
 

 

Formset & Form Improvements 
Parth Patil 

 

ABSTRACT 

●​ OVERVIEW OF PROBLEM 

Django currently has a formset class which is used as a collection instance 

for the forms. It’s a layer of abstraction which makes it easier to work with 

multiple forms. But it's not perfect, there is a good room for improvement. 

One problem with the model formset is that it can’t be used for only editing 

a set of models. The user may not want to affect other models in any way. Trying 

this in the current framework raises issues such as one can create new Models 

by synthesizing a POST request, which is not the desired behavior. 

Another problem with formset objects is that the user loses some control 

over the initialization and saving process of individual forms. For e.g. passing the 

details of the logged-in user while creating the form turns out to be a difficult 

problem. There are few workarounds for this problem, but certainly, lack of 

documentation exists. 

Apart from these, there are many more issues that are addressed below. 

Also, this project proposal will aim to add a few features requested by users, e.g. 

pagination. 

 

 

 

 



 

 

 

●​ GOALS 

The broad goal is obviously to have an error-free Formset and close all the 

tickets related to formset. The end goal of this project will be to address as many 

issues as possible and also make the formsets more user-friendly. 

I aim to give the user more control over the individual forms in the formset, 

by enabling the user to pass different arguments for __init__() and save() 

methods of each form. 

The next goal will be to enable the user to use formsets for edit only 

purpose, by implementing a robust framework that will disable the creating of 

new model objects, instead of workarounds that can’t do much in case of forged 

POST requests. 

After that, the next goal will add some new features to formset like 

pagination, declarative syntax of ModelFormSet & InlineFormSet. 

●​ BENEFITS 

​ Apart from apparent benefits like closing the tickets, I think this may 

encourage users to use formsets in their projects. With features like pagination, a 

user making a Shopping website can directly use a formset to display the order 

page which can be used to properly transverse through different pages of an 

ordered item without refreshing. 

​ Also, it will give user granular control over each form of how it will be 

saved, etc. Also, formsets can become a quick way to edit many Model objects 

at once, without creating any new objects, or affecting the existing objects. 

 

 

https://code.djangoproject.com/query?status=assigned&status=new&description=~formsets&desc=1&order=id
https://code.djangoproject.com/query?status=assigned&status=new&description=~formsets&desc=1&order=id


 

 

 

The Issues to be addressed 

●​ The passing of arguments to forms inside a formset (see this): 

Consider this example 

class ServiceForm(forms.Form):​
    option = forms.ModelChoiceField(queryset = ServiceOption.objects.none())​
    rate = forms.DecimalField(widget = custom_widgets.SmallField())​
    units = forms.IntegerField(min_value=1, 
widget=custom_widgets.SmallField())​
​

    def __init__(self, *args, **kwargs):​
        affiliate = kwargs.pop('affiliate')​
        super(ServiceForm, self).__init__(*args, **kwargs)​
        self.fields["option"].queryset = \ 
            ServiceOption.objects.filter(affiliate=affiliate) 

​ Here affiliate is the current user. Normally the user having something like this will 

initiate the form like 

form = ServiceForm(affiliate=request.affiliate) 

But if we use formsets, it's difficult to pass the request to the individual form. 

ServiceFormSet = forms.formsets.formset_factory(ServiceForm, extra=3)​
formset = ServiceFormSet() 

The FrameWork I propose will enable to pass individual arguments to each form while 

initialization and also while saving. 

So in the new BaseFormSet class 

class BaseFormSet:​
     def __init__(self, ..., extra_form_parameters = {}, request=None):​
​    Self.request = request 

 

   def _construct_forms(self, extra_form_parameters):​
       '''​
       This function will pass the extra parameters to each form individually​
       Can pass the self.request to forms or create forms depending on request 
       '''​
       do_some_stuff 

https://stackoverflow.com/questions/622982/django-passing-custom-form-parameters-to-formset


 

 

 

●​ Enable model formsets to block new object creation (edit only mode) 

(#26142): 

There is no good way in which we can use Model Formset for just editing a 

set of models without creating or affecting any other model. Few workarounds 

are present, but none produces the desired behavior.  

For e.g. one can argue that setting extra_form = 0 , max_num = 0  & 

validate_max = True will work. But if by some way the POST request is edited, 

and a different pk value that doesn't appear in the queryset is sent, it will create 

a new model object, which is not desirable. 

So this issue can be solved by adding an extra parameter no_edit in the 

BaseModelFormSet class. This will disable the save_new_objects() method thus 

ensuring no new object will be created. And also one can pass a list of pk values 

to the BaseFormSet while creating an object of formset so that only the pk 

values from that list can be edited, thus acting as a security feature so that no 

one can simply edit the POST request and affect the database. 

The new BaseModelFormSet class 

class BaseModelFormSet:​
     def __init__(se wlf, ..., no_edit = False, only_edit = None):​
​    self.only_edit = only_edit or None 

​ ​ ​  

​ ​ If only_edit is not None then the formset will only edit the model object 

whose pk is present in the list else it will do nothing. This will ensure a robust edit only 

behavior for the ModelFormSet. Similar can be done for the InlineFormSets too. 

 

 

 

 

https://code.djangoproject.com/ticket/26142
https://github.com/Parth1811/django/blob/8ec7ded3706fe66bf307ed339eb852d73f6d10d0/django/forms/models.py#L554


 

 

 

●​ Allowing the swapping of model object’s pk values using the formset 

(see #25139): 

If let's say you have two model objects p0 (slug = ‘car-red’) and    
p1(slug = ‘car-blue’) in the database. And you receive a POST request 
containing the following data. 

        data = {​
            'form-TOTAL_FORMS': '2',​
            'form-INITIAL_FORMS': '2',​
            # Swap slug values.​
            'form-0-id': p0.pk,​
            'form-0-slug': 'car-blue',​
            'form-1-id': p1.pk,​
            'form-1-slug': 'car-red',​
        } 

​ And if we save the form we would expect this to swap the pk of both the 
objects, and save them in the database, but this is not the actual behavior. 

​ So there is a need to implement a method that can handle a permutation 
of the object’s pk values. Adding this with the “edit only” mode mentioned 
previously will make more sense since restricting the pk values of objects which 
will be affected is a must. The swapping of models will be a feature added for 
the “edit only” mode. 

 

●​ Pagination (suggested by Dmitriy): 

One more feature I would like to add is of paginated HTML output for formsets. It 

would be a method in BaseFormSet class similar to as_p, as_table methods. 
 

   def paginate(self, no_of_elements = 3):​
       '''​
       Return the paginated formset with exactly three forms on each Page​
       '''​
       do_some_stuff 

This function will take the two inputs, that is the instance of the formset and the 

no_of elements that should appear on each page in the HTML template. This will help 

https://code.djangoproject.com/ticket/25139
https://groups.google.com/d/msg/django-developers/1_iku_vQdNU/nxXWO9-xAwAJ
https://github.com/Parth1811/django/blob/8ec7ded3706fe66bf307ed339eb852d73f6d10d0/django/forms/formsets.py#L407
https://github.com/Parth1811/django/blob/8ec7ded3706fe66bf307ed339eb852d73f6d10d0/django/forms/formsets.py#L399


 

 

 

in case of someone having a large number of forms and don’t want them to be printed 

at once. 

The end result of this may look something like this at the bottom of the form. 

     

 

●​ Declarative Syntax for the Model and Inline Formsets (see #10403): 

​ One more feature which was requested and will be a nice addition to the formset 

class would be the declarative syntax for the Model and Inline FormSet classes. Below 

is an example of how this will look like in practice. 

class DeclarativeAuthorFormSet(forms.models.ModelFormSet):​
    form = AuthorForm​
    model = Author​
    extra = 3​
​

class DeclarativeAuthorBooksFormSet(forms.models.InlineFormSet):​
    model = Book​
    form = BookForm​
    parent = 'author' 

​  

​ Adding this may be a little tough, as I would have to learn first about the 

declarative syntax and I feel Form or Model base class will be a good starting point. 

Also while doing this backward compatibility should be maintained. 

For doing this I will have to edit the __init__() functions of BaseModelFormSet 

and BaseInlineFormSet (according to me), more planning will be required on this one, 

which will be done in the discussion phase. 

 

https://code.djangoproject.com/ticket/10403
https://github.com/Parth1811/django/blob/8ec7ded3706fe66bf307ed339eb852d73f6d10d0/django/forms/models.py#L554
https://github.com/Parth1811/django/blob/8ec7ded3706fe66bf307ed339eb852d73f6d10d0/django/forms/models.py#L883


 

 

 

●​ Handling the Relation of the extra forms in Inline Formset (see #25880): 

​ The extra forms in the Inline Formsets are not initiated with the relative instance 

of the parent object by the formset_factory(). That is referring to the 

extra_form.related_field throws an exception that RelatedObjectDoesNotExist 

​ Even though the _contruct_form() methods seem to assign the form instance, I 

was able to duplicate the error, so a little more investigation will be needed to solve 

this error. 

 

●​ Other related issues: 

○​ Updating the exception messages in the Management Form (#13060) 

This may be a small change in the cleanup of code. The complaint of 

this lies in the fact that the error messages that are shown for the 

management forms are not quite helpful, that is they don’t explain what the 

actual problem is. This may be quite painful sometimes.  

My task will be to understand the different errors that may occur in 

the management form of the formset and document them properly and 

also add the proper help text in each of them. 

 

 

 

 

 

 

 

https://code.djangoproject.com/ticket/25880
https://code.djangoproject.com/ticket/13060


 

 

 

Timeline And Milestones 

My summer vacation starts from May 6, 2019, during which I plan to spend around 

35 - 40 hours a week. My third academic year starts from July 29, after which I 

might have to cut it down working to 3-4 hours on weekdays and the regular 5-7 

hours on weekends. This period is a little shorter, however, I may work during the 

semester until the official end of GSoC. ​Hence I intend to do most of GSoC during 

the period 6th
  ​​May to the​ ​30th July ​​instead of the usual period​​ of 27th​ ​May to 19th 

​​August​. I have tried to structure the timeline in a way that there is a good mix of 

coding, learning, and documentation. So that I can learn every aspect, and don’t get 

to saturated by one thing. I also plan to write a ​blog post every week to track my 

GSoC progress​, containing links to my contributions, a brief overview, and the plan 

for next week. This will ensure that these are not lost in the future. 

●​ Pre-Summer Most of April (Application Review Period): 

○​ Solve a few bugs related forms (easy pickings maybe) to get a little more 

involved in forms. 

○​ Getting familiarize with the conventions​. I already have a pull request merge 

into Django (see ticket - #30189, PR - #11039), So it won’t take much time to 

know the conventions. 

●​ May 6 - May 10 (Community Bonding Period) 

○​ Discuss the Implementation of the project in detail with a mentor and 

senior contributors from the community 

○​ Understand whether my approach is correct and figure out a good way to 

approach the problem, if there is any. 

○​ As previously mentioned I’m pretty comfortable with the coding 

environment of Django, so I can directly skip to actually start working on 

the project. (Making new friends won’t hurt anyway :) ) 

 

 

https://code.djangoproject.com/ticket/30189
https://github.com/django/django/pull/11039


 

 

 

●​ May 11 - May 28: Passing the custom parameter to each form 

○​ Starting with the first issue mentioned above, I will test already available 

solution for passing the request variable around the formset and 

documenting them (May 11 - May 14) 

○​ Formalizing on the new architecture for the BaseFormSet class and the 

_construct_form method (May 15 - May 18) 

○​ Implementing the changes in code will be the next milestone. Ensuring that 

everything works as intended. (May 18 - May 25) 

○​ Writing tests, documentation (May 26 - May 28) 

●​ May 29 - June 10: Implementing the Edit Only mode 

○​ Deciding on the complete features and specifics of how to do this will be 

decided (May 29 - May 30) 

○​ Changing the BaseModelFormSet class. (May 31 - June 8) 

○​ Writing tests, documentation (June 8 - June 10) 

●​ June 11 - June 21: Pagination 

○​ Learning about different ways to accomplish pagination (June 11 - June 12) 

○​ Implementing the pagination function. I will try to add some good styling to 

go along with this. (June 13 - June 18) 

○​ Writing tests, documentation (June 19 - June 21) 

●​ June 22  - July 8: Declarative Syntax for Model and inline Formsets 

○​ Learn about declarative syntax, how it is used, its features and how to write 

classes that use declarative syntax. A good place to start may be reading 

the BaseModel class. (June 22 - June 26) 

○​ Finalizing the changes in BaseModelFormSet and BaseInlineFormSet 

classes. (June 27) 

○​ Implementing it in code (June 28  - July 4) 

○​ Writing tests, documentation (July 5- July 8) 

 

 



 

 

 

●​ July 9 - July 16: Swapping of model object’s pk values using the formset 

○​ Testing the different edge cases as the test given the tickets are not 

complete. So I would be writing complete tests which will address the 

problem (July 9 - July 10) 

○​ Writing the patch for this (July 11 - July 16) 

●​  July 16 - July 27: Fixing relation of the extra forms in InlineFormset 

○​ Documenting a Proper way to replicate this bug would be the first task. 

(July 16 - July 18) 

○​ Analyzing the _construct_form method and figuring out the best way to fix 

this (July 19 - July 20) 

○​ Writing a patch and documentation (July 21 - July 27) 

●​ .July 27 - July 31: Updating the exception messages in the Management Form 

○​ Finding and documenting the help text for the management forms. 

 

If time permits... 

​ If I finish earlier, I would like to address more issues like #28283 or #9739. 

I also have few ideas like FormSetContainer, which may need a more discussion 

before implementation. 

 

What will I do in the remaining time? 

​ As mentioned earlier, my semester will start around July 29th, after which 

my working hours will drop. To compensate that I’ll be starting my project early in 

order to do 12 weeks' worth of work. Also, I will use the remaining time to 

document everything and jobs like code clean up and some small maintenance 

tasks. 

 

 

https://code.djangoproject.com/ticket/28283
https://code.djangoproject.com/ticket/9739
https://groups.google.com/d/msg/django-developers/1_iku_vQdNU/RzY-V2VDCAAJ


 

 

 

ABOUT ME 

I’m Parth Patil pursuing my B.Tech. in Electrical Engineering at the Indian Institute of 

Technology, Bombay. I am in my second year. I was introduced to programming right in my 

childhood, and I developed a passion for it since then. I have always enjoyed Mathematics 

in solving real-world problems. I started coding from a very young age, I built my first app 

in 8th grade and my first custom ROM for my android tab in 9th grade. I’m currently a part 

of the software sub-division Team AUV-IITB. Our team was runner up winner in 2016’s 

Robosub Competition which sees participation from the team all across the world. 

Currently, I’m working on an Extended Kalman Filter for POSE estimation of the 

Autonomous Underwater vehicle (AUV). I’m also active in many Technical clubs in the 

institute and mostly fit in well with the community. I also recently started some work in the 

Django foundation and have fixed a bug(#30189). I have been using Django for the past 

year, and have done a couple of projects using that. I also maintain the site 

http://tech-iitb.org/ which is the official website of the technical council of IIT Bombay. 

PROJECTS( involving Django): 

●​ Augmented Reality Glasses: I made a local web server in the glass that was 

used to connect the glasses to the phone and also transfer data between the 

glass and the phone. 

●​ Web-based testing interface: As a part of Team AUV-IITB, I was given a task to 

create a GUI for controlling our vehicle which will also run on 

Windows/Mac/Ubuntu or any system. So I chose to use Django and make a Web 

application that would be locally hosted on our vehicle. This project involved 

heavy integration of Django with the ROS framework which was a little hard, as 

no reference was available for this and I had to fix many bugs on my own. This 

involved using Django-socket to implement a live broadcast of ROS-topics. 

●​ Porting club website from Jekyll to Django: One of the tough projects I did until 

now with Django was to port our old club website which was static and written in 

Jekyll to Django framework (check here). Maybe a little dirty port but had to do it 

in only two weeks. 

http://www.auv-iitb.org/
https://code.djangoproject.com/ticket/30189
http://tech-iitb.org/
https://github.com/Parth1811/ar_glasses
http://www.auv-iitb.org/
http://stab-iitb.org/erc/


 

 

 

●​ Deploying a website from scratch: In winter, I did an intern under DSCFE, which 

was to help a startup to make a whole new website from scratch and deploy it in 

less than a month. It was an intensive job as I was given the task to handle the 

whole backend and then using the REST framework interface with the Angular 

frontend. 

These are a few projects I did which involved Django. I have also done many other 

projects. You can check my CV  for more information. 

Personal Details 

●​ Name : Parth Patil 

●​ Email : ​ parthvin@gmail.com 

●​ IRC nick : ​Parth1811 

●​ Telephone :​ +91 99203 85585 / +91 90824 27853 

●​ Country of Residence : ​India 

●​ Timezone : ​Indian Standard Time (​UTC + 5:30) 

●​ Primary Language : ​English 

http://www.iitb.ac.in/dsce/en
https://drive.google.com/file/d/1ZvY3E3XjVi3UAoQswwV5xmW5Qozy8uLY/view?usp=sharing
mailto:parthvin@gmail.com

	Formset & Form Improvements 
	●​OVERVIEW OF PROBLEM 
	 
	●​GOALS 
	●​BENEFITS 

