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Introduction 
In recent years, deep learning has become a hot topic of discussion in the technical community. 
Deep learning is a machine learning technique that teaches computers to do what comes 
naturally to humans: learn by example. Its ability to learn to extract important feature is one of 
the biggest reason for its success. It has found many applications in the real world and here we 
are trying to prove its mettle by one of its application i.e. classification of the image. We are 
training a neural network to classify the given image in the traffic sign category it belongs. 
 
Dataset 
We are using GTSRB dataset for training the model. It have 43 different classes with a total of 
39,209 images. Dataset has multiple copy of the same images with different sizes so we are 
using the images whose dimension is close to 32x32x3 as the input to the network have a 
dimension of that size. Thus we have a total of 1,306 number of images for training.  
 
Preprocessing 
 
Class Definition: 



 
 
The aim of the class is to perform preprocessing on the input image and convert it in a suitable 
form for training the classifier. This not only helps to enhance the dataset, but also helps to 
improve the accuracy of the classifier. A number of preprocessing algorithms has been used to 
enhance the dataset. They are :  

●​ BGR2GRAY 
This function takes in an input image of specified height(h), width(w) and number of 
channels( channels) and then converts it into grayscale image using cuda kernel. The 
kernel converts each pixel of the input image into corresponding grayscale value by 
assigning each thread to a pixel with the block dimension being (h,w).  
 
The kernel is defined as shown below -: 
 

 
 

●​ Histogram_Equalization 
This function is used to perform histogram equalization on the input image and produce 
contrast enhanced images as an output. This is achieved with the help of two cuda 
kernel calls, one of which calculates the histogram containing the frequency of each 
intensity value( 0 - 256 ) and the other to calculate CDF of the histogram and then map 
the normalized sum back to the output image. 
 
The kernel is defined as shown below -: 
 

 
 
In order to avoid race conditions ,atomic operations was used to calculate the histogram 
in multi-threaded environment using shared memory. The following function was used : 



float atomicAdd(float* address, float val); . Despite the overhead, it helped to 
compute the histogram more efficiently. 
 

●​ GrayLevel Transformation 
This function is used for further enhancement of the image. Enhancing an image 
provides better contrast and a more detailed image as compare to non enhanced image. 
 
The kernel is defined as shown below -: 

 
 

●​ GrayLevel_Neg_Transformation 
In negative transformation, each value of the input image is subtracted from the 
maximum intensity value of each pixel (L-1) and mapped onto the output image. 
This is achieved using cuda kernel call to convert the entire image into it’s 
negative by assigning each thread a single pixel. 

●​ GrayLevel_Log_Transformation 
During log transformation, the dark pixels in an image are expanded as 
compared to the higher pixel values. The higher pixel values are kind of 
compressed in log transformation.This is also achieved using cuda kernel call 
which assigns each thread to a pixel and performs corresponding mathematical 
operation. 

●​ GrayLevel_Gam_Transformation 
Images which are not properly corrected can look either bleached out, or too 
dark. Gamma correction controls the overall brightness of an image using the 
following formula : 

 
Variation in the value of gamma varies the enhancement of the images. The 
value of gamma is obtained from the macro definition. Here also a single kernel 
call assigns each thread to a pixel value which performs mathematical operations 
and maps them back to output image. 

 
 

●​ Normalization 
​Finally, the enhanced image is normalized with zero mean and unit variance to make the 
input image suitable to be fed to the network. This is achieved by calling the kernel and 
performing the sum operations using atomicAdd()  and finally mapping the calculated 
value to each pixel in the image thread-wise. 

​  



​ The kernel is defined as shown below -: 

 
 
 
 
 
 
 
 
Network Architecture 
  
Below is the architecture of the model which was provided in the paper -  
 

 
 
 
 
 
Below is the code snippet of the network architecture, we have used.  



 
 
Each sub-module used in the architecture has been explained in further sections. 
 
 
 
 
Convolution Layer 
 
The primary operation while implementing a Convolutional Neural network is convolution which 
helps us to reduce the required number of parameters and to take account of contextual 
information which is important for images. Mathematically, we convolve a kernel of fixed height, 
width, depth to the feature map. The convolution operation has been shown in the figure below. 
 
 

 
Figure : Convolution Operation 

 



Our implementation 
We have defined a class Conv2d as shown below in the snippet - 
 
 
 
Weight is used to denote the weights of the kernel which will be convolved with the feature map.  

 
Implementation of forward() function : 
In this, we consider the input feature as a 1D array in order to pass it to Cuda Kernel. So the 
arrangement of each feature map is such that first comes the width and then the height and in 
the same way data of every channel comes. The dimension of grid is (1,1,channel_out) and the 
block is (image_height, image_width, 1). The kernel function is implemented such that each 
thread computes convolution of the kernel with the image.  
 
Implementation of backward() function : 
We have two kernel function to compute derivative of output with respect to the image and 
filter(or kernel). The Kernel function used to compute the derivative with respect to the filter 
have grid dimension of (kernel_size, kernel_size, channel_out) and block dimension of (1, 1, 
channel_in). We have used the kernel_size in the grid dimension so as to incorporate the fact 
that a maximum number of threads allowed in a block is 1024. In the kernel function, each 
thread is used to compute the derivative with respect to each value of filter. The kernel function 
used to compute derivative with respect to the input have the same grid dimension and block 
dimension is (input_height, input_width, 1). In the kernel function, each thread is used to 
compute the derivative with respect to each value of the input feature. 
 
Implementation of step() function : 
After computing the derivative we are using the Momentum optimizer to update the weight with 

the default value of beta being 0.9. This includes the running average of the values of the 
derivative which we have computed over the previous iteration. The formula of momentum is  

 𝑣(𝑡) =  𝑣(𝑡 − 1) * β +  (1 − β) * 𝑑𝑤
 -  𝑊 =  𝑊 α * 𝑣(𝑡)

 



Fully Connected Layers 
 
Fully connected layers connect every neuron in one layer to every neuron in another layer. It 
follows the same principle as the traditional multi-layer perceptron neural network. The flattened 
matrix obtained from the convolutional layers are passed on to a series of fully connected layers 
in order to classify the images. 
 

 
Figure : Fully Connected Layer 

 
Our Implementation  
A snippet of the class defined for fully connected layers is as follows : 
 

 
 
An object of this class stores the weight and bias mapping the input data from the preceding 
class to the output of the layer. The output produced by the layer and the gradients flowing 
backward from the layer are stored in the variables “out” and “d_in” respectively. The weight and 
bias updates have also been stored in the object of this class. 
 
Implementation of forward() function 
The equation for forward propagation of fully connected layers is -  



 

 
 

 
During forward propagation, each thread on the device computes the weighted sum of the 
neurons of the previous layer corresponding to a specific output node. In the implemented 
network, the maximum dimension of the output fully connected layer is 1024. Hence, we have 
restricted the operation to be implemented on a single block in order to allow warped 
implementation of the Cuda kernel, thus making it more efficient.  
 
Implementation of backward() function: 
 
During backward propagation, the function takes the input layer and the incoming gradients as 
input and outputs the outgoing gradients. 
 
Backpropagation in the fully connected layer: 
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We can see that we need to implement matrix transpose and matrix multiplication for 
implementing the backward function. We have implemented matrix transpose as follows: 
 
 



 
 
We have used also used an optimized matrix multiplication. For maximum utilization of threads 
in each block, we have used a thread allocation scheme as shown in the bottom figure. 

 

 
 
Implementation of step() function: 
 
Step function for the fully connected layer has been implemented in the same fashion as in the 
convolution layer. 
 
 
 
Activation Function 
 
Sigmoid 
 
Sigmoid function is a S-shaped function which transforms the input data to a range of [0,1]. In 
deep learning, we have to predict a probability of the output and hence, sigmoid is often the 
right choice when it comes to applying activation functions on the last layer of the network. The 
shape of the function is shown in the following figure. 
 



 
Figure : Sigmoid Function 

 
Our implementation :  
A snippet of the class defined for the sigmoid function is as follows :  
 

 
 
An object of this class stores the output obtained after incoming data is subject to the sigmoid 
function. The variable “out” has been used for this purpose. Also, the gradients to be passed on 
to the previous layers during back propagation are stored in the variable d_in”. 
 
Implementation of forward() function 
During forward propagation, the forward() function takes the incoming feature maps and passes 
them to the device. Each thread is assigned a particular neuron on which it applies the sigmoid 
function. The results corresponding to each thread are stored in an output variable which are 
then transferred from the device to the host. These values have been stored in the “out” variable 
since they will also be required for calculating the gradients during backpropagation. 
 
Implementation of backward() function 
The derivative of the sigmoid function is given by -  
 



 
 
Hence, in order to compute the gradient flowing backwards from the sigmoid layer, the values 
stored during forward propagation are utilized. As done in forward propagation, the incoming 
gradients from the succeeding layers are assigned to individual threads on the device and the 
gradients at each neuron are computed and stored in the variable “d_in”.   
 
ReLU 
 
The Rectified Linear Unit is the most commonly used activation function in deep learning models. 
The function returns 0 if it receives any negative input, but for any positive value it returns that value 
back. So it can be written as -  
 

 
 
The curve for ReLU is as shown -  
 

 
Figure : ReLU function 

 
Our Implementation 
A snippet of the class defined for the ReLU function is as follows : 

 
 



An object of this class stores the output obtained after incoming data is subject to the ReLU 
function. The variable “out” has been used for this purpose. Also, the gradients to be passed on 
to the previous layers during back propagation are stored in the variable d_in”. 
 
Implementation of forward() function 
During forward propagation, the forward() function takes the incoming feature maps and passes 
them to the device. Each thread is assigned a particular neuron on which it applies the ReLU 
function. The results corresponding to each thread are stored in an output variable which are 
then transferred from the device to the host. These values have been stored in the “out” variable 
since they will also be required for calculating the gradients during back propagation. 
 
Implementation of backward() function 
ReLU function zeroes out the negative inputs, thus, preventing them from affecting the output 
produced by the network. During backward propagation, the gradients coming from the 
succeeding layers are suppressed at the locations which had been zeroed out during forward 
propagation. Hence, the weight variables related to these locations are not updated during the 
backpropagation step. Similar to what had been done for the sigmoid activation function, the 
operations corresponding to individual neurons have been assigned to independent threads on 
the device in order to parallelize the operation. 
 
 
Dropout 
 
Dropout refers to ignoring neurons during training phase of certain phase of neurons which is 
chosen at random. These selected neurons are not considered during a particular forward or 
backward pass.This is usually done to prevent overfitting. A fully connected layer occupies most 
of the parameters, and hence, neurons develop co-dependency amongst each other during 
training which curbs the individual power of each neuron leading to over-fitting of training data. 
 
Our Implementation 
 
Class Definition 

 
 



Forward Propagation 
First, we initialize a boolean map of the dimension same as that of input. We have done this 
parallelly by allocating the CUDA device states with a random number. We pass this map to the 
dropout kernel. We launch this kernel with grid dimension as (1, 1, no_of_channels) and block 
dimension as (width, height, 1). This way, we have different channels on different blocks. In our 
model, image dimensions are 32x32, so a number of threads in a block will never cross 1024. 
 
Backward Propagation 
We are saving the index of dropped elements in the corresponding map. This kernel is launched 
with the same kernel configurations as that of forward pass. The input derivative at the location 
saved by the boolean map is changed to zero. This way, the gradients at that locations will not 
be back propagated further. 
 
 
Max Pooling 
 
A pooling layer is an essential building block of a CNN. Pooling. Its function is to progressively 
reduce the spatial size of the representation to reduce the amount of parameters and 
computation in the network. Pooling layer operates on each feature map independently. The 
most common approach used in pooling is max pooling.It has no trainable parameters. 
 

 
Figure : Max Pooling Operation 

 
Our implementation 
We used the following class definition in our implementation: 
 

 



Mask - It is used to store the positions of the maximum elements which are forwarded out of a 
pooling window.It will be useful while backpropagation. 
 
Implementation of forward() function 
During forward propagation, the function takes the input feature map, size of the input feature 
map and the number of channels as input.It returns the output feature map of half the 
dimensions and same number of channels. 
 
In the kernel function of MaxPool forward, computation of each output element is parallelized. 
For this, the image dimensions of the output feature map are given as the number of threads in 
each block along x and y-direction. The number of channels is given along z-direction. 
 

 
 
Here gridDim.z = number of channels so that the number of threads in a block do not exceed 
1024 which is constrained by the device architecture. 
 
Here we can access each element of the output feature map by directly accessing the channel 
number using blockIdx.z and the pixel number of each channel using threadIdx.x and 
threadIdx.y. 
 
Using the indexing of each output element we can get the indexing of input feature map using 
appropriate constant multiplications. We are also storing the mask value for each pool window 
of 2X2 which will be helpful during backpropagation. 
 
Implementation of backward() function 
During backward propagation, the function takes the incoming gradients, the dimensions of the 
output feature map and number of channels as input. It returns the outgoing gradients with the 
same number of channels. 
 
In the kernel function of MaxPool backward, computation of each input gradient is parallelized. 
For this, the image dimensions of the output feature map are given as the number of threads in 
each block along x and y-direction. The number of channels are given along z-direction. 
 

 
 
Here gridDim.z = number of channels so that the number of threads in a block do not exceed 
1024 which is constrained by the device architecture. 



 
Here we can access each element of the output feature map by directly accessing the channel 
number using blockIdx.z and the pixel number of each channel using threadIdx.x and 
threadIdx.y. 
 
Using the indexing of each output element we can get the indexing of input feature map using 
appropriate constant multiplications and the mask stored during forward propagation. 
 
 
Softmax cross entropy with logits: 
 
This class contains functions which measures the probability error in discrete classification tasks 
in which the classes are mutually exclusive. Softmax function calculates the probability of every 
possible class. 

  
 
 
 
Our Implementation 
We have implemented Softmax with numeric stability. In practice, the exponential terms may be 
very large, and dividing large numbers can be numerically unstable. What we have done is, we 
are subtracting the maximum value of the array from every element of the array. This makes all 
the elements in logits to be less than or equal to zero. Thus all the exponential terms are less 
than one. 
 
Class Definition: 

 
 
 



Implementation of forward() function 
First, we are finding the softmax probabilities by dividing exponential of an element by the sum 
of the exponential of all the elements. Then we are applying the cross-entropy loss on the 
output. We are adding a small offset(1e-7) to the log term to avoid exploding the term. 
 
Implementation of backward() function 
The derivative of the cross-entropy loss function with respect to the inputs of softmax function 
comes out to be (y - ŷ), where ‘y’ is the output of model and ŷ is the ground truth. 
 
 
Skip Connection 
 
For implementing skip connection into the network we need a concat function which 
concatenates three vectors into one single vector. Since we are only concatenating in one 
dimension we are using global thread id for indexing.Since upon concatenation the output 
dimensions are exceeding 1024, we are keeping the number of threads in a block to be 1024 
and giving the remaining elements in the grid as ceil(output dimension/1024) along any one of 
the grid dimensions. 
 
 
Reported Accuracy 
 
Currently, the model is being trained. Hence, we will report the accuracy during the final 
presentation. 
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