
SnakePit
January 2018

SnakePit​ 1

Purpose​ 2

Capture​ 3

Designer Clock1​ 3

Graphics​ 4
cellPX​ 4
R​ 4

Cell storage​ 4
row​ 4
columns​ 5
rows​ 5
column​ 5
cell​ 5
centerX​ 6
centerY​ 6
erase​ 6
draw​ 6
global_snake_storage​ 7
Link storage​ 7
Screen1_Initialize​ 8

seed​ 8
next​ 8
prev​ 9

Clock1_Timer​ 9
hatch_a_random_egg​ 9

eggs​ 10
randomColor​ 10

move_a_snake​ 10
move​ 11

snake​ 11
location​ 11

neighbors​ 12
wrap​ 12

try_target​ 13
owner​ 13

link​ 14
first​ 14

eat​ 14
attack​ 16

color​ 16
revert_all​ 17

kill​ 17
last​ 18

move_to​ 18

Gallery link​ 19

Other Projects​ 19

Purpose
This project demonstrates how to use lists to run a multiple Snake simulation on a Canvas,
without using any Sprites or Balls. Instead, it draws Circles on grid squares (cells) for snake
eggs, and hatches a few of them into colored snakes that move randomly and grow in length as
they eat free standing snake eggs. When a snake bites another snake, the tail breaks off and
reverts to individual snake eggs.

This is an advanced project, and employs doubly linked lists.

https://en.wikipedia.org/wiki/Doubly_linked_list

Capture

The black dots are snake eggs. The colored dots are snakes, fairly tightly coiled because of the
random motion automatic movement routine. The brown snake has eaten the most eggs so far,
and the light blue snake has eaten no eggs yet. The colored bubbles are artifacts of the
drawing and erasing of the colored dots that make up the snakes, as the snakes move. (I rather
like them, so I have left them as is.)

Designer Clock1

The Designer is as simple as can be, with just the Canvas and a Clock.
The Clock is disabled, to allow clean startup, and hard wired for 100 milliseconds per tick.
Feel free to run the clock faster to experiment.

Graphics

cellPX

This function returns the number of pixels in the side of each grid cell.

R

R is the radius of the circles used to draw the snake bits. Anything other than half the cell size
leaves debris on the canvas or makes the snakes look too loose.

Cell storage
Cells are identified by row and column number, 1 based. To combine both the row and column
number into a single value, we assume no more than 999 rows or columns, and express a (row,
column) as a single number, rrrccc, using multiplication by 1000. To go back and forth between
cell identifiers and rows and columns, we do modulo math.

We don’t actually keep a 1,000 by 1,000 array. We just keep the locations of the small fixed set
of eggs that we start with, that serve as links in the chains that are our snakes.

row

Given a cell ID, return the row number of that cell.

columns

Return how many columns will fit onto the Canvas based on its Width and the number of pixels
per cell.

rows

Return how many rows will fit onto the Canvas based on its Height and the number of pixels per
cell.

column

Extract the column number from a cell ID.

cell

Build a cell ID from a row number and column number.

centerX

Return the x value (in pixels) for the center of a circle at a given column number.

centerY

Return the y value (in pixels) for the center of a circle at a given row number.

erase

Erase the circle at a given rrrccc cell. This technique leaves a bubble on the Canvas. I could
have changed this to draw a fat line to fill the entire rectangular cell, to eliminate the bubble, but
I like the bubble trail left by the snake.

draw

Several layers of conversion take the row and column numbers from the cell ID, then extract the
centerX and centerY graphic coordinates for the center of that cell. Then we draw a circle of
radius R and the given color at that location.

global_snake_storage

Link storage
Snakes are chains of links in a doubly linked list of constant size, once the board has been
seeded with eggs. The constant qty_links controls how many links (rrrccc items in list
link_cells) will be produced, and that number will remain unchanged after the seeding
operation. Because that number remains unchanged, we can make parallel lists of predecessor
and follower link numbers (indices into link_cells). An egg at position 23014 (row 23, column
14) whose link is at index 9 in list link_cells will start out with 0 at index 9 of lists link_follower
and link_predecessor, since it is a chain of length 1.

When we hatch an egg, we add its starting link number to list snakes. We limit the number of
snakes for ecological reasons, based on constant max_snakes. List snakes has a matching
list snake_colors, holding the color of snake i in list snakes. As snakes are born and die, we
have to keep those lists in parallel.
A third list snake_directions might be used to keep persistent snake directions, to allow faster
movement than the current Brownian Motion random model.

Screen1_Initialize

At app startup, we seed the lists of links and their structures, and paint them as eggs. We then
start the Clock Timer to get some snakes hatched and moving.

seed

To seed the board, we generate the required number of links, pointing to random row and
column locations, and draw an egg at each location. Being eggs, they have no followers and
predecessors for the chains they would be part of if they were parts of snakes.

(Bug alert: I did not check for random duplicates here.)

next

To concisely navigate chains of links, we provide next and prev functions accepting a link (index
into link_cells).

prev

Clock1_Timer

The Clock ticks rapidly, and does just a little bit at each tick, hatching one snake if there aren’t
enough snakes, and regardless, moving one snake.

hatch_a_random_egg

The first step in hatching a random egg is to go through the lists of links, and collect the links
that have no followers or predecessors, i.e. eggs. It’s possible that there are none left, because
they are parts of snakes now. In that case, we do nothing. If there is at least one egg on our list
of eggs, we pick a random egg from that list. Since the returned egg is from a list of link indices
in list link_cells, we need to look up the cell (rrrccc) for that link to draw it with a random color.

We record the head link of the new snake in global list snakes, and its color in the matching list
snake_colors.

eggs

Eggs have no previous or next links.

randomColor

move_a_snake

To move a random snake, we pick a random snake from list snakes and move it.

move

To move a snake, we first need to look up the head link of that snake by its snake index, using
our snake function. We then extract the rrrccc location of that link, and generate a list of its
neighbors’ rrrccc values. For the simplest possible implementation, we settle for picking a
random neighbor rrrccc to try, using routine try_target.

snake

This is a simple lookup in global list snakes.

location

Links are indices into the list of rrrccc cells, global list link_cells.

neighbors

The cell ID is broken down into its row and column numbers, and its 8 surrounding cells are
calculated, wrapped around the edges of the board, and reassembled into rrrccc cell IDs and
returned.

wrap

We deal with the edge of the board by using doubly cylindrical geometry.

try_target

There are three possibilities when we want to move a snake onto a target cell:

1.​ The target has an egg, a link that’s not part of a snake (no owner). Eat it.
2.​ The target has a link that’s part of another snake. Attack it.
3.​ The target has no link, so it’s empty. Move to there.

owner

To find the owner (snake, if any) of an rrrccc cell, we first look up the link (if any) pointing to that
cell. If a link is found (non-zero), then we look up the first link in whatever chain that link might
be part of, then try to look up that head link in our list of snake heads (global snakes). Failure
at any stage returns 0.

link

This function accepts a cell (row, column) and returns the link (index into links list) of the link on
that cell, or 0 if the cell is empty.

first

This function accepts a link number, and follows the previous links to the very head of the chain
(snake) holding this link.

eat

This procedure is for the case where a snake encounters an egg, a solitary link, and absorbs it
into itself (eats it.) The target parameter is the cell (location) holding the target link to be eaten.
The mouth of the snake is in its head, the link we can look up in the snake table.

To show that the link has been eaten, we change its color to that of the snake eating it.
To absorb the link into the snake,

●​ we make it the predecessor of the old head link,
●​ Point the follower of the new head back to the old head, and
●​ Update the snakes list to point to the new snake head link.

attack

This is the case where a snake bites another snake at a target cell location. First we need to
identify the victim, the owner of the target cell. We also identify which link is at the target cell.
Because we are merciful, we will allow the target snake to escape and heal if it has been bitten
anywhere behind its head, so we will need to identify the link that will serve as its new tail link.
That link is the previous link to the bitten link.

If we have a new tail for the target snake, we seal it off by setting its follower link to 0.
Otherwise, we have eaten the head of another snake, and must kill that snake entirely.

Regardless, the bitten target link and its followers in that snake are now loose food, and must
revert to eggs.

color

This function returns the color of a snake, based on the lookup table snake_colors.

revert_all

This procedure accepts the head link of a chain of links, that need to be de-chained and
reverted back to eggs. It is a two phase operation:

●​ Gather the links in the chain into a list, following the next links,
●​ Revert each link in the list to an egg, by clearing its predecessor and follower links and

redrawing it black.

kill

This procedure kills a snake, by removing it from the snakes list, and cleaning up any matching
lists. It does no link manipulation; that’s left to the calling attack routine.

last

This routine follows the follower chain of a link, returning the last link in the chain.

move_to

This is complex, simulating the movement of a caterpillar. First the drawing is handled at the
new head of the snake, and at its old tail. Then we start a wave at the tail, lifting each link and
dropping it onto the location of its predecessor, pushing the wave forward towards the head of

the snake, until we reach the head of the snake (prev = 0). All this movement happens in the
list link_cells, which maps the link numbers into their cell locations.

Gallery link
http://ai2.appinventor.mit.edu/?galleryId=5592523749457920

Other Projects
https://docs.google.com/document/d/1acg2M5KdunKjJgM3Rxpy_Rf6vT6OozxdIWglgbmzroA/ed
it?usp=sharing

http://ai2.appinventor.mit.edu/?galleryId=5592523749457920
https://docs.google.com/document/d/1acg2M5KdunKjJgM3Rxpy_Rf6vT6OozxdIWglgbmzroA/edit?usp=sharing
https://docs.google.com/document/d/1acg2M5KdunKjJgM3Rxpy_Rf6vT6OozxdIWglgbmzroA/edit?usp=sharing

	SnakePit
	Purpose
	Capture
	
	Designer Clock1
	Graphics
	cellPX

	
	R

	
	Cell storage
	row

	
	columns

	
	rows

	
	column

	
	cell
	centerX
	centerY
	erase
	draw
	global_snake_storage
	Link storage
	Screen1_Initialize
	seed
	next
	prev

	Clock1_Timer
	hatch_a_random_egg
	eggs
	randomColor

	move_a_snake
	move
	snake
	location
	neighbors
	wrap

	try_target
	owner
	link
	first

	eat
	

	attack
	color
	revert_all

	kill
	last

	move_to

	Gallery link
	Other Projects
	

