Kartaverse Workflows | Jupyter
Notebook for Resolve/Fusion

DRAFT Edition
Created 2022-09-14 Last Updated 2022-09-14 09.11 PM GMT -3
By Andrew Hazelden <andrew@andrewhazelden.com>

jupyter

Overview

This guide is designed to help you set up a virtual environment to run Jupyter Notebook +
Resolve/Fusion.

This combination can be used to take post-production workflow automation to the next level,
and allows computer vision, machine learning, data science, and other tasks to be done as
part of a video creation process.

It is expected that you have Resolve Studio or Fusion Studio v18 installed, along with a
64-bit version of Python ranging from v3.6 - v3.10. On Windows, when you install Python3
x64, you need to enable the option to add Python to your System PATH environment
variable.

mailto:andrew@andrewhazelden.com
https://jupyter.org

& Python 3.10.4 (64-bit) Setup — X

Install Python 3.10.4 (64-bit)

Select Install Mow to install Python with default settings. or choose
Customize to enable or disable features.

— Install Now
ChUsers'wix\ AppData‘Local\Programs\Python'Python310

Includes IDLE, pip and documentation
Creates shortcuts and file associations

= Customize installation
Choose location and features

python
for Install launcher for all users (recommended)

Wiﬂd()WS Add Python 3.10 to PATH el

For this WIP experiment we are importing and using the Python "imp" module to access the
"Fusionscript.dll" library. In Python v3.12+ we will eventually need to switch over to using
"importlib" instead of "imp" for compatibility.

As a troubleshooting step, make sure you've temporarily quit the Fusion Render Node
program on your workstation. Also you need to ensure you have either Resolve Studio or
Fusion Studio open but not both of them at the same time.

An important detail that you need to avoid glossing over when reading this guide is that
external scripting via Python is a "paid feature" in the BMD ecosystem that requires Resolve

Studio or Fusion Studio. This means you won't be able to follow along with this guide if you
only have Resolve (Free) installed.

Install Python3's virtual environment library

Let's add the Python virtualenv module to our systems.

In a Terminal/Command Prompt session run:

pip3 install virtualenv

Create the JupyterFusion environment

A virtual environment lets you tinker with libraries and content without affecting the rest of
your computer's settings. This is a handy feature to have access to when installing Python
based modules and other resources.

We are going to create a new virtual environment called "JupyterFusion" that is placed at the
root of our user account folder.

From a macOS / Linux Terminal session run:

cd S$HOME/
virtualenv JupyterFusion

From a Windows Command Prompt session run:

cd %USERPROFILE%\
virtualenv JupyterFusion

Activate the Environment

The next step in using virtual environments is to navigate to the new folder and to activate it.
This will modify the currently active environment variables.

From a macOS / Linux Terminal session run:

cd $HOME/JupyterFusion/
source bin/activate

From a Windows Command Prompt session run:

cd $USERPROFILE%\JupyterFusion\
Scripts\activate.bat

Install Jupyter

Now we are ready to install Jupyter Notebook in our new virtual environment.

In a Terminal/Command Prompt session run:

pip3 install jupyter

Start Jupyter Notebook

Let's start up Jupyter for the first time. Jupyter has a web-based GUI that works by running a
small webserver on your local system at port 8888.

From a macOS / Linux Terminal session run:

mkdir -p S$HOME/JupyterFusion/notebooks
cd $HOME/JupyterFusion/notebooks
jupyter notebook

From a Windows Command Prompt session run:

mkdir $USERPROFILE$\JupyterFusion\notebooks
cd $USERPROFILE%$\JupyterFusion\notebooks
jupyter notebook

Open your local web browser to:
http://localhost:8888/notebooks/

To run Jupyter Notebook again:
The next time you want to access Jupyter you can type in the following syntax:

From a macOS / Linux Terminal session run:

source S$HOME/JupyterFusion/bin/activate
cd $HOME/JupyterFusion/notebooks
jupyter notebook

From a Windows Command Prompt session run:

$USERPROFILES$\JupyterFusion\Scripts\activate.bat
cd $USERPROFILE$\JupyterFusion\notebooks
jupyter notebook

Let's create a new notebook

In Jupyter Notebook's web based interface, click on the "New" button and select "Python 3
(ipykernel)". This will add a notebook we can use for Python3 scripting in Resolve/Fusion
v18.

http://localhost:8888/notebooks/

-‘ Safari File Edit View History Bookmarks Develop Window Help

(V2 : | localhost:8888/tree

Home Page - Selact or create a notsbook

~ Jupyter Quit Logout
Files Running Clusters

Select items to perform actions on them. Upload o

Notebook:
0 - B/ Name« Python 3 (ipykernel) o
The notebook list is empty. Other:

Text File
Folder
Terminal

Open #localhost:8888/tree# on this page in a new tab

Click on the heading at the top left of the webpage labelled "Untitled".

@ safari File Edit View History Bookmarks Develop Window Help

[] M ~ V8N + | localhost:8888/notebooks/Untitled.ipynb?kernel_name=python3

Untitled - Jupyter Notebook

: Jupyter Untitled Last Checkpoint: 2 minutes ago (autosaved) P Logout
File Edit View Insert Cell Kernel Widgets Help Trusted \ Python 3 (ipykernel) O
B+ x @ B 4 % PRn B C W || Code ON-=-}
In []:

This will display a Rename Notebook dialog that will allow us to rename the Jupyter
notebook to "JupyterFusion".

Rename Notebook

Enter a new notebook name:

JupyterFusion |

Note: The toolbar pop-up menu item labelled "Code" can be changed to other options like
"Markdown" to allow you to customize what can be added to the individual blocks of code.

Add the Python Code

Let's paste the following content below into the individual Jupyter Notebook cells we create.

Click in the first cell. Change the cell type from "Code" to "Markdown". Markdown is a
documentation formatting system for making notes that have styled text.

‘ v. Jupyter JupyterFusion Last Checkpoint: a few seconds ago (autosaved) ﬁ Logout

File Edit View Insert Cell Kemel Widgets Help Trusted | Python 3 (ipykemnel) O

+ | % A B 4 ¥ PRin B C W | Warkdown v 3

Jupyter Fusion v0.1 2022-09-12

A WIP example that shows how to connect a Jupyter Notebook session to Resolve Studio 18 or Fusion Studio 18.

Tip: If you are running Resolve Studio, make sure to quit the "Fusion Studio” and "Fusion Render Mode" processes on
this workstation to avoid binding to those external applications.

Markdown Cell Content:

Jupyter Fusion v0.1 2022-09-12

A WIP example that shows how to connect a Jupyter Notebook session to Resolve
Studio 18 or Fusion Studio 18.

Tip: If you are running Resolve Studio, make sure to quit the "Fusion Studio"
and "Fusion Render Node" processes on this workstation to avoid binding to those
external applications.

Now we are going to use the "Insert > Insert Cell Below" menu item each time we add
another block of Python code.

Insert Cell Kernel

Insert Cell Above '
Insert Cell Below

The remaining cells of text are all "code" type content.

: Ju pyter JupyterFusion Last Checkpoint: a minute ago {autosaved) ﬁ Logout

File Edit View Insert Cell Kemnel Widgets Help Trusted | Python 3 (ipykernel) O

+ 3= & B 4+ & pRun B C W Markdown v =3

Jupyter Fusion v0.1 2022-09-12

A WIP example that shows how to connect a Jupyter Notebook session to Resolve Studioc 18 or Fusion Studio 18.

Tip: If you are running Resolve Studio, make sure to quit the "Fusion Studio” and "Fusion Render Node" processes on
this workstation to avoid binding to those external applications.

In [24]: import sys, os
from pprint import pprint

try:
import imp
except DeprecationWarning:
Python 3.12+ requires the use of importlib instead of imp

def FuScriptLib():

lib_path = ""
if sys.platform.startswith("darwin"):
lib_path = "/Applications/DaVinci Resolve/DaVinci Resolve.app/Contents/Libraries/Fusion/fusionscript.so”

#Lib_path = “/Applications/Blackmagic Fusion 18/Fusion.app/Contents/MacOS/fusionscript.so”

#Lib_path = /Applications/Blackmagic Fusion 18 Render Node/Fusion Render Node.app/Contents/Mac05/fusionscript.so
elif sys.platform.startswith("win"):

1ib_path = "C:\\Program Files\\Blackmagic Design\\DaVinci Resolve\\fusionscript.dl1l”

#Lib_path = "C:\\Program Files\\Blackmagic Design\\Fusion 18\\fusionscript.dlL"

#Lib_path = "C:\\Program Files\\Blackmagic Design\\Fusion Render Node 18\\fusionscript.dLL”
elif sys.platform.startswith("linux"):

lib_path - "/opt/resclve/libs/Fusion/fusionscript.so”

#Lib_path = "/opt/BlackmagicDesign/Fusionl8/fusionscript.so”

#Lib_path = "/opt/BlackmagicDesign/FusionRenderNodel8/fusionscript.so”

try:
bmd = imp.load_dynamic("fusionscript”, 1lib_path)
except DeprecationWarning:

Python 3.12+ requires the use of importlib instead of imp

3

if bmd:
sys.modules[__name__] = bmd
else:
raise ImportError("[Fusion] Could not locate module dependencies™)

return bmd

de

2

Resolve():
app = FuScriptlLib().scriptapp("Resolve")
return app

def Fusion():
app = FuScriptlLib().scriptapp(“Fusion”)
return app

Get the Resolve and Fusion objects
res = Resolve()

fu = Fusion()

bmd = FuScriptLib()

if fu is not None:
Get the current comp object
comp = fu.GetCurrentComp()
else:
print("[Fusion] Please open a comp and then run this script again.")

Code Cell Content:

import sys, os
from pprint import pprint

try:
import imp
except DeprecationWarning:

Python 3.12+ requires the use of importlib instead of imp

’

def FuScriptLib():
lib path = ""
if sys.platform.startswith ("darwin"):
lib path = "/Applications/DaVinci Resolve/DaVinci
Resolve.app/Contents/Libraries/Fusion/fusionscript.so"

#1ib path = "/Applications/Blackmagic Fusion
18/Fusion.app/Contents/MacOS/fusionscript.so"
#1ib path = /Applications/Blackmagic Fusion 18 Render Node/Fusion Render
Node.app/Contents/MacOS/fusionscript.so
elif sys.platform.startswith ("win") :
lib _path = "C:\\Program Files\\Blackmagic Design\\DaVinci
Resolve\\fusionscript.dll"
#1ib path = "C:\\Program Files\\Blackmagic Design\\Fusion
18\\fusionscript.dll"
#lib path = "C:\\Program Files\\Blackmagic Design\\Fusion Render Node
18\\fusionscript.dll"
elif sys.platform.startswith("linux"):

lib _path = "/opt/resolve/libs/Fusion/fusionscript.so"
#1ib _path = "/opt/BlackmagicDesign/Fusionl8/fusionscript.so"
#1lib path = "/opt/BlackmagicDesign/FusionRenderNodel8/fusionscript.so"

if not os.path.isfile(lib path):
print (" [Fusion] [Library Does Not Exist on Disk]", lib path)

try:
bmd = imp.load dynamic("fusionscript", lib path)
except DeprecationWarning:
Python 3.12+ requires the use of importlib instead of imp

’

if bmd:
sys.modules[name] = bmd
else:
raise ImportError (" [Fusion] Could not locate module dependencies")

return bmd

def Resolve():
app = FuScriptLib () .scriptapp ("Resolve")
return app

def Fusion():
app = FuScriptLib () .scriptapp ("Fusion")
return app

Get the Resolve and Fusion objects
res = Resolve()

fu = Fusion|{()

bmd = FuScriptLib ()

if fu is not None:
Get the current comp object
comp = fu.GetCurrentComp ()
else:
print (" [Fusion] Please open a comp and then run this script again.")

Code Cell Content:

Display the fusion and comp object info
print ("\n\n[FusionScript]")
pprint (bmd)

print ("\n\n[Fusion]")
if fu is not None:
pprint (fu.GetAttrs())

print ("\n\n[Current Comp]")
if comp is not None:
pprint (comp.GetAttrs())
else:
print (" [Fusion] Please open a comp and then run this script again.")

Code Cell Content:

if comp is not None:
Stop Loader/Saver node file dialogs from showing
comp.Lock ()

Add a node to the comp
ldr = comp.AddTool ("Loader")
1ldr.Clip[1l] = "Fusion:/Brushes/smile.tga"

Allow Loader/Saver node file dialogs to show up again
comp.Unlock ()

Code Cell Content:

if comp is not None:
Display the Loader node details
print (ldr.Name, "=", 1ldr.Clip[1l])

Display the Loader node contents in the left viewer window
comp.GetPreviewList () ["LeftView"].ViewOn (1dr, 1)

Let's press the "Save" button on the far left side of the Jupyter Notebook toolbar.

T Jupyter JupyterFusion Last Checkpoint: a few seconds ago {unsaved changes) ﬁ Logout

File Edit View Insert Cell Kemel Widgets Help Trusted | Python 3 (ipykemnel) O

+ = B B 4 % PR B C W Markdown v m

In []: # Display the fusion and comp object info

print("\n\n[FusionScript]")
pprint(bmd)

print("\n\n[Fusion]")
if fu is not None:
pprint(fu.GetAttrs())
print{"\n\n[Current Comp]"})
if comp is not None:
pprint(comp.GetAttrs({))
elsa:
print("[Fusion] Please open a comp and then run this script again.”)

In []: if comp is not None:
Stop Loader/Saver node file dialogs from showing
comp. Lock()

Add a node to the comp
ldr = comp.AddTool("Loader")
ldr.Clip[1] = “Fusion:/Brushes/smile.tga”

Allow Loader/Saver node file dialogs to show up again
comp.Unlock()

In []: if comp is not None:
Display the Loader node details
print(ldr.Name, "=", ldr.Clip[1])

Display the Loader node contents in the left viewer window
comp.GetPreviewlist()["LeftView"].ViewOn{ldr, 1)

After pasting the code into the individual Jupyter Notebook cells, you will be able to run it by
pressing the "Run" button in the toolbar. Each time you press the "Run" button a new block
of code is highlighted and then executed. The console output results are listed below the
cell.

This is the output result | see on my macOS system:

[FusionScript]
<module 'fusionscript' (/Applications/Blackmagic Fusion
18/Fusion.app/Contents/MacOS/fusionscript.so)>

[Fusion]

{'FUSIONB IsManager': False,
'FUSIONB IsRenderNode': False,
'FUSIONB IsResolve': False,
'FUSIONH CurrentComp': <BlackmagicFusion.PyRemoteObject object at 0x111af3990>,
'FUSIONI NumProcessors': 8,
'FUSIONI PhysicalRAMFreeMB': 5867,
'FUSIONI PhysicalRAMTotalMB': 16384,
'FUSIONI SerialHi': <snip>,
'FUSIONI Seriallo': O,
'FUSIONI VersionHi': 1179648,
'FUSIONI VersionLo': 65543,
'FUSIONIi\]irtualRAMTOtalMB' : 16839,
'FUSIONI VirtualRAMUsedMB': 10971,
'FUSIONS FileName': '/Applications/Blackmagic Fusion '

'18/Fusion.app/Contents/MacOS/Fusion',

'FUSIONS GLDevice': 'AMD Radeon R9 M370X OpenGL Engine',
'FUSIONS GLVendor': 'ATI Technologies Inc.',
'FUSIONS GLVersion': '2.1 ATI-4.8.101",
'FUSIONS MachineType': 'IA32',
'FUSIONS Version': '18.0.1'"}

[Current Comp]

{'COMPB_HiQ': True,

'COMPB Locked': False,

'COMPB LoopPlay': True,

'COMPB Modified': True,
'COMPB_MotionBlur': True,
'COMPB Proxy': False,
'COMPB_Rendering': False,
'COMPH ActiveTool': None,
'COMPI RenderFlags': 131072,
'COMPI RenderStep': 1,
'COMPN_AudioOffset': 0.0,
'COMPN_AverageFrameTime': 0.0,
'COMPN CurrentTime': 0.0,
'COMPN ElapsedTime': 0.0,
'COMPN GlobalEnd': 1000.0,
'COMPN GlobalStart': 0.0,
'COMPN LastFrameRendered': -2000000000.0,
'COMPN_ LastFrameTime': 0.0,
'COMPN_RenderEnd': 1000.0,
'COMPN RenderEndTime': 1000.0,
'COMPN RenderStart': 0.0,
'COMPN RenderStartTime': 0.0,
'COMPN TimeRemaining': 0.0,
'COMPS FileName': '',
'COMPS LoopMode': 'loop',
'COMPS Name': 'Compositionl'}

Loaderl = Fusion:/Brushes/smile.tga

After running the Notebook, your Fusion compositing session should now look like this:

". Fusion Studio File Edit View Tools Script Window Reactor ftrack Help

® Fusion Studio - [Composition1]
Composition1

Effects = Modes C c Ke es ¢ Inspector

Loader1: smile.tga Inspector

Loader1: smile.tga

Global InfOut @@
@ :

File

Filename Fusion:/Brushes/smile.tga
Bro

Proxy Filename

10000 10000 <) Render

Hold First Frame

Hold Last Frame

smile.tga
E Missing Frames

At this point you will be able to start modifying the Python code in the Notebook and
customizing Jupyter to run your own scripts.

Feel free to customize the "lib_path" variable at the top of the Python code to point to the
actual installed location of the fusionscript library on your computer, if required. This would
be relevant if you modified the installation path for Resolve Studio or Fusion Studio.

Good Luck and Happy Coding!

	Kartaverse Workflows | Jupyter Notebook for Resolve/Fusion
	Overview
	Install Python3's virtual environment library
	Create the JupyterFusion environment
	Activate the Environment
	Install Jupyter
	Start Jupyter Notebook
	Let's create a new notebook
	Add the Python Code

