0.299*Project 3: ADAS Traffic Sign
Detection

Team Members

Sanskar Agrawal - 16EE10041
Aryan Jaiswal - 16EE10059
Manu Maheshwari - 16EE10062
Harsh Maheshwari - 16EE30010
Siddhant Haldar - 16EE30025
Rohan Yadav - 16EE10039
Umang Fogla - 16EE10051

Introduction

In recent years, deep learning has become a hot topic of discussion in the technical community.
Deep learning is a machine learning technique that teaches computers to do what comes
naturally to humans: learn by example. Its ability to learn to extract important feature is one of
the biggest reason for its success. It has found many applications in the real world and here we
are trying to prove its mettle by one of its application i.e. classification of the image. We are
training a neural network to classify the given image in the traffic sign category it belongs.

Dataset

We are using GTSRB dataset for training the model. It have 43 different classes with a total of
39,209 images. Dataset has multiple copy of the same images with different sizes so we are
using the images whose dimension is close to 32x32x3 as the input to the network have a
dimension of that size. Thus we have a total of 1,306 number of images for training.

Preprocessing

Class Definition:

class
{
public:

float *gray_img, *hist_img, *trans_img, *norm_img;
int h,w,channels;

(int h, int w, int channels);

(float* img);
(float *img);
(float *img);
(float *img);
(float *img);
(float *img);

The aim of the class is to perform preprocessing on the input image and convert it in a suitable
form for training the classifier. This not only helps to enhance the dataset, but also helps to
improve the accuracy of the classifier. A number of preprocessing algorithms has been used to
enhance the dataset. They are :
e BGR2GRAY
This function takes in an input image of specified height(h), width(w) and number of
channels(channels) and then converts it into grayscale image using cuda kernel. The
kernel converts each pixel of the input image into corresponding grayscale value by
assigning each thread to a pixel with the block dimension being (h,w).

The kernel is defined as shown below -:

_ global

void (float *in_img, fleat *gray img, int h, int w, int channel}
{

e Histogram_Equalization
This function is used to perform histogram equalization on the input image and produce
contrast enhanced images as an output. This is achieved with the help of two cuda
kernel calls, one of which calculates the histogram containing the frequency of each
intensity value(0 - 256) and the other to calculate CDF of the histogram and then map
the normalized sum back to the output image.

The kernel is defined as shown below -:

_device int hist[256]; //device variable to share among 2 kernels

__global woid (float* in_img , float* out img, int h, int w, int num_leuelﬁﬂ
~_global woid (float *in_img, int h, int w, int num levels)

In order to avoid race conditions ,atomic operations was used to calculate the histogram
in multi-threaded environment using shared memory. The following function was used :

float atomicAdd(float* address, float val); . Despite the overhead, it helped to
compute the histogram more efficiently.

e GraylLevel Transformation
This function is used for further enhancement of the image. Enhancing an image
provides better contrast and a more detailed image as compare to non enhanced image.

The kernel is defined as shown below -:

__global wvoid (float *in _img, float* out img, int h, int w, int num levels)
__global__ void (float *in_img, float* out_img, int h, int w, int num_levels, float param)

global _ void (float *in_img, float* out_img, int h, int w, int num_levels, float gamma)

e GraylLevel_Neg_Transformation
In negative transformation, each value of the input image is subtracted from the
maximum intensity value of each pixel (L-1) and mapped onto the output image.
This is achieved using cuda kernel call to convert the entire image into it's
negative by assigning each thread a single pixel.

e GraylLevel_Log_Transformation
During log transformation, the dark pixels in an image are expanded as
compared to the higher pixel values. The higher pixel values are kind of
compressed in log transformation.This is also achieved using cuda kernel call
which assigns each thread to a pixel and performs corresponding mathematical
operation.

e GraylLevel_Gam_Transformation
Images which are not properly corrected can look either bleached out, or too
dark. Gamma correction controls the overall brightness of an image using the
following formula :

I = 255 x (i)
255
Variation in the value of gamma varies the enhancement of the images. The
value of gamma is obtained from the macro definition. Here also a single kernel
call assigns each thread to a pixel value which performs mathematical operations
and maps them back to output image.

¥

e Normalization
Finally, the enhanced image is normalized with zero mean and unit variance to make the
input image suitable to be fed to the network. This is achieved by calling the kernel and
performing the sum operations using afomicAdd() and finally mapping the calculated
value to each pixel in the image thread-wise.

The kernel is defined as shown below -:

_global__ woid (float* in_img, float* out_img, int h, int w, int num_levels)

Network Architecture

Below is the architecture of the model which was provided in the paper -

3584
4x4
Input ~ max pool
el 12@32x 32 P 253
2K T T ; - G416 =]f‘-) I A |'|'|__=|-\ |.-|..::,.'-}| 1024
N 3G = 1] < 128@E x B 5)
i - daiiriaang } it 4
! il . i i d - I
5x5 2x2 LE] ?x2 55 2Ix1 T‘ T T
i max pool 1 max pool @ max pool i full softmax output
connection

Fig. 15. Convolutional network mosdel.

Below is the code snippet of the network architecture, we have used.

Conv2d C1(1, 32, 5);
ReLU R1(IMAGE_DIM, IMAGE DIM, 32);
MaxPool M1(IMAGE DIM, IMAGE DIM, 22);

(32, 5);

2 (IMAGE_DIM/2, IMAGE DIM/2, 64);
MaxPool M2(IMAGE DIM/2, IMAGE DIM/2, 64);
Dropout D1(0.2, IMAGE DIM/4, IMAGE DIM/4, 64);

Conv2d C3(64, 128, 5);

RelU IMAGE _DIM/4, IMAGE DIM/4, 128);
MaxPool M3(IMAGE DIM/4, IMAGE DIM/4, 128
Dropout D2(6.2, IMAGE DIM/2, IMAGE DIM/E

FC F1({(IMAGE_DIM*IMAGE_DIM/64)*128, 1024);
RelLU R4(1, 1, 1624);
Dropout D3 2, 1, 1

FC F2(1824, n_classes);
Sigmoid 51(1,1,m classes);

Each sub-module used in the architecture has been explained in further sections.

Convolution Layer

The primary operation while implementing a Convolutional Neural network is convolution which
helps us to reduce the required number of parameters and to take account of contextual

information which is important for images. Mathematically, we convolve a kernel of fixed height,
width, depth to the feature map. The convolution operation has been shown in the figure below.

T
source ai T3 1%
ource pixel 5 0| > 3 0
1 2o L]
7 4 L 27T A (1%3)+(0x0)+(1x1) +
5.8 /7 2 (2x2) +(0x6)+ 2x2) +
< =l > (1x2)+(0x4)+(1x1) =-3
/>< | —1 0
5 3 L —
11153 &§ 1 //
T | A5 e _ -1 L1
2115 2 =16 A //
—To // 3| // |~ |
1 L s 0 [1 e | //
14 T8l - N~ | 1 | —
2| 5 11~ = 1 = | —
1o L— » —1 |
1 // 1 // |
| 7// T
Convolution filter ////// |
(Sobel Gx) | —1 // //
Destination pixel |~ // //
/// T
= 1 |
/'/ L
= //
//

Figure : Convolution Operation

Our implementation
We have defined a class Conv2d as shown below in the snippet -

Weight is used to denote the weights of the kernel which will be convolved with the feature map.

class Conv2d

I
1

bool is first;
Float *weight;
t bias;
t* del weight;
t* del wvw;

int channel in, channel out, kernel size;

hannel_in, int channel out, int kernel size);
(float* image, int img width, int img_height);
fl float* del out, f1 F input, int input height, int input width);
void s oat 1 rate, float beeta=0.9);

Implementation of forward() function :

In this, we consider the input feature as a 1D array in order to pass it to Cuda Kernel. So the
arrangement of each feature map is such that first comes the width and then the height and in
the same way data of every channel comes. The dimension of grid is (1,1,channel_out) and the
block is (image_height, image_width, 1). The kernel function is implemented such that each
thread computes convolution of the kernel with the image.

Implementation of backward() function :

We have two kernel function to compute derivative of output with respect to the image and
filter(or kernel). The Kernel function used to compute the derivative with respect to the filter
have grid dimension of (kernel_size, kernel_size, channel_out) and block dimension of (1, 1,
channel_in). We have used the kernel_size in the grid dimension so as to incorporate the fact
that a maximum number of threads allowed in a block is 1024. In the kernel function, each
thread is used to compute the derivative with respect to each value of filter. The kernel function
used to compute derivative with respect to the input have the same grid dimension and block
dimension is (input_height, input_width, 1). In the kernel function, each thread is used to
compute the derivative with respect to each value of the input feature.

Implementation of step() function :

After computing the derivative we are using the Momentum optimizer to update the weight with
the default value of beta being 0.9. This includes the running average of the values of the
derivative which we have computed over the previous iteration. The formula of momentum is
v(t) = vt -1 *B+ (1 —-B)*dw

W = W-a* v(t)

Fully Connected Layers

Fully connected layers connect every neuron in one layer to every neuron in another layer. It
follows the same principle as the traditional multi-layer perceptron neural network. The flattened
matrix obtained from the convolutional layers are passed on to a series of fully connected layers
in order to classify the images.

Flattening Output value

Input Layer Fully Connected Layer Output Layer

Figure : Fully Connected Layer

Our Implementation
A snippet of the class defined for fully connected layers is as follows :

*weight;
*hias;
*dw, *dw old;
*db, *db_old;
*d_in, *out;
int in_size, out size,first;

int out_features);
*in);
n,fleat *d out);
r, Tloat beta);

An object of this class stores the weight and bias mapping the input data from the preceding
class to the output of the layer. The output produced by the layer and the gradients flowing
backward from the layer are stored in the variables “out” and “d_in” respectively. The weight and
bias updates have also been stored in the object of this class.

Implementation of forward() function
The equation for forward propagation of fully connected layers is -

()af\ @
a\/ z=b+ Za W,
o g(‘)

During forward propagation, each thread on the device computes the weighted sum of the
neurons of the previous layer corresponding to a specific output node. In the implemented
network, the maximum dimension of the output fully connected layer is 1024. Hence, we have
restricted the operation to be implemented on a single block in order to allow warped
implementation of the Cuda kernel, thus making it more efficient.

Implementation of backward() function:

During backward propagation, the function takes the input layer and the incoming gradients as
input and outputs the outgoing gradients.

Backpropagation in the fully connected layer:

d =w'd
m out
d =d x
w out
db = dout

We can see that we need to implement matrix transpose and matrix multiplication for
implementing the backward function. We have implemented matrix transpose as follows:

(i=m && j<n)

int index_in = i*n+j;
int index out = j*m+i;

w_transpose[index out] = w[index in];

We have used also used an optimized matrix multiplication. For maximum utilization of threads
in each block, we have used a thread allocation scheme as shown in the bottom figure.

Implementation of step() function:

Step function for the fully connected layer has been implemented in the same fashion as in the
convolution layer.

Activation Function

Sigmoid

Sigmoid function is a S-shaped function which transforms the input data to a range of [0,1]. In
deep learning, we have to predict a probability of the output and hence, sigmoid is often the
right choice when it comes to applying activation functions on the last layer of the network. The
shape of the function is shown in the following figure.

Z) = =
¢(2) 14+e*
0.0
-8] -4 -2 0 é 4 5 8

Figure : Sigmoid Function

Our implementation :
A snippet of the class defined for the sigmoid function is as follows :

w, int channel);
*¥in, int h, int w, int channel);
t* d out, int h, int w, int channel);

An object of this class stores the output obtained after incoming data is subject to the sigmoid
function. The variable “out” has been used for this purpose. Also, the gradients to be passed on
to the previous layers during back propagation are stored in the variable d_in”.

Implementation of forward() function

During forward propagation, the forward() function takes the incoming feature maps and passes
them to the device. Each thread is assigned a particular neuron on which it applies the sigmoid
function. The results corresponding to each thread are stored in an output variable which are
then transferred from the device to the host. These values have been stored in the “out” variable
since they will also be required for calculating the gradients during backpropagation.

Implementation of backward() function
The derivative of the sigmoid function is given by -

do
% = o(x)(1 - o(x)

Hence, in order to compute the gradient flowing backwards from the sigmoid layer, the values
stored during forward propagation are utilized. As done in forward propagation, the incoming
gradients from the succeeding layers are assigned to individual threads on the device and the
gradients at each neuron are computed and stored in the variable “d_in”.

RelLU

The Rectified Linear Unit is the most commonly used activation function in deep learning models.
The function returns 0 if it receives any negative input, but for any positive value it returns that value
back. So it can be written as -

flz) = maz(0, x)

The curve for ReLU is as shown -

Figure : ReLU function

Our Implementation
A snippet of the class defined for the ReLU function is as follows :

*out,*d in;

int h, in int channel);
¥in, int h, int w, int channel);
t* d out, int h, int w, int channel);

An object of this class stores the output obtained after incoming data is subject to the ReLU
function. The variable “out” has been used for this purpose. Also, the gradients to be passed on
to the previous layers during back propagation are stored in the variable d_in”.

Implementation of forward() function

During forward propagation, the forward() function takes the incoming feature maps and passes
them to the device. Each thread is assigned a particular neuron on which it applies the ReLU
function. The results corresponding to each thread are stored in an output variable which are
then transferred from the device to the host. These values have been stored in the “out” variable
since they will also be required for calculating the gradients during back propagation.

Implementation of backward() function

ReLU function zeroes out the negative inputs, thus, preventing them from affecting the output
produced by the network. During backward propagation, the gradients coming from the
succeeding layers are suppressed at the locations which had been zeroed out during forward
propagation. Hence, the weight variables related to these locations are not updated during the
backpropagation step. Similar to what had been done for the sigmoid activation function, the
operations corresponding to individual neurons have been assigned to independent threads on
the device in order to parallelize the operation.

Dropout

Dropout refers to ignoring neurons during training phase of certain phase of neurons which is
chosen at random. These selected neurons are not considered during a particular forward or
backward pass.This is usually done to prevent overfitting. A fully connected layer occupies most
of the parameters, and hence, neurons develop co-dependency amongst each other during
training which curbs the individual power of each neuron leading to over-fitting of training data.

Our Implementation

Class Definition
class Dropout

drop_prob, *d in;
channel;

_prob, int h, int w, int channel);
at*in);

Forward Propagation

First, we initialize a boolean map of the dimension same as that of input. We have done this
parallelly by allocating the CUDA device states with a random number. We pass this map to the
dropout kernel. We launch this kernel with grid dimension as (1, 1, no_of channels) and block
dimension as (width, height, 1). This way, we have different channels on different blocks. In our
model, image dimensions are 32x32, so a number of threads in a block will never cross 1024.

Backward Propagation

We are saving the index of dropped elements in the corresponding map. This kernel is launched
with the same kernel configurations as that of forward pass. The input derivative at the location
saved by the boolean map is changed to zero. This way, the gradients at that locations will not
be back propagated further.

Max Pooling

A pooling layer is an essential building block of a CNN. Pooling. Its function is to progressively
reduce the spatial size of the representation to reduce the amount of parameters and
computation in the network. Pooling layer operates on each feature map independently. The
most common approach used in pooling is max pooling.It has no trainable parameters.

Single depth slice

dl1(1]2]4
max pool with 2x2 filters
56 |7 |8 and stride 2 6 | 8
3 | 2 [3|4
112]3 |4
- >

Figure : Max Pooling Operation

Our implementation
We used the following class definition in our implementation:

w,int channel);
*in, int h, int w,
*d out, int h, in

Mask - It is used to store the positions of the maximum elements which are forwarded out of a
pooling window.It will be useful while backpropagation.

Implementation of forward() function

During forward propagation, the function takes the input feature map, size of the input feature
map and the number of channels as input.lt returns the output feature map of half the
dimensions and same number of channels.

In the kernel function of MaxPool forward, computation of each output element is parallelized.
For this, the image dimensions of the output feature map are given as the number of threads in
each block along x and y-direction. The number of channels is given along z-direction.

dim3 grid(1,1,channel);

dim3 block({w/2,h/2,1);
maxpool fp<<<grid, block>>>(g in,g out,g mask,h,w,channel);

Here gridDim.z = number of channels so that the number of threads in a block do not exceed
1024 which is constrained by the device architecture.

Here we can access each element of the output feature map by directly accessing the channel
number using blockldx.z and the pixel number of each channel using threadldx.x and
threadldx.y.

Using the indexing of each output element we can get the indexing of input feature map using
appropriate constant multiplications. We are also storing the mask value for each pool window
of 2X2 which will be helpful during backpropagation.

Implementation of backward() function

During backward propagation, the function takes the incoming gradients, the dimensions of the
output feature map and number of channels as input. It returns the outgoing gradients with the
same number of channels.

In the kernel function of MaxPool backward, computation of each input gradient is parallelized.
For this, the image dimensions of the output feature map are given as the number of threads in
each block along x and y-direction. The number of channels are given along z-direction.

dim3 grid(1,1,channel);
dim3 block{w,h,1);

maxpool bp<<<grid,block=>>=(g d in,g d out,g mask,h,w,channel);

Here gridDim.z = number of channels so that the number of threads in a block do not exceed
1024 which is constrained by the device architecture.

Here we can access each element of the output feature map by directly accessing the channel
number using blockldx.z and the pixel number of each channel using threadldx.x and
threadldx.y.

Using the indexing of each output element we can get the indexing of input feature map using
appropriate constant multiplications and the mask stored during forward propagation.

Softmax cross entropy with logits:

This class contains functions which measures the probability error in discrete classification tasks
in which the classes are mutually exclusive. Softmax function calculates the probability of every
possible class.

Cofinioy Cross-Entropy
Loss

Our Implementation

We have implemented Softmax with numeric stability. In practice, the exponential terms may be
very large, and dividing large numbers can be numerically unstable. What we have done is, we
are subtracting the maximum value of the array from every element of the array. This makes all
the elements in logits to be less than or equal to zero. Thus all the exponential terms are less
than one.

Class Definition:
ropy_with logits

* logits, int label, inf n_classes);
L int 1abe1 int n_classes);

Implementation of forward() function

First, we are finding the softmax probabilities by dividing exponential of an element by the sum
of the exponential of all the elements. Then we are applying the cross-entropy loss on the
output. We are adding a small offset(1e-7) to the log term to avoid exploding the term.

Implementation of backward() function
The derivative of the cross-entropy loss function with respect to the inputs of softmax function
comes out to be (y - y), where ‘y’ is the output of model and y is the ground truth.

Skip Connection

For implementing skip connection into the network we need a concat function which
concatenates three vectors into one single vector. Since we are only concatenating in one
dimension we are using global thread id for indexing.Since upon concatenation the output
dimensions are exceeding 1024, we are keeping the number of threads in a block to be 1024
and giving the remaining elements in the grid as ceil(output dimension/1024) along any one of
the grid dimensions.

Reported Accuracy

Currently, the model is being trained. Hence, we will report the accuracy during the final
presentation.

	0.299*Project 3: ADAS Traffic Sign Detection

