be able to modify whatever you want about the weapon.

​ ​ ​ 3) Ammunition rules the nation.

Okay, there wasn’t much to do gameplay-wise (but that was still interesting, right ? right ?) but
now we ‘ll get into real business. The TAmmunition class is the container of most of the stuff that
have teared apart the official forum and drained much whiney’s tears.

So yeah, it basically looks like this:

Lot of stuff to see, but we won’t go throught all parameters, Darkmils’s guide will give you more
informations about them. But I will show you the more “correct way to change stuffs.
The more important thing to understand is that changing a TAmmunition instance may change
the stat of more than a single unit. For instance, if you change stuffs on the Stinger Tammunition
instance, you effectvely change stuffs on the Stinger team but also on the OH-58C or the
Avenger.
This happen because those units refer to the same TAmmunition instance, every time you play
around with something that is “refered”, keep in mind that more than one object may be refering
it when modifying the properties. This is the source of many errors.

Now let’s try to modify something, let’s say you want to modify the accuracy.
The accuracy is determined by the HitRoleRule parameter, it’s a reference to a
TWargameHitRollRule instance. Let’s go there.

You can see many (like, 4…) parameters that define the hit probability and many other things
such as stabilizer efficiency and critical probability…

Please note that the accuracy (just like many other parameter) isn’t put in the same way as you
can read it in-game. Here it’s a pure proba value (therefore, somewhere between 0 and 1) while
in-game it is a pure unsigned integer (between 0 and 14). The translation between those values
is done automatically, don’t bother about. If you are interested about it, look around the
TWargameUniteDescriptor’s unique intance.

The easiest way to modify it is simply to change the parameter… but remember what I
previously said : you would then not only modify the accuracy of the weapon you want but also

all those that refer to that particular TWargameHitRollRule instance. It’s clearly not what you
want so what you have to do is:

1.​ Look around the TWargameHitRollRule instances for an instance that match what you
want. (Or if it doesn’t exist, add it when the mod tools will able you to do so).

2.​ Go back to the TAmmunition instance and change the TWargameHitRollRule.

This way you ‘ll only change this particular TAmmunition.

2) Modeling and Depiction

Interruptions interruptions….
Oh God too much people are watching me, I feel pressured. :s Don’t mind the typos. :<

	Units & Modules
	 A Wargame Modding Tutorial
	Prerequisites
	1) Understanding the unit structure
	​a) A unit’s Modules.
	​b) A module example : the dreadful WeaponManager hydra.
	​​​1) A world of Turrets.
	​​​2) The Weapon Descriptor
	​​​3) Ammunition rules the nation.

	2) Modeling and Depiction
	

