SnakePit
January 2018

SnakePit
Purpose
Capture
Designer Clock1

Graphics
cellPX
R

Cell storage
row
columns
rows
column
cell
centerX
centerY
erase
draw

global_snake_storage

Link storage

Screen1_Initialize

seed

next

prev
Clock1_Timer

hatch_a_random_egg

eggs

randomColor
move_a_shake
move
shake
location

-_—

© © 00 000 N NOO O O oo o o1 & b A A BA O O DN

[U G §
- A A O O O ©

neighbors 12

wrap 12

try_target 13
owner 13

link 14

first 14

eat 14

attack 16

color 16

revert_all 17

kill 17

last 18

move_to 18
Gallery link 19
Other Projects 19

Purpose

This project demonstrates how to use lists to run a multiple Snake simulation on a Canvas,
without using any Sprites or Balls. Instead, it draws Circles on grid squares (cells) for snake
eggs, and hatches a few of them into colored snakes that move randomly and grow in length as
they eat free standing snake eggs. When a snake bites another snake, the tail breaks off and
reverts to individual snake eggs.

This is an advanced project, and employs doubly linked lists.

https://en.wikipedia.org/wiki/Doubly_linked_list

Capture

Screeni

The black dots are snake eggs. The colored dots are snakes, fairly tightly coiled because of the
random motion automatic movement routine. The brown snake has eaten the most eggs so far,
and the light blue snake has eaten no eggs yet. The colored bubbles are artifacts of the
drawing and erasing of the colored dots that make up the snakes, as the snakes move. (I rather
like them, so | have left them as is.)

Designer Clock1
Gomponents Properties
Screenl Clockl
A Canvas] TimerAlwaysFires
Clockl -

TimerEnabled

Timerinterva
10

The Designer is as simple as can be, with just the Canvas and a Clock.
The Clock is disabled, to allow clean startup, and hard wired for 100 milliseconds per tick.
Feel free to run the clock faster to experiment.

Graphics

cellPX

B3R cellPX
result

This function returns the number of pixels in the side of each grid cell.

R

R is the radius of the circles used to draw the snake bits. Anything other than half the cell size
leaves debris on the canvas or makes the snakes look too loose.

Cell storage

Cells are identified by row and column number, 1 based. To combine both the row and column

number into a single value, we assume no more than 999 rows or columns, and express a (row,
column) as a single number, rrrcce, using multiplication by 1000. To go back and forth between
cell identifiers and rows and columns, we do modulo math.

We don’t actually keep a 1,000 by 1,000 array. We just keep the locations of the small fixed set
of eggs that we start with, that serve as links in the chains that are our snakes.

row

(¢] to & EED

result quotient of - BT cell - NI 1000 |

Given a cell ID, return the row number of that cell.

columns

Return how many columns will fit onto the Canvas based on its Width and the number of pixels
per cell.

rows

S ovs
result |, () GRS | (QEITERRD - GEILLED | /

call (S

Return how many rows will fit onto the Canvas based on its Height and the number of pixels per
cell.

column

G Y courn Jcei
resul =1 co - JIRN000)

Extract the column number from a cell ID.

cell

Build a cell ID from a row number and column number.

centerX

Return the x value (in pixels) for the center of a circle at a given column number.

centerY

Return the y value (in pixels) for the center of a circle at a given row number.

erase

Y erase J ceil

do | cal GENED
cell | oget EEIED
(0 [e Canvasi - B BackgroundColor -

Erase the circle at a given rrrccc cell. This technique leaves a bubble on the Canvas. | could
have changed this to draw a fat line to fill the entire rectangular cell, to eliminate the bubble, but

| like the bubble trail left by the snake.

draw

DR draw | cell |l |
do | set (ENESES - (ZIISEERD o ¢ get GRS
1'1- initialize mﬂlDlD call m‘m column cal m call gam 1

initialize local [J o | . oW | call GED cell ¢ get

N cay [EEE R DrawCircle centerX | get 8 centerY getm' radius 7) call En' fill
| -

Several layers of conversion take the row and column numbers from the cell ID, then extract the
centerX and centerY graphic coordinates for the center of that cell. Then we draw a circle of
radius R and the given color at that location.

global _snake storage

cells containing Links,

value is location [LTGRE

(7) initialize global (1=) to | [o| create empty list

5 - initialize global (2 ") to | [create empty list

| of that link

Link that follows this or @

[paired with links, has the

if nome

paired with links, has the

link that precedes thiz or Br; -: initialize global : to [|§| create empty list

if none

. each snaks is & link] II'I'IlﬂiZE gbhal :]tﬂ .
number of & head link .
of & snake "-| initialize: gbhﬂl Etﬂ bl
) -
initialize global [3= 0 | B

initaize global (T ()0 (G2)

[o create emply list

o create empty list

the coclar of
smake n of list

smakes

Link storage

Snakes are chains of links in a doubly linked list of constant size, once the board has been
seeded with eggs. The constant qty_links controls how many links (rrrccc items in list
link_cells) will be produced, and that number will remain unchanged after the seeding
operation. Because that number remains unchanged, we can make parallel lists of predecessor
and follower link numbers (indices into link_cells). An egg at position 23014 (row 23, column
14) whose link is at index 9 in list link_cells will start out with 0 at index 9 of lists link_follower
and link_predecessor, since it is a chain of length 1.

When we hatch an egg, we add its starting link number to list snakes. We limit the number of
snakes for ecological reasons, based on constant max_snakes. List snakes has a matching
list snake_colors, holding the color of snake i in list snakes. As snakes are born and die, we
have to keep those lists in parallel.

A third list snake_directions might be used to keep persistent snake directions, to allow faster
movement than the current Brownian Motion random model.

Screen1_Initialize

when Initialize
LoD W seed - L] giobal gty_links - |

sat) to
| -

At app startup, we seed the lists of links and their structures, and paint them as eggs. We then
start the Clock Timer to get some snakes hatched and moving.

seed

4o for each Jfom §) fo getGE) by 6D

do | [iniiakize local {310 | random integer from | ‘g to | cal (EEED

initialize local (310 random integer from | §) to | cal CEIMLSED

B

* add tems fo kst list | ;) get ELLENNINCCIEED [oM con GEEdr (gt @ ¢ oct G
o) addilems tolist list | (1) get CEILEAEICED iem [)

BT S N @Y global link_predecessor - B 0]
call RETES
cel | cal (2R3 ' cet @ c I ot B3
(s« MR = 8 global eggColor - |

To seed the board, we generate the required number of links, pointing to random row and
column locations, and draw an egg at each location. Being eggs, they have no followers and
predecessors for the chains they would be part of if they were parts of snakes.

(Bug alert: | did not check for random duplicates here.)

next

Y e J ik

result [select listitem list | get EEENIEATITRS | index | get (&S

To concisely navigate chains of links, we provide next and prev functions accepting a link (index
into link_cells).

prev

o] prev Jnk

result © selectlistitem list | get (T EIIAT TR | index | get (G733

Clock1_Timer

when (LI Timer
do | (o] ¥ length of ist fist get -1 global max_snakes - |
then cai

, —

The Clock ticks rapidly, and does just a little bit at each tick, hatching one snake if there aren’t
enough snakes, and regardless, moving one snake.

hatch_a_random_egg

to
do | (<] initialize local [Zii) to | cal ELR
initialize local (7)) to
initialize local <=1 to
initialize local [
in ([&] if not | islistempty? list get oKD
then set.mm _ pichararrduniitem st | get CSTCED

set (EIR 1o | select listitem list | get EEEIIACEEE index get CTED
= additems tolist list | get FEEEEEED | item | get EFED

m

LA 1L R R = 8 global snake colors - B =4 color - |

Jto | call

call (ETED cell | get GEIED color ¢ get (EEED

The first step in hatching a random egg is to go through the lists of links, and collect the links
that have no followers or predecessors, i.e. eggs. It's possible that there are none left, because
they are parts of snakes now. In that case, we do nothing. If there is at least one egg on our list
of eggs, we pick a random egg from that list. Since the returned egg is from a list of link indices
in list link_cells, we need to look up the cell (rrrcce) for that link to draw it with a random color.

We record the head link of the new snake in global list snakes, and its color in the matching list
snake_colors.

eggs

to Ei05)
result | initialize local [Jto | [&] create empty list
in

40 ' for each ({(Jfrom @§) to | lengthoflist st | oet QEEINEEEE by 6D

w (3 .
' call (D link ¢ oty & O

R i e 680

then [(o] additemstolist list get CEFEED
item | oget [IES

result | get EEES

Eggs have no previous or next links.

randomColor

1] randornColor)

result | make color | [make a list random integer from | (i) to | EE3)

random integer from | [to *E5

random integer from |) to | EEE

move_a_snake

do e iAoy
call [UETEERD snake IndeX | angom integer from R T Y 4 global snakes - |

| S

To move a random snake, we pick a random snake from list snakes and move it.

move

IR L] move Y snake_index

do | (] initiakize local (2010 | cq)l (EEITED snake_index | get EETELEED
initialize local [it | [

in | set[ENEEM to | pickarandomitem list . EERIEEEED cell

cal ([EENES link " get (ERED

call snake_index | get EEITHISRS target | get [EREES
| -

To move a snake, we first need to look up the head link of that snake by its snake index, using
our snake function. We then extract the rrrcce location of that link, and generate a list of its
neighbors’ rrrcce values. For the simplest possible implementation, we settle for picking a
random neighbor rrrccce to try, using routine try_target.

sShake

to | snake_index
result I select listitem list | () get GLEEEECoRd | index

get

This is a simple lookup in global list snakes.
location

to link_

result [select listitem list | get FIEINALECRS index | get (4D

Links are indices into the list of rrrcee cells, global list link_cells.

neighbors

o) to D D
resutt | [g) intialize local (10 | can EED cell [get D
initialize local () to | cqp [column - Res R m:n
initialize local [) to | create empty list
in - . :
do foreach (([I)from G0 to E by E
0 | freach((E)from E=) o @ v &
do | o] additemstolist list | get [EETES
mem | call EIE
5 of 9 is the center, a r call [ERES n e getm + getﬂm limiit call m

null move

Cl cal @EEIn [(2 get B9 + (cetCaEg Mt call EEITINERD

remove list item list | get [E=N &8 index B

The cell ID is broken down into its row and column numbers, and its 8 surrounding cells are
calculated, wrapped around the edges of the board, and reassembled into rrrccc cell IDs and
returned.

wrap

force n dnto limit of 1
. limit, by wrapping

aroang

get [ILTES
i get G get (kS
them [ED

else | get GRS

We deal with the edge of the board by using doubly cylindrical geometry.

try target

o) to target B))
do | (¢ initialize local | o | cal TR cell

in | (o] if

s 2 target -

sinistthing | oot (Zr0Ed | It get CLTINATE
it

= target_snake_index - JL7 - Il 4 snake_index - |}
1124 target_snake _index - M=~ I 0]

else call
snake _index | get
target_cell | get

There are three possibilities when we want to move a snake onto a target cell:

1. The target has an egg, a link that’s not part of a snake (no owner). Eat it.
2. The target has a link that’s part of another snake. Attack it.
3. The target has no link, so it's empty. Move to there.

owner

Il] owner |l cell
result x| initialize local |: to call [[7ED cell v cell - |

= J = d link - 1= - I 0

then index in list thing call (=D link © get (7€
S global snakes -

To find the owner (snake, if any) of an rrrccc cell, we first look up the link (if any) pointing to that
cell. If alink is found (non-zero), then we look up the first link in whatever chain that link might

be part of, then try to look up that head link in our list of snake heads (global snakes). Failure
at any stage returns 0.

link

to ({3

LD S ST o cell - B S =1 global link_cells -

This function accepts a cell (row, column) and returns the link (index into links list) of the link on
that cell, or O if the cell is empty.

first

1] first I link
resut | (2] initialize local (=] to
initialize local =) to
in

do setERIt0 can R iink ¢ get SRR

while test v prev - | 0]
do setfiE@to | ot EED
set IR 10 | can TR link | get TSRS

This function accepts a link number, and follows the previous links to the very head of the chain
(snake) holding this link.

eat

¢| to EE3 |) |
do | (=] initizlize local | |to call (353 cell get

initialize local (L0010 | ooy EETTED snake_index (| get EECEGEED

=l draw -
(= R = target - |

color | call (RIS snake_index || get EIEICNINES|
it R Global link_predecessor -

index
replacement | get [EREELLES
replace list item list
index get
replacement .
replace list item list _' get
index get

replacement

This procedure is for the case where a snake encounters an egg, a solitary link, and absorbs it
into itself (eats it.) The target parameter is the cell (location) holding the target link to be eaten.
The mouth of the snake is in its head, the link we can look up in the snake table.

To show that the link has been eaten, we change its color to that of the snake eating it.
To absorb the link into the snake,

e we make it the predecessor of the old head link,

e Point the follower of the new head back to the old head, and

e Update the snakes list to point to the new snake head link.

attack

do | [u] initiakize local EENERIEIERINER0 | oo @GR cell | get B

initialize local (=813t | cay (H7ED cell | get (FREED

initialize: local to -
e L DEV - LU RN ink - PRI target - |

in | {o] i - new_target tail - D)
then | replace list item list getw

index 0= new_target_tail -
replacement [}

call [FEY snake_index | get [EDCEENE R

| -

= [revert_all - JULREG R target link - |

| -

This is the case where a snake bites another snake at a target cell location. First we need to
identify the victim, the owner of the target cell. We also identify which link is at the target cell.
Because we are merciful, we will allow the target snake to escape and heal if it has been bitten
anywhere behind its head, so we will need to identify the link that will serve as its new tail link.
That link is the previous link to the bitten link.

If we have a new tail for the target snake, we seal it off by setting its follower link to 0.
Otherwise, we have eaten the head of another snake, and must kill that snake entirely.

Regardless, the bitten target link and its followers in that snake are now loose food, and must
revert to eggs.

color

=3 4] color)
=L R (=l s S = global snake colors -

[41s S '=d snake_index - |

This function returns the color of a snake, based on the lookup table snake_colors.

revert_all

[revert_all J link)
do | (& initialize local [Jto | (=] create empty list
initialize local (=) to | oot TS
in | while test =4 next - | 0
do [(=] additemstolist list get (EECEEEIED
item | oget GELED
=24 next - R Y next - §

L -

foreach [inlist | get [EECEE ik
do | replace list item list @ =8 global link_follower -

index
replacement
replace list item list
index
replacement
cal GIETES
cell | cal link (get (T3

color 1= 8 global eggCo

This procedure accepts the head link of a chain of links, that need to be de-chained and
reverted back to eggs. It is a two phase operation:

e Gather the links in the chain into a list, following the next links,

e Revert each link in the list to an egg, by clearing its predecessor and follower links and
redrawing it black.

kill

] kill [snake_index
4o | remove list item list | get FEEEE R index | get EENLCE

remove list item list | get FEREEE NG cEd index | get

-

This procedure kills a snake, by removing it from the snakes list, and cleaning up any matching
lists. It does no link manipulation; that’s left to the calling attack routine.

last

Y [ast M link |
result | (o) initialize local (E5) to
initialize local (=) to
in

do set [IZEIt0 | can ESEED ink | get EEED

while test get (=0 0]
do set CEEBto | get (KD
set (N 10 ca (GriE link (| get EEED

| -
—

result | get [EEES

This routine follows the follower chain of a link, returning the last link in the chain.

move_to

to “snake_index || targel_cell
o] initialize local [IZTHt0 | can (EEIEED snake_index (get EETNIICED
initialize local |

in | set ESMIEI 0 | cal (Z5ER link (" get (ETE

&4 move of & cnake involves

8 drew and an erase, and & call m
serigs of slides from beck cell {_]Et
to front, ending at the
corget cell. The nake head color | call (D snake_index | get
remains the came link,
though its location call cell call w link get m
changed. | _ = :
while test . -
call (IR ink ¢! get RS -
do replace listitem list | get ERIENGTEEEEES
index | get ([ESHEITED
replacement . call ik | call (MR ink ¢ get CENGTED
set CEAER 0 | can G link 1 get CEEILED
- I
replace list item list
index
replacement Lo target cell -
&0
mings I

This is complex, simulating the movement of a caterpillar. First the drawing is handled at the
new head of the snake, and at its old tail. Then we start a wave at the tail, lifting each link and
dropping it onto the location of its predecessor, pushing the wave forward towards the head of

the snake, until we reach the head of the snake (prev = 0). All this movement happens in the
list link_cells, which maps the link numbers into their cell locations.
Gallery link

http://ai2.appinventor.mit.edu/?galleryld=5592523749457920

Other Projects

https://docs.google.com/document/d/1acg2M5KdunKjJgM3Rxpy Rf6vT600zxdIWglgbmzroA/ed
it?usp=sharing

http://ai2.appinventor.mit.edu/?galleryId=5592523749457920
https://docs.google.com/document/d/1acg2M5KdunKjJgM3Rxpy_Rf6vT6OozxdIWglgbmzroA/edit?usp=sharing
https://docs.google.com/document/d/1acg2M5KdunKjJgM3Rxpy_Rf6vT6OozxdIWglgbmzroA/edit?usp=sharing

	SnakePit
	Purpose
	Capture
	
	Designer Clock1
	Graphics
	cellPX

	
	R

	
	Cell storage
	row

	
	columns

	
	rows

	
	column

	
	cell
	centerX
	centerY
	erase
	draw
	global_snake_storage
	Link storage
	Screen1_Initialize
	seed
	next
	prev

	Clock1_Timer
	hatch_a_random_egg
	eggs
	randomColor

	move_a_snake
	move
	snake
	location
	neighbors
	wrap

	try_target
	owner
	link
	first

	eat
	

	attack
	color
	revert_all

	kill
	last

	move_to

	Gallery link
	Other Projects
	

