
 ​ ​ ​ ​

Pass It On (Story Starters)
Minimum experience: Grades 3+, 1st year using Scratch, 4th quarter or later

At a Glance

Overview and Purpose

Coders engage in a multi-day project where they create or remix an introduction to a short story. The short version of this
project is completed by one coder, while the longer version involves coders passing their incomplete project to a peer, who
adds to their story. The purpose of this project is to encourage coders to communicate and learn from their peers.

Objectives and Standards

Process objective(s): Product objective(s):

Statement:
●​ I will review coding concepts and practices learned

this year to create and remix stories with multiple
scenes.

Question:
●​ How can we use what we learned this year to create

and remix stories with multiple scenes?

Statement:
●​ I will use a storyboard as a guide for creating my own

project and adding to projects by my peers.
Question:

●​ How can we use a storyboard as a guide for creating
our own projects and adding to projects created by
peers?

Main standard(s): Reinforced standard(s):

1B-AP-10 Create programs that include sequences, events,
loops, and conditionals

●​ Control structures specify the order (sequence) in
which instructions are executed within a program and
can be combined to support the creation of more
complex programs. Events allow portions of a
program to run based on a specific action. For
example, students could write a program to explain
the water cycle and when a specific component is
clicked (event), the program would show information
about that part of the water cycle. Conditionals allow
for the execution of a portion of code in a program
when a certain condition is true. For example,
students could write a math game that asks
multiplication fact questions and then uses a
conditional to check whether or not the answer that
was entered is correct. Loops allow for the repetition
of a sequence of code multiple times. For example, in
a program that produces an animation about a
famous historical character, students could use a loop

1B-AP-08 Compare and refine multiple algorithms for the same
task and determine which is the most appropriate.

●​ Different algorithms can achieve the same result,
though sometimes one algorithm might be most
appropriate for a specific situation. Students should be
able to look at different ways to solve the same task
and decide which would be the best solution. For
example, students could use a map and plan multiple
algorithms to get from one point to another. They could
look at routes suggested by mapping software and
change the route to something that would be better,
based on which route is shortest or fastest or would
avoid a problem. Students might compare algorithms
that describe how to get ready for school. Another
example might be to write different algorithms to draw
a regular polygon and determine which algorithm
would be the easiest to modify or repurpose to draw a
different polygon. (source)

1B-AP-11 Decompose (break down) problems into smaller,
manageable subproblems to facilitate the program
development process.

https://bootuppd.org/
http://www.csteachers.org/page/standards

to have the character walk across the screen as they
introduce themselves. (source)

1B-AP-12 Modify, remix, or incorporate portions of an
existing program into one's own work, to develop something
new or add more advanced features.

●​ Programs can be broken down into smaller parts,
which can be incorporated into new or existing
programs. For example, students could modify
prewritten code from a single-player game to create a
two-player game with slightly different rules, remix
and add another scene to an animated story, use
code to make a ball bounce from another program in
a new basketball game, or modify an image created
by another student. (source)

1B-AP-13 Use an iterative process to plan the development of
a program by including others' perspectives and considering
user preferences.

●​ Planning is an important part of the iterative process
of program development. Students outline key
features, time and resource constraints, and user
expectations. Students should document the plan as,
for example, a storyboard, flowchart, pseudocode, or
story map. (source)

●​ Decomposition is the act of breaking down tasks into
simpler tasks. For example, students could create an
animation by separating a story into different scenes.
For each scene, they would select a background, place
characters, and program actions. (source)

1B-AP-15 Test and debug (identify and fix errors) a program or
algorithm to ensure it runs as intended.

●​ As students develop programs they should continuously
test those programs to see that they do what was
expected and fix (debug), any errors. Students should
also be able to successfully debug simple errors in
programs created by others. (source)

1B-AP-17 Describe choices made during program development
using code comments, presentations, and demonstrations.

●​ People communicate about their code to help others
understand and use their programs. Another purpose of
communicating one's design choices is to show an
understanding of one's work. These explanations could
manifest themselves as in-line code comments for
collaborators and assessors, or as part of a summative
presentation, such as a code walk-through or coding
journal. (source)

Practices and Concepts
Source: K–12 Computer Science Framework. (2016). Retrieved from http://www.k12cs.org.

Main practice(s): Reinforced practice(s):

Practice 5: Creating computational artifacts
●​ "The process of developing computational artifacts

embraces both creative expression and the
exploration of ideas to create prototypes and solve
computational problems. Students create artifacts
that are personally relevant or beneficial to their
community and beyond. Computational artifacts can
be created by combining and modifying existing
artifacts or by developing new artifacts. Examples of
computational artifacts include programs,
simulations, visualizations, digital animations, robotic
systems, and apps." (p. 80)

●​ P5.1. Plan the development of a computational
artifact using an iterative process that includes
reflection on and modification of the plan, taking into
account key features, time and resource constraints,
and user expectations. (p. 80)

●​ P5.2. Create a computational artifact for practical
intent, personal expression, or to address a societal
issue. (p. 80)

●​ P5.3. Modify an existing artifact to improve or
customize it. (p. 80)

Practice 6: Testing and refining computational artifacts
●​ "Testing and refinement is the deliberate and iterative

process of improving a computational artifact. This
process includes debugging (identifying and fixing
errors) and comparing actual outcomes to intended
outcomes. Students also respond to the changing needs
and expectations of end users and improve the
performance, reliability, usability, and accessibility of
artifacts." (p. 81)

●​ P6.1. Systematically test computational artifacts by
considering all scenarios and using test cases." (p. 81)

●​ P6.2. Identify and fix errors using a systematic process.
(p. 81)

Practice 7: Communicating about computing
●​ "Communication involves personal expression and

exchanging ideas with others. In computer science,
students communicate with diverse audiences about
the use and effects of computation and the
appropriateness of computational choices. Students
write clear comments, document their work, and
communicate their ideas through multiple forms of
media. Clear communication includes using precise
language and carefully considering possible audiences."
(p. 82)

●​ P7.2. Describe, justify, and document computational
processes and solutions using appropriate terminology

http://www.csteachers.org/page/standards
http://www.csteachers.org/page/standards
http://www.csteachers.org/page/standards
http://www.csteachers.org/page/standards
http://www.csteachers.org/page/standards
http://www.csteachers.org/page/standards
http://www.k12cs.org
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=90
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=90
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=90
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=90
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=91
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=91
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=91
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=92

consistent with the intended audience and purpose. (p.
82)

Main concept(s): Reinforced concept(s):

Modularity
●​ "Modularity involves breaking down tasks into

simpler tasks and combining simple tasks to create
something more complex. In early grades, students
learn that algorithms and programs can be designed
by breaking tasks into smaller parts and recombining
existing solutions. As they progress, students learn
about recognizing patterns to make use of general,
reusable solutions for commonly occurring scenarios
and clearly describing tasks in ways that are widely
usable." (p. 91)

●​ Grade 5 - "Programs can be broken down into smaller
parts to facilitate their design, implementation, and
review. Programs can also be created by
incorporating smaller portions of programs that have
already been created." (p. 104)

Program Development
●​ "Programs are developed through a design process

that is often repeated until the programmer is
satisfied with the solution. In early grades, students
learn how and why people develop programs. As they
progress, students learn about the tradeoffs in
program design associated with complex decisions
involving user constraints, efficiency, ethics, and
testing." (p. 91)

●​ Grade 5 - "People develop programs using an
iterative process involving design, implementation,
and review. Design often involves reusing existing
code or remixing other programs within a
community. People continuously review whether
programs work as expected, and they fix, or debug,
parts that do not. Repeating these steps enables
people to refine and improve programs." (p. 104)

Algorithms
●​ "Algorithms are designed to be carried out by both

humans and computers. In early grades, students learn
about age-appropriate algorithms from the real world.
As they progress, students learn about the
development, combination, and decomposition of
algorithms, as well as the evaluation of competing
algorithms." (p. 91)

●​ Grade 5 - "Different algorithms can achieve the same
result. Some algorithms are more appropriate for a
specific context than others." (p. 103)

Control
●​ "Control structures specify the order in which

instructions are executed within an algorithm or
program. In early grades, students learn about
sequential execution and simple control structures. As
they progress, students expand their understanding to
combinations of structures that support complex
execution." (p. 91)

●​ Grade 5 - "Control structures, including loops, event
handlers, and conditionals, are used to specify the flow
of execution. Conditionals selectively execute or skip
instructions under different conditions." (p. 103)

Scratch Blocks

Primary blocks Control, Events

Supporting blocks Looks, Motion, My Blocks, Sound

Vocabulary

Iterative ●​ Involving the repeating of a process with the aim of approaching a desired goal, target, or result
(source)

●​ Iteration is a single pass through a group of instructions. Most programs contain loops of
instructions that are executed over and over again. The computer iterates through the loop,
which means that it repeatedly executes the loop. (source)

●​ The computational practice of developing a little bit, then trying it out, then developing some
more. (source)

http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=92
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=92
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=101
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=114
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=101
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=114
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=101
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=113
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=101
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=113
https://images.ctfassets.net/1devtjk7knks/7dMJwwBnHpCe3L0aIoADxn/308459f813206d7aed7baa2d8bb5c4c9/Control.png
https://images.ctfassets.net/1devtjk7knks/52RQv7FftYSzCiQPCrrfib/a1e259fce2f07d990c02df03590c044e/Events.png
https://images.ctfassets.net/1devtjk7knks/7XRnKlva55S44sIyAbFHk/417b6856689ef176b9fa1434c5d4cf81/Looks.png
https://images.ctfassets.net/1devtjk7knks/59IZeacJs1FBeLq2dJ13a8/0619c8a65768982c0563cf387a29de62/Motion.png
https://images.ctfassets.net/1devtjk7knks/HjHeyX2mU3qbR1TLiTFjj/6a47d646c31e41521dada9bf2dbec63d/More_Blocks.PNG
https://images.ctfassets.net/1devtjk7knks/385tNeMaefAu4i7yiXeUqC/578353cea86a0fcab3963afd6e1999d7/Sound.png
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=273
http://www.webopedia.com/TERM/I/iteration.html
http://scratched.gse.harvard.edu/guide/files/CreativeComputing20141015.pdf#page=139

Modularity ●​ The characteristic of a software/web application that has been divided (decomposed) into
smaller modules. An application might have several procedures that are called from inside its
main procedure. Existing procedures could be reused by recombining them in a new application
(source)

Parallel ●​ Refers to processes that occur simultaneously. Printers and other devices are said to be either
parallel or serial. Parallel means the device is capable of receiving more than one bit at a time
(that is, it receives several bits in parallel). Most modern printers are parallel. (source)

●​ The computational concept of making things happen at the same time. (source)

Remix ●​ The process of creating something new from something old. Originally a process that involved
music, remixing involves creating a new version of a program by recombining and modifying
parts of existing programs, and often adding new pieces, to form new solutions. (source)

●​ A creative work that is derived from an original work (or from another remix). A remix typically
introduces new content or stylistic elements, while retaining a degree of similarity to the
original work. (source)

Storyboard ●​ Like comic strips for a program, storyboards tell a story of what a coding project will do and can
be used to plan a project before coding.

More vocabulary
words from CSTA

●​ Click here for more vocabulary words and definitions created by the Computer Science Teachers
Association

Connections

Integration Potential subjects: Any

Example(s): Rather than using the example story starters, you could include starter prompts or
projects related to any subject. This would allow this project to connect with any subject area, topic, or
theme. Click here to see other examples and share your own ideas on our subforum dedicated to
integrating projects or click here for a studio with similar projects.

Vocations Authors, marketers, and media artists are often asked to create a story to sell a product or create a
narrative. These products often undergo iterative cycles or are passed on to other team members,
which is reinforced through this project. Click here to visit a website dedicated to exploring potential
careers through coding.

Resources

●​ Scratch studio with project starters
●​ Video walkthroughs
●​ Quick reference guides
●​ Project files
●​ This project was inspired by a project in the Creative Computing Guide

Project Sequence

Preparation (20+ minutes)

Suggested preparation Resources for learning more

http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=273
http://www.webopedia.com/TERM/P/parallel.html
http://scratched.gse.harvard.edu/guide/files/CreativeComputing20141015.pdf#page=140
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=274
http://scratched.gse.harvard.edu/guide/files/CreativeComputing20141015.pdf#page=140
https://www.csteachers.org/page/glossary
https://www.csteachers.org/page/glossary
https://scratch.mit.edu/studios/4149059/
https://training.bootuppd.org/login/index.php
https://scratch.mit.edu/studios/27630814/
https://careerswithstem.com.au/
https://scratch.mit.edu/studios/4149059/
https://www.youtube.com/playlist?list=PLV4zluvZAlMoN5D12scUxhVu0vvaEzJ1z
https://drive.google.com/open?id=1Qkjq30x1ZixAbSY5J0oUu8w49R-qeeJR
https://drive.google.com/open?id=1QYWWp9z6XwlaLIfu15QbXA6iYkyDB9zg
http://scratched.gse.harvard.edu/guide/files/CreativeComputing20141015.pdf#page=72

Customizing the project starters for your class (10+ minutes
per project starter): Remix one of the projects in this studio to
create your own project starter.

(10+ minutes) Read through each part of this lesson plan
(there is a short and long version of this project) and decide
which sections the coders you work with might be interested
in and capable of engaging with in the amount of time you
have with them. If using projects with sound, individual
headphones are very helpful.

Download the offline version of Scratch: Although hopefully
infrequent, your class might not be able to access Scratch due
to Scratch’s servers going down or your school losing internet
access. Events like these could completely derail your lesson
plans for the day; however, there is an offline version of
Scratch that coders could use when Scratch is inaccessible.
Click here to download the offline version of Scratch on to
each computer a coder uses and click here to learn more by
watching a short video.

●​ BootUp Scratch Tips
○​ Videos and tips on Scratch from our YouTube

channel
●​ BootUp Facilitation Tips

○​ Videos and tips on facilitating coding classes
from our YouTube channel

●​ Scratch Starter Cards
○​ Printable cards with some sample starter code

designed for beginners
●​ ScratchEd

○​ A Scratch community designed specifically for
educators interested in sharing resources and
discussing Scratch in education

●​ Scratch Help
○​ This includes examples of basic projects and

resources to get started
●​ Scratch Videos

○​ Introductory videos and tips designed by the
makers of Scratch

●​ Scratch Wiki
○​ This wiki includes a variety of explanations and

tutorials

Getting Started (13-22+ minutes)

Suggested sequence Resources, suggestions, and connections

1. Review and demonstration (2+ minutes):
Begin by asking coders to talk with a neighbor for 30 seconds
about something they learned last time; assess for general
understanding of the practices and concepts from the previous
project.

If doing the shorter project:
Explain that today we are going to pick a story starter and
remix it to add an ending.

If doing the longer project:
Explain that today we are going to start a project that will last
for multiple classes. We will begin today by adding on to a
starter project, then spend the next couple classes adding to
other people’s projects, who will also add new sections to your
own story each day. On the final day we will return to our
original project and see what others have added to our
original project.

Practices reinforced:
●​ Communicating about computing

Video: Project Preview (4:36)
Video: Lesson pacing (1:48)

This can include a full class demonstration or guided
exploration in small groups or individually. For small group and
individual explorations, it might help to set a time limit for
exploration before discussing the project.

Example review discussion questions:

●​ What’s something new you learned last time you
coded?

○​ Is there a new block or word you learned?
●​ What’s something you want to know more about?
●​ What’s something you could add or change to your

previous project?
●​ What’s something that was easy/difficult about your

previous project?

2. Log in (1-5+ minutes):
If not yet comfortable with logging in, review how to log into
Scratch.

If coders continue to have difficulty with logging in, you can
create cards with a coder’s login information and store it in

Alternative login suggestion: Instead of logging in at the start
of class, another approach is to wait until the end of class to
log in so coders can immediately begin working on coding;
however, coders may need a reminder to save before leaving
or they will lose their work.

https://scratch.mit.edu/studios/4149059/
https://scratch.mit.edu/download
https://youtu.be/M0MoF-OI48A
https://www.youtube.com/playlist?list=PLV4zluvZAlMrBWUeo1WMmRE7IQpJ_nOJV
https://youtube.com/bootuppd
https://youtube.com/bootuppd
https://www.youtube.com/playlist?list=PLV4zluvZAlMpHQ0MbOkE52QC9f0SYNJVh
https://youtube.com/bootuppd
https://scratch.mit.edu/info/cards/
http://scratched.gse.harvard.edu/
https://scratch.mit.edu/help/
https://scratch.mit.edu/help/videos/
https://wiki.scratch.mit.edu/wiki/Scratch_Wiki:Table_of_Contents
https://youtu.be/K5t-HW03yZQ
https://youtu.be/B2sPAmQxiGc

your desk. This will allow coders to access their account
without displaying their login information to others.

Why the variable length of time? It depends on comfort with
login usernames/passwords and how often coders have signed
into Scratch before. Although this process may take longer
than desired at the beginning, coders will eventually be able to
login within seconds rather than minutes.

What if some coders log in much faster than others? Set a
timer for how long everyone has to log in to their account
(e.g., 5 minutes). If anyone logs in faster than the time limit,
they can open up previous projects and add to them. Your role
during this time is to help out those who are having difficulty
logging in. Once the timer goes off, everyone stops their
process and prepares for the following chunk.

3. Explore and discuss (10-15+ minutes):
Once they log in, have them navigate to this studio (or your
own) and explore project starters that look interesting.
Encourage coders to think through what would happen next in
the story before exploring another project starter.

Bring up one of the project starters from this studio and have
coders talk with each other about what they would add next
to this story. Use some of the example discussion questions to
guide a discussion on a couple of the project starters.

Practices reinforced:
●​ Communicating about computing

Note: Discussions might include full class or small groups, or
individual responses to discussion prompts. These discussions
which ask coders to predict how a project might work, or think
through how to create a project, are important aspects of
learning to code. Not only does this process help coders think
logically and creatively, but it does so without giving away the
answer.

Example discussion questions:

●​ What do you think could happen next in the story?
○​ What background would we use for the next

scene?
○​ What sprites would we see on that scene?
○​ What would happen to them?

●​ When would the next scene end?

(Shorter) Project Work (45-50+ minutes; 1+ classes)

Suggested sequence Resources, suggestions, and connections

3. Create a storyboard for the rest of the story (15-20+
minutes):
Either hand out paper, use handheld whiteboards, or use a
painting app on a device to encourage coders to storyboard
what they are going to create for the conclusion of their
chosen project starter from the project starter studio (or your
own remixed version). It may help to model this process with a
separate set of random ideas.

Encourage coders to draw or write out not only the kinds of
sprites and backgrounds they’re going to use, but the kind of
code that will accompany them.

When coders are ready, have them show you their storyboard
and ask questions for clarification of their intent (which may
change once they start coding and get more ideas). If
approved, they may continue on to the next step (creating);
otherwise they can continue to think through and work on

Standards reinforced:
●​ 1B-AP-11 Decompose (break down) problems into

smaller, manageable subproblems to facilitate the
program development process.

●​ 1B-AP-13 Use an iterative process to plan the
development of a program by including others'
perspectives and considering user preferences

Practices reinforced:
●​ Communicating about computing

Concepts reinforced:
●​ Program development
●​ Modularity

Resource: Example storyboard templates

Suggested storyboard questions:

●​ Which project starter are you selecting?
●​ What will happen next in the story?

https://scratch.mit.edu/studios/4149059/
https://scratch.mit.edu/studios/4149059/
https://scratch.mit.edu/studios/4149059/
https://scratch.mit.edu/studios/4149059/
http://creately.com/blog/examples/storyboard-templates-creately/

their storyboard.

Note: Coders may change their mind midway through a project
and wish to rethink through their original storyboard. This is
part of the design process and it is encouraged they revise
their storyboard to reflect their new ideas.

●​ What backdrop will you use for the next scene?
○​ What sprites are going to be in that scene?
○​ What will the sprites do?
○​ What kind of code might we use to do that?

●​ How will the story end?
●​ What are all of the ways we can interact with the

story?
○​ In each of these ways we can interact with the

story, how might we use code to create that
interaction?

Suggestion: If coders need additional help, perhaps pair them
with someone who might help them with the storyboarding
process. Or, you could have coders meet with a peer to discuss
their storyboard before asking to share it with yourself. This
can be a great way to get academic feedback and ideas from a
peer.

4. Finish the story (25+ minutes, or the majority of the class):
Ask coders to finish their story starter from this studio using
their storyboard. Facilitate by walking around and asking
questions and encouraging coders to try out new blocks.
Remind everyone they can look at the original code, but they
can only add and change code for the section of the story they
are adding.

Before moving to the final section of this project, ask coders to
add comments in their project (see the resources on the right)
and share their project in a class studio dedicated to this
project.

Standards reinforced:
●​ 1B-AP-10 Create programs that include sequences,

events, loops, and conditionals
●​ 1B-AP-12 Modify, remix, or incorporate portions of an

existing program into one's own work, to develop
something new or add more advanced features.

●​ 1B-AP-17 Describe choices made during program
development using code comments, presentations,
and demonstrations

Practices reinforced:
●​ Communicating about computing
●​ Creating computational artifacts
●​ Testing and refining computational artifacts

Concepts reinforced:
●​ Algorithms
●​ Control
●​ Modularity

Video: Add in comments (1:45)
Quick reference guide: Click here

Suggested questions:

●​ What sounds might we hear in this story?
●​ How could we add even more to our story than what’s

in our storyboard?
●​ How will this story build off the story starter?

A note on using the “Coder Resources” with your class: Young
codes may need a demonstration (and semi-frequent friendly
reminders) for how to navigate a browser with multiple tabs.
The reason why is because kids will have at least three tabs
open while working on a project: 1) a tab for Scratch, 2) a tab
for the Coder Resources walkthrough, and 3) a tab for the
video/visual walkthrough for each step in the Coder Resources
document. Demonstrate how to navigate between these three
tabs and point out that coders will close the video/visual
walkthrough once they complete that particular step of a

https://scratch.mit.edu/studios/4149059/
https://youtu.be/Fr7jvGfasFM
https://docs.google.com/presentation/d/1dvfo4ChhUWws6GklP8AkoWOwhsMpPqupRFf94XiS0h4/edit?usp=sharing

project and open a new tab for the next step or extension.
Although this may seem obvious for many adults, we
recommend doing this demonstration the first time kids use
the Coder Resources and as friendly reminders when needed.

5. Share your story (5+ minutes)
Ask coders to share their story with someone who worked on
the same story starter or a story starter that looked interesting
to them. Encourage discussion around what they like about
the original and newly added code, something they learned by
analyzing the original code, and what they would have done
differently if they had created the entire story on their own.

Have coders use some of the reflection prompts to reflect on
this project.

Standards reinforced:
●​ 1B-AP-08 Compare and refine multiple algorithms for

the same task and determine which is the most
appropriate.

Practices reinforced:
●​ Communicating about computing

Concepts reinforced:
●​ Algorithms
●​ Control
●​ Modularity

(Longer) Project Work (120-135+ minutes; 3+ classes)

Suggested sequence Resources, suggestions, and connections

3. Create a storyboard for the second scene (5-10+ minutes):
Either hand out paper, use handheld whiteboards, or use a
painting app on a device to encourage coders to storyboard
what they are going to create for the second scene of their
chosen project starter from the project starter studio (or your
own remixed version). It may help to model this process with a
separate set of random ideas.

Encourage coders to draw or write out not only the kinds of
sprites and backgrounds they’re going to use, but the kind of
code that will accompany them.

When coders are ready, have them show you their storyboard
and ask questions for clarification of their intent (which may
change once they start coding and get more ideas). If
approved, they may continue on to the next step (creating);
otherwise they can continue to think through and work on
their storyboard.

Note: Coders may change their mind midway through a
project and wish to rethink through their original storyboard.
This is part of the design process and it is encouraged they
revise their storyboard to reflect their new ideas.

Standards reinforced:
●​ 1B-AP-11 Decompose (break down) problems into

smaller, manageable subproblems to facilitate the
program development process.

●​ 1B-AP-13 Use an iterative process to plan the
development of a program by including others'
perspectives and considering user preferences

Practices reinforced:
●​ Communicating about computing

Concepts reinforced:
●​ Program development
●​ Modularity

Resource: Example storyboard templates

Suggested storyboard questions:

●​ Which project starter are you selecting?
●​ What will happen next in the story?
●​ What backdrop will you use for the next scene?

○​ What sprites are going to be in that scene?
○​ What will the sprites do?
○​ What kind of code might we use to do that?

●​ When will that scene end? (note, the scene is ending,
not the story)

●​ What are all of the ways we can interact with the
story?

○​ In each of these ways we can interact with the
story, how might we use code to create that
interaction?

Suggestion: If coders need additional help, perhaps pair them
with someone who might help them with the storyboarding
process. Or, you could have coders meet with a peer to discuss
their storyboard before asking to share it with yourself. This
can be a great way to get academic feedback and ideas from a
peer.

https://scratch.mit.edu/studios/4149059/
http://creately.com/blog/examples/storyboard-templates-creately/

4. Create the second scene of the story (25+ minutes, or the
remainder of the first class):
For the remainder of class, coders will create the second scene
of their story using their storyboard. Facilitate by walking
around and asking questions and encouraging coders to try
out new blocks and creating functions to make it easy for
people to understand each section of code.

Near the end of this section or class, ask coders to add
comments in their project (see the resources on the right) and
share their project in a class studio dedicated to this project.

Standards reinforced:
●​ 1B-AP-10 Create programs that include sequences,

events, loops, and conditionals
●​ 1B-AP-12 Modify, remix, or incorporate portions of an

existing program into one's own work, to develop
something new or add more advanced features.

●​ 1B-AP-17 Describe choices made during program
development using code comments, presentations,
and demonstrations

Practices reinforced:
●​ Communicating about computing
●​ Creating computational artifacts
●​ Testing and refining computational artifacts

Concepts reinforced:
●​ Algorithms
●​ Control
●​ Modularity

Video: Add in comments (1:45)
Quick reference guide: Click here

Suggested questions:

●​ What sounds might we hear in this scene?
●​ How could we add even more to our story than what’s

in our storyboard?
●​ What do you think might happen in the next scene?

A note on using the “Coder Resources” with your class: Young
coders may need a demonstration (and semi-frequent friendly
reminders) for how to navigate a browser with multiple tabs.
The reason why is because kids will have at least three tabs
open while working on a project: 1) a tab for Scratch, 2) a tab
for the Coder Resources walkthrough, and 3) a tab for the
video/visual walkthrough for each step in the Coder Resources
document. Demonstrate how to navigate between these three
tabs and point out that coders will close the video/visual
walkthrough once they complete that particular step of a
project and open a new tab for the next step or extension.
Although this may seem obvious for many adults, we
recommend doing this demonstration the first time kids use
the Coder Resources and as friendly reminders when needed.

5. Create a storyboard for the third scene of someone else’s
story (5-10+ minutes):
Either assign each coder to a project or given them a few
minutes to virtually swap projects with a friend, who is going
to add a new scene to their remixed story by remixing the
project from the studio. Make it clear they are not going to
change anyone’s code, but are going to add a new scene to a
remixed version of this project.

Either hand out paper, use handheld whiteboards, or use a
painting app on a device to encourage coders to storyboard
what they are going to create for the third scene. It may help
to model this process with a separate set of random ideas.

Standards reinforced:
●​ 1B-AP-11 Decompose (break down) problems into

smaller, manageable subproblems to facilitate the
program development process.

●​ 1B-AP-13 Use an iterative process to plan the
development of a program by including others'
perspectives and considering user preferences

Practices reinforced:
●​ Communicating about computing

Concepts reinforced:
●​ Program development
●​ Modularity

https://youtu.be/Fr7jvGfasFM
https://docs.google.com/presentation/d/1dvfo4ChhUWws6GklP8AkoWOwhsMpPqupRFf94XiS0h4/edit?usp=sharing

Encourage coders to draw or write out not only the kinds of
sprites and backgrounds they’re going to use, but the kind of
code that will accompany them.

When coders are ready, have them show you their storyboard
and ask questions for clarification of their intent (which may
change once they start coding and get more ideas). If
approved, they may continue on to the next step (creating);
otherwise they can continue to think through and work on
their storyboard.

Note: Coders may change their mind midway through a
project and wish to rethink through their original storyboard.
This is part of the design process and it is encouraged they
revise their storyboard to reflect their new ideas.

Resource: Example storyboard templates

Suggested storyboard questions:

●​ What will happen next in the story?
●​ What backdrop will you use for the next scene?

○​ What sprites are going to be in that scene?
○​ What will the sprites do?
○​ What kind of code might we use to do that?

●​ When will that scene end? (note, the scene is ending,
not the story)

●​ What are all of the ways we can interact with the
story?

○​ In each of these ways we can interact with the
story, how might we use code to create that
interaction?

Suggestion: If coders need additional help, perhaps pair them
with someone who might help them with the storyboarding
process. Or, you could have coders meet with a peer to discuss
their storyboard before asking to share it with yourself. This
can be a great way to get academic feedback and ideas from a
peer.

6. Create the third scene of someone else’s story (25+
minutes, or the remainder of the second class):
Ask coders to create the third scene of a story using their
storyboard. Facilitate by walking around and asking questions
and encouraging coders to try out new blocks. Remind
everyone they can look at the original code, but they can
only add and change code for the third scene.

Near the end of this section or class, ask coders to add
comments in their project (see the resources on the right) and
share their project in a class studio dedicated to this project.

Standards reinforced:
●​ 1B-AP-10 Create programs that include sequences,

events, loops, and conditionals
●​ 1B-AP-12 Modify, remix, or incorporate portions of an

existing program into one's own work, to develop
something new or add more advanced features.

●​ 1B-AP-17 Describe choices made during program
development using code comments, presentations,
and demonstrations

Practices reinforced:
●​ Communicating about computing
●​ Creating computational artifacts
●​ Testing and refining computational artifacts

Concepts reinforced:
●​ Algorithms
●​ Control
●​ Modularity

Video: Add in comments (1:45)
Quick reference guide: Click here

Suggested questions:

●​ What sounds might we hear in this scene?
●​ How could we add even more to our story than what’s

in our storyboard?
●​ How will this scene build off the previous scenes?
●​ What do you think might happen in the next scene?

7. Create a storyboard for the final scene of someone else’s
story (5-10+ minutes):
Either assign each coder to a project or given them a few
minutes to virtually swap projects with a friend, who is going

Standards reinforced:
●​ 1B-AP-11 Decompose (break down) problems into

smaller, manageable subproblems to facilitate the
program development process.

http://creately.com/blog/examples/storyboard-templates-creately/
https://youtu.be/Fr7jvGfasFM
https://docs.google.com/presentation/d/1dvfo4ChhUWws6GklP8AkoWOwhsMpPqupRFf94XiS0h4/edit?usp=sharing

to add the final scene to their recently remixed story by
remixing the project from the studio. Make it clear they are
not going to change anyone’s code, but are going to add a
final scene to a remixed version of this project.

Either hand out paper, use handheld whiteboards, or use a
painting app on a device to encourage coders to storyboard
what they are going to create for the final scene. It may help
to model this process with a separate set of random ideas.

Encourage coders to draw or write out not only the kinds of
sprites and backgrounds they’re going to use, but the kind of
code that will accompany them.

When coders are ready, have them show you their storyboard
and ask questions for clarification of their intent (which may
change once they start coding and get more ideas). If
approved, they may continue on to the next step (creating);
otherwise they can continue to think through and work on
their storyboard.

Note: Coders may change their mind midway through a
project and wish to rethink through their original storyboard.
This is part of the design process and it is encouraged they
revise their storyboard to reflect their new ideas.

●​ 1B-AP-13 Use an iterative process to plan the
development of a program by including others'
perspectives and considering user preferences

Practices reinforced:
●​ Communicating about computing

Concepts reinforced:
●​ Program development
●​ Modularity

Resource: Example storyboard templates

Suggested storyboard questions:

●​ What will happen at the end of this story?
●​ What backdrop will you use for the final scene?

○​ What sprites are going to be in that scene?
○​ What will the sprites do?
○​ What kind of code might we use to do that?

●​ How will the story end?
●​ What are all of the ways we can interact with the

story?
○​ In each of these ways we can interact with the

story, how might we use code to create that
interaction?

Suggestion: If coders need additional help, perhaps pair them
with someone who might help them with the storyboarding
process. Or, you could have coders meet with a peer to discuss
their storyboard before asking to share it with yourself. This
can be a great way to get academic feedback and ideas from a
peer.

8. Create the final scene of someone else’s story (25+
minutes, or the majority of the third class):
Ask coders to create the final scene of a story using their
storyboard. Facilitate by walking around and asking questions
and encouraging coders to try out new blocks. Remind
everyone they can look at the original code, but they can
only add and change code for the final scene.

Standards reinforced:
●​ 1B-AP-10 Create programs that include sequences,

events, loops, and conditionals
●​ 1B-AP-12 Modify, remix, or incorporate portions of an

existing program into one's own work, to develop
something new or add more advanced features.

●​ 1B-AP-17 Describe choices made during program
development using code comments, presentations,
and demonstrations

Practices reinforced:
●​ Communicating about computing
●​ Creating computational artifacts
●​ Testing and refining computational artifacts

Concepts reinforced:
●​ Algorithms
●​ Control
●​ Modularity

Video: Add in comments (1:45)
Quick reference guide: Click here

Suggested questions:

●​ What sounds might we hear in this scene?

http://creately.com/blog/examples/storyboard-templates-creately/
https://youtu.be/Fr7jvGfasFM
https://docs.google.com/presentation/d/1dvfo4ChhUWws6GklP8AkoWOwhsMpPqupRFf94XiS0h4/edit?usp=sharing

●​ How could we add even more to our story than what’s
in our storyboard?

●​ How will this scene build off the previous scenes?

9. Go back to your original story (30+ minutes, or an entire
class)
5+ minutes
Have coders revisit the story they originally shared on the class
studio, open the remixes tab from the project page and
navigate to the final remix (see this video or guide for
reference), then watch their story.

10+ minutes
After watching the story, give them time to explore the code in
the final remix project and read the comments for each
section. Facilitate by encouraging coders to think through why
each algorithm was coded the way it was and to think through
other ways to get the same (or similar) results.

15+ minutes
Ask coders to share the story with their neighbors and discuss
what they learned by analyzing the code in the story.
Encourage discussion around what they like about the code,
something they learned by analyzing the code, and what they
would have done differently if they had created the entire
story on their own.

Have coders use some of the reflection prompts to reflect on
this project.

Standards reinforced:
●​ 1B-AP-08 Compare and refine multiple algorithms for

the same task and determine which is the most
appropriate.

Practices reinforced:
●​ Communicating about computing

Concepts reinforced:
●​ Algorithms
●​ Control
●​ Modularity

Video: How to find the final remix (1:49)
Quick reference guide: Click here

Assessment

Standards reinforced:
●​ 1B-AP-17 Describe choices made during program development using code comments, presentations, and

demonstrations
Practices reinforced:

●​ Communicating about computing

Although opportunities for assessment in three different forms are embedded throughout each lesson, this page provides
resources for assessing both processes and products. If you would like some example questions for assessing this project, see
below:

Summative
Assessment of Learning

Formative
Assessment for Learning

Ipsative
Assessment as Learning

The debugging exercises, commenting
on code, and projects themselves can all
be forms of summative assessment if a
criteria is developed for each project or
there are “correct” ways of solving,
describing, or creating.

For example, ask the following after a
project:

●​ Can coders debug the

The 1-on-1 facilitating during each
project is a form of formative
assessment because the primary role of
the facilitator is to ask questions to
guide understanding; storyboarding can
be another form of formative
assessment.

For example, ask the following while
coders are working on a project:

The reflection and sharing section at the
end of each lesson can be a form of
ipsative assessment when coders are
encouraged to reflect on both current
and prior understandings of concepts
and practices.

For example, ask the following after a
project:

●​ How is this project similar or

https://youtu.be/zkWcwwvj7rI
https://docs.google.com/presentation/d/1mA4B0p5iew3q6y7pb2ESbKtw7p9t1DsCsTZjEa_FJcY/edit?usp=sharing
https://docs.google.com/presentation/d/1mA4B0p5iew3q6y7pb2ESbKtw7p9t1DsCsTZjEa_FJcY/edit?usp=sharing
https://youtu.be/zkWcwwvj7rI
https://docs.google.com/presentation/d/1mA4B0p5iew3q6y7pb2ESbKtw7p9t1DsCsTZjEa_FJcY/edit?usp=sharing
https://drive.google.com/open?id=1C5X0AETVTCmx4YTaHHrVGYB2hNCDUmJEBJokTiiudEk

debugging exercises?
●​ Did coders create a project

similar to the project preview?
○​ Note: The project

preview and sample
projects are not
representative of what
all grade levels should
seek to emulate. They
are meant to generate
ideas, but expectations
should be scaled to
match the experience
levels of the coders you
are working with.

●​ Did coders use a variety of block
types in their algorithms and
can they explain how they work
together for specific purposes?

●​ Did coders include descriptive
comments for each event in all
of their sprites?

●​ Can coders explain how they
used broadcast blocks or My
Blocks as functions to make
their code more organized and
easier to read (modularity)?

●​ Can coders explain how each of
the scenes they worked on are
similar to their storyboards?

●​ Did coders create a scene that
added to the story created by
someone else?

○​ Choose a number
appropriate for the
coders you work with
and the amount of time
available.

●​ Did coders create at least ##
scenes in their projects?

○​ Choose a number
appropriate for the
coders you work with
and the amount of time
available.

●​ What are three different ways
you could change that sprite’s
algorithm?

●​ What happens if we change the
order of these blocks?

●​ What could you add or change
to this code and what do you
think would happen?

●​ How might you use code like
this in everyday life?

●​ See the suggested questions
throughout the lesson and the
assessment examples for more
questions.

different from previous
projects?

●​ What new code or tools were
you able to add to this project
that you haven’t used before?

●​ How can you use what you
learned today in future
projects?

●​ What questions do you have
about coding that you could
explore next time?

●​ See the reflection questions at
the end for more suggestions.

Extended Learning

Project Extensions

Suggested extensions Resources, suggestions, and connections

Create a project starter (one full class): Standards reinforced:

https://images.ctfassets.net/1devtjk7knks/52RQv7FftYSzCiQPCrrfib/a1e259fce2f07d990c02df03590c044e/Events.png
https://images.ctfassets.net/1devtjk7knks/HjHeyX2mU3qbR1TLiTFjj/6a47d646c31e41521dada9bf2dbec63d/More_Blocks.PNG
https://images.ctfassets.net/1devtjk7knks/HjHeyX2mU3qbR1TLiTFjj/6a47d646c31e41521dada9bf2dbec63d/More_Blocks.PNG
https://drive.google.com/open?id=1C5X0AETVTCmx4YTaHHrVGYB2hNCDUmJEBJokTiiudEk#heading=h.h5oq13i5ouia

Either hand out paper, use handheld whiteboards,
or use a painting app on a device to encourage
coders to storyboard what they are going to
create for the first scene of a starter project that
will be used with other classes.

Encourage coders to draw or write out not only
the kinds of sprites and backgrounds they’re going
to use, but the kind of code that will accompany
them.

When coders are ready, have them show you their
storyboard and ask questions for clarification of
their intent (which may change once they start
coding and get more ideas). If approved, they may
continue on to the next step (creating); otherwise
they can continue to think through and work on
their storyboard.

Coders will spend the remainder of the class
creating their project starter, which can be
shared on a class studio for other coders to
remix.

●​ 1A-AP-12 Develop plans that describe a program’s sequence of
events, goals, and expected outcomes

Practices reinforced:
●​ Creating computational artifacts

Concept reinforced:
●​ Program development

Resource: Example storyboard templates

Suggested storyboard questions:

●​ What will happen in the project starter?
●​ What backdrop will you use?

○​ What sprites are going to be in the first scene?
○​ What will the sprites do?
○​ What kind of code might we use to do that?

●​ When will the scene end?
●​ What are all of the ways we can interact with the story?

○​ In each of these ways we can interact with the story, how
might we use code to create that interaction?

Suggestion: If coders need additional help, perhaps pair them with
someone who might help them with the storyboarding process. Or, you
could have coders meet with a peer to discuss their storyboard before
asking to share it with yourself. This can be a great way to get academic
feedback and ideas from a peer.

Advanced reverse engineering even more ideas
(20+ minutes each):
15+ minute reverse engineering and peer-to-peer
coaching
Ask coders to try and reverse engineer one of the
sprites from a starter project without looking at
the code. Encourage peer-to-peer coaching as you
also facilitate by walking around and asking
guiding questions (they may need to practice
this).

If coders figure out how to get their sprite to do
something similar, have them document in their
journal, share with a partner, or attempt reverse
engineering another sprite in the same or
different project starter.

5+ minute peer explanation and demonstration
Ask coders to find a partner who is currently
working on their project starter as their main
project and have them reveal the code, walk
through each step of the algorithm, and explain
any new blocks. Encourage coders to ask each
other questions about the code.

Standards reinforced:
●​ 1B-AP-10 Create programs that include sequences, events, loops,

and conditionals
●​ 1B-AP-11 Decompose (break down) problems into smaller,

manageable subproblems to facilitate the program development
process

●​ 1B-AP-15 Test and debug (identify and fix errors) a program or
algorithm to ensure it runs as intended

Practices reinforced:
●​ Communicating about computing
●​ Creating computational artifacts
●​ Fostering an inclusive computing culture
●​ Testing and refining computational artifact

Concepts reinforced:
●​ Algorithms
●​ Control

Video: Suggestions for reverse engineering (4:25)

Alternative suggestion: If reverse engineering is too difficult for the coders
you work with, you could display the source code and have coders predict
what will happen.

Suggested guiding questions:

●​ What kind of blocks do you think you might need to do something
like that?

●​ Do you see a pattern where we might use a repeat?
○​ If so, what kind of repeat?

http://creately.com/blog/examples/storyboard-templates-creately/
https://scratch.mit.edu/studios/4149059/
https://youtu.be/--CZwUaK4So

●​ When combining ideas, what happens if you use multiple event
blocks in the same sprite? (Note: this concept is referred to as
parallel computing)

○​ What are the benefits/drawbacks of using multiple event
blocks?

Potential discussion: There is not always one way to recreate something
with code, so coders may come up with alternative solutions to your own
code. When this occurs, it can open up an interesting discussion or journal
reflection on the affordances and constraints of such code.

Suggested application and exploration questions:

●​ What other code blocks could you use?
●​ What other sprites might use similar code?
●​ What other code could we add to this project?

Modify the original code (30+ minutes, or at least
one class):
If time permits and coders are interested in this
project, encourage coders to go into their final
project and alter the original code that other
people created by adding or changing the code to
do something even more interesting. When
changes are made, encourage coders to test their
refinements and alter their comments to reflect
the changes (either in the moment or at the end
of class).

Standards reinforced:
●​ 1B-AP-10 Create programs that include sequences, events, loops,

and conditionals
Practices reinforced:

●​ Creating computational artifacts
●​ Testing and refining computational artifacts

Concepts reinforced:
●​ Algorithms
●​ Control

Facilitation Suggestion: Some coders may not thrive in inquiry based
approaches to learning, so we can encourage them to use the Tutorials to
get more ideas for their projects; however, we may need to remind coders
the suggestions provided by Scratch are not specific to our projects, so it
may create some unwanted results unless the code is modified to match
our own intentions.

Suggested questions:

●​ What can you change in the original code to make this project even
more interesting?

●​ How could you simplify or clean up the original code?
●​ What other sights, sounds, or interactions could you add to make

the project even more interesting?

Similar projects:
Have coders explore the code of other peers in
their class, or on a project studio dedicated to this
project. Encourage coders to ask questions about
each other’s code. When changes are made,
encourage coders to alter their comments to
reflect the changes (either in the moment or at
the end of class).

Watch this video (3:20) if you are unsure how to
use a project studio.

Standards reinforced:
●​ 1B-AP-10 Create programs that include sequences, events, loops,

and conditionals
●​ 1B-AP-12 Modify, remix, or incorporate portions of an existing

program into one's own work, to develop something new or add
more advanced features

Practices reinforced:
●​ Testing and refining computational artifacts

Concepts reinforced:
●​ Algorithms

Note: Coders may need a gentle reminder we are looking at other projects
to get ideas for our own project, not to simply play around. For example,
“look for five minutes,” “look at no more than five other projects,” “find
three projects that each do one thing you would like to add to your

https://images.ctfassets.net/1devtjk7knks/7u6NLdHVQaloVJlTvUBnMH/916c33045c4822ed485a070c08d223e7/scratchBlockHelp.gif
https://youtu.be/hudasCRlwLI

project,” or “find X number of projects that are similar to the project we
are creating.”

Generic questions:

●​ What are some ways you can expand this project beyond what it
can already do?

●​ How is this project similar (or different) to something you worked
on today?

●​ What blocks did they use that you didn’t use?
a.​ What do you think those blocks do?

●​ What’s something you like about their project that you could add
to your project?

micro:bit extensions:
Note: the micro:bit requires installation of Scratch
Link and a HEX file before it will work with a
computer. Watch this video (2:22) and use this
guide to learn how to get started with a micro:bit
before encouraging coders to use the micro:bit
blocks.

Much like the generic Scratch Tips folder linked in
each Coder Resources document, the micro:bit
Tips folder contains video and visual walkthroughs
for project extensions applicable to a wide range
of projects. Although not required, the micro:bit
Tips folder uses numbers to indicate a suggested
order for learning about using a micro:bit in
Scratch; however, coders who are comfortable
with experimentation can skip around to topics
relevant to their project.

Standards reinforced:
●​ 1B-AP-09 Create programs that use variables to store and modify

data
●​ 1B-AP-10 Create programs that include sequences, events, loops,

and conditionals
●​ 1B-AP-11 Decompose (break down) problems into smaller,

manageable subproblems to facilitate the program development
process

●​ 1B-AP-15 Test and debug (identify and fix errors) a program or
algorithm to ensure it runs as intended

Practices reinforced:
●​ Recognizing and defining computational problems
●​ Creating computational artifacts
●​ Developing and using abstractions
●​ Fostering an inclusive computing culture
●​ Testing and refining computational artifacts

Concepts reinforced:
●​ Algorithms
●​ Control
●​ Modularity
●​ Program Development
●​ Variables

Folder with all micro:bit quick reference guides: Click here
Additional Resources:

●​ Printable micro:bit cards
○​ Cards made by micro:bit
○​ Cards made by Scratch

●​ Micro:bit’s Scratch account with example projects

Generic questions:

●​ How can you use a micro:bit to add news forms of user
interaction?

●​ What do the different micro:bit event blocks do and how could you
use them in a project?

●​ How could you use the LED display for your project?
●​ What do the tilt blocks do and how could you use them in your

project?
●​ How could you use the buttons to add user/player controls?
●​ How might you use a micro:bit to make your project more

accessible?

https://youtu.be/LO6m6bBmxW8
https://drive.google.com/open?id=1UPZ9xby2jS-V9X-w8n6CQzw3_g4fn_XZueppOdZPbB4
https://drive.google.com/open?id=1UPZ9xby2jS-V9X-w8n6CQzw3_g4fn_XZueppOdZPbB4
https://images.ctfassets.net/1devtjk7knks/6xukI0qxtxVps8phXPRdee/02256c3b384d98eb3999343e2695bd42/microbit.png
https://images.ctfassets.net/1devtjk7knks/6xukI0qxtxVps8phXPRdee/02256c3b384d98eb3999343e2695bd42/microbit.png
https://drive.google.com/open?id=0B342uiaCLSS3X0JZNHVSOEJVR1E
https://drive.google.com/open?id=13ueoN-lzyq88PFA9olbLsN6T_WAgvWqX
https://drive.google.com/open?id=13ueoN-lzyq88PFA9olbLsN6T_WAgvWqX
https://drive.google.com/open?id=13ueoN-lzyq88PFA9olbLsN6T_WAgvWqX
https://drive.google.com/open?id=13ueoN-lzyq88PFA9olbLsN6T_WAgvWqX
https://drive.google.com/open?id=13ueoN-lzyq88PFA9olbLsN6T_WAgvWqX
https://microbit.org/scratch/
http://bit.ly/scratchmicrobitcards
https://scratch.mit.edu/users/microbit_edu/
https://images.ctfassets.net/1devtjk7knks/6xukI0qxtxVps8phXPRdee/02256c3b384d98eb3999343e2695bd42/microbit.png
https://images.ctfassets.net/1devtjk7knks/6xukI0qxtxVps8phXPRdee/02256c3b384d98eb3999343e2695bd42/microbit.png

Differentiation

Less experienced coders More experienced coders

If coders struggle with this kind of project, pair them with
other coders with more experience or understanding. Just
make sure the lesser experienced coder “drives” the mouse
and the more experienced coder can “navigate.” It might also
help less experienced coders if they have time to see what
others are creating for their stories; encourage coders to walk
around and see what others are doing and then adding similar
code in their projects.

Challenge coders to figure out how to recreate a project
starter without looking at the code of the original project. If
coders get stuck reverse engineering, use guiding questions to
encourage them to uncover various pieces of the project.
Alternatively, if you are unable to work with someone
one-on-one at a time of need, they can click “see inside” and
read the comments in the code to learn how each part of the
project starter works.

If you are working with other coders and want to get more
experienced coders started with reverse engineering, have
those who are interested watch this video (2:30) to learn how
to reverse engineer a project.

Debugging Exercises (1-5+ minutes each)

Debugging exercises Resources and suggestions

Why does Captain Monet's mouth move after
talking but not when she is talking?

●​ We need to use the “say” block that
doesn’t have “for _ seconds” before calling
our “Move mouth” function

Why doesn't Aiden ask the question about how
humans went extinct?

●​ We need to use a “when I receive Ask a
question” event and not a “when backdrop
switches to Castle 3” block

Why doesn't the Rocketship sprite start at the top
of the screen and land in the middle of the screen?

●​ We need to add a “go to” block with the y
coordinate higher than the top of the
screen

Why doesn't the Referee sprite count down before
saying "Sport!" at the end?

●​ We need to use “say _ for _ seconds”
blocks or the code will run so fast we won’t
see those three blocks

Why does this conversation seem out of order?

●​ The “broadcast message” blocks need to
be swapped so it’s “Kai responds” and then
“Put the collar on”

Why don't we ever hear the creepy sound that
woke Boo up?

Standards reinforced:
●​ 1B-AP-15 Test and debug (identify and fix errors) a program or

algorithm to ensure it runs as intended
Practices reinforced:

●​ Testing and refining computational artifacts
Concepts reinforced:

●​ Algorithms
●​ Control

Suggested guiding questions:

●​ What should have happened but didn’t?
●​ Which sprite(s) do you think the problem is located in?
●​ What code is working and what code has the bug?
●​ Can you walk me through the algorithm (steps) and point out

where it’s not working?
●​ Are there any blocks missing or out of place?
●​ How would you code this if you were coding this algorithm from

Scratch?
●​ Another approach would be to read the question out loud and

give hints as to what types of blocks (e.g., motion, looks, event,
etc.) might be missing.

Reflective questions when solved:

●​ What was wrong with this code and how did you fix it?
●​ Is there another way to fix this bug using different code or tools?
●​ If this is not the first time they’ve coded: How was this exercise

similar or different from other times you’ve debugged code in
your own projects or in other exercises?

https://scratch.mit.edu/studios/4149059/
https://scratch.mit.edu/studios/4149059/
https://youtu.be/jjrFkZo0T20
https://scratch.mit.edu/projects/298476302/
https://scratch.mit.edu/projects/298476302/
https://images.ctfassets.net/1devtjk7knks/75AddQRhypCo1FNofkw9EQ/03a98b2b24b89319d428eec7cb23ed9a/Scratch_-_Pass_it_on_-_Debugging_1.png
https://images.ctfassets.net/1devtjk7knks/75AddQRhypCo1FNofkw9EQ/03a98b2b24b89319d428eec7cb23ed9a/Scratch_-_Pass_it_on_-_Debugging_1.png
https://images.ctfassets.net/1devtjk7knks/75AddQRhypCo1FNofkw9EQ/03a98b2b24b89319d428eec7cb23ed9a/Scratch_-_Pass_it_on_-_Debugging_1.png
https://scratch.mit.edu/projects/298476319/
https://scratch.mit.edu/projects/298476319/
https://images.ctfassets.net/1devtjk7knks/wSdhEUizCpYiceheNHc6Q/a28e4693981cae1147097e74cf7d42fa/Scratch_-_Pass_it_on_-_Debugging_2.png
https://images.ctfassets.net/1devtjk7knks/wSdhEUizCpYiceheNHc6Q/a28e4693981cae1147097e74cf7d42fa/Scratch_-_Pass_it_on_-_Debugging_2.png
https://images.ctfassets.net/1devtjk7knks/wSdhEUizCpYiceheNHc6Q/a28e4693981cae1147097e74cf7d42fa/Scratch_-_Pass_it_on_-_Debugging_2.png
https://scratch.mit.edu/projects/298476325/
https://scratch.mit.edu/projects/298476325/
https://images.ctfassets.net/1devtjk7knks/5Xjfn85PHwwI4JGPwj6HXj/08b53c4d7a1e36c9e5bfb1a509cbcd83/Scratch_-_Pass_it_on_-_Debugging_3.png
https://images.ctfassets.net/1devtjk7knks/5Xjfn85PHwwI4JGPwj6HXj/08b53c4d7a1e36c9e5bfb1a509cbcd83/Scratch_-_Pass_it_on_-_Debugging_3.png
https://images.ctfassets.net/1devtjk7knks/5Xjfn85PHwwI4JGPwj6HXj/08b53c4d7a1e36c9e5bfb1a509cbcd83/Scratch_-_Pass_it_on_-_Debugging_3.png
https://scratch.mit.edu/projects/298476335/
https://scratch.mit.edu/projects/298476335/
https://images.ctfassets.net/1devtjk7knks/aVCTMjNQF3yuKQOFid8TN/375450640754d618241497545508818c/Scratch_-_Pass_it_on_-_Debugging_4.png
https://images.ctfassets.net/1devtjk7knks/aVCTMjNQF3yuKQOFid8TN/375450640754d618241497545508818c/Scratch_-_Pass_it_on_-_Debugging_4.png
https://images.ctfassets.net/1devtjk7knks/aVCTMjNQF3yuKQOFid8TN/375450640754d618241497545508818c/Scratch_-_Pass_it_on_-_Debugging_4.png
https://scratch.mit.edu/projects/298476341/
https://images.ctfassets.net/1devtjk7knks/4mzpJ3T2YgSuOFLUNxB08e/a63e5d1b11cf1d13e5a6413913738735/Scratch_-_Pass_it_on_-_Debugging_5.png
https://images.ctfassets.net/1devtjk7knks/4mzpJ3T2YgSuOFLUNxB08e/a63e5d1b11cf1d13e5a6413913738735/Scratch_-_Pass_it_on_-_Debugging_5.png
https://images.ctfassets.net/1devtjk7knks/4mzpJ3T2YgSuOFLUNxB08e/a63e5d1b11cf1d13e5a6413913738735/Scratch_-_Pass_it_on_-_Debugging_5.png
https://scratch.mit.edu/projects/298476350/
https://scratch.mit.edu/projects/298476350/
https://images.ctfassets.net/1devtjk7knks/59IZeacJs1FBeLq2dJ13a8/0619c8a65768982c0563cf387a29de62/Motion.png
https://images.ctfassets.net/1devtjk7knks/7XRnKlva55S44sIyAbFHk/417b6856689ef176b9fa1434c5d4cf81/Looks.png
https://images.ctfassets.net/1devtjk7knks/52RQv7FftYSzCiQPCrrfib/a1e259fce2f07d990c02df03590c044e/Events.png

●​ We need to use the “Setup” and Creepy
sound” blocks before our first “say” block.
This will reset the sprite and then play the
sound.

○​ Note, the “wait 1 seconds” block is
optional

Why does Champ99 only say one thing and then
move his mouth forever?

●​ We need to use a “repat #” block instead
of a “forever” block and put the “say _”
outside of the repeat

Why does the Zebra’s drinking look so weird?

●​ We need to call both functions, not just
the “Bend down and wait” function

Even more debugging exercises

Unplugged Lessons and Resources

Although each project lesson includes suggestions for the amount of class time to spend on a project, BootUp encourages
coding facilitators to supplement our project lessons with resources created by others. In particular, reinforcing a variety of
standards, practices, and concepts through the use of unplugged lessons. Unplugged lessons are coding lessons that teach
core computational concepts without computers or tablets. You could start a lesson with a short, unplugged lesson relevant to
a project, or use unplugged lessons when coders appear to be struggling with a concept or practice.

List of 100+ unplugged lessons and resources

Incorporating unplugged lessons in the middle of a multi-day project situates understandings within an actual project;
however, unplugged lessons can occur before or after projects with the same concepts. An example for incorporating
unplugged lessons:

Lesson 1.​ Getting started sequence and beginning project work
Lesson 2.​ Continuing project work
Lesson 3.​ Debugging exercises and unplugged lesson that reinforces concepts from a project
Lesson 4.​ Project extensions and sharing

Reflection and Sharing

Reflection suggestions Sharing suggestions

Coders can either discuss some of the following prompts with
a neighbor, in a small group, as a class, or respond in a physical
or digital journal. If reflecting in smaller groups or individually,
walk around and ask questions to encourage deeper responses
and assess for understanding. Here is a sample of a digital
journal designed for Scratch (source) and here is an example of
a printable journal useful for younger coders.

Sample reflection questions or journal prompts:

●​ How did you use computational thinking when
creating your project?

Standards reinforced:
●​ 1B-AP-17 Describe choices made during program

development using code comments, presentations,
and demonstrations

Practices reinforced:
●​ Communicating about computing
●​ Fostering an inclusive culture

Concepts reinforced:
●​ Algorithms
●​ Control
●​ Modularity
●​ Program development

https://images.ctfassets.net/1devtjk7knks/7CAJygjjygMnLw8gPEFAhg/8422f7a05781fbe7d00eca69484cb048/Scratch_-_Pass_it_on_-_Debugging_6.png
https://images.ctfassets.net/1devtjk7knks/7CAJygjjygMnLw8gPEFAhg/8422f7a05781fbe7d00eca69484cb048/Scratch_-_Pass_it_on_-_Debugging_6.png
https://images.ctfassets.net/1devtjk7knks/7CAJygjjygMnLw8gPEFAhg/8422f7a05781fbe7d00eca69484cb048/Scratch_-_Pass_it_on_-_Debugging_6.png
https://images.ctfassets.net/1devtjk7knks/7CAJygjjygMnLw8gPEFAhg/8422f7a05781fbe7d00eca69484cb048/Scratch_-_Pass_it_on_-_Debugging_6.png
https://scratch.mit.edu/projects/298476361/
https://scratch.mit.edu/projects/298476361/
https://images.ctfassets.net/1devtjk7knks/70oZdPW7lcrRmwVANGqKRQ/7541d5508a1ac55d493d553012a9d77d/Scratch_-_Pass_it_on_-_Debugging_7.png
https://images.ctfassets.net/1devtjk7knks/70oZdPW7lcrRmwVANGqKRQ/7541d5508a1ac55d493d553012a9d77d/Scratch_-_Pass_it_on_-_Debugging_7.png
https://images.ctfassets.net/1devtjk7knks/70oZdPW7lcrRmwVANGqKRQ/7541d5508a1ac55d493d553012a9d77d/Scratch_-_Pass_it_on_-_Debugging_7.png
https://scratch.mit.edu/projects/298476557/
https://images.ctfassets.net/1devtjk7knks/5wdby2LUG6D5mTWplPQzdi/5453b3476864e354c15091257989bc50/Scratch_-_Pass_it_on_-_Debugging_8.png
https://images.ctfassets.net/1devtjk7knks/5wdby2LUG6D5mTWplPQzdi/5453b3476864e354c15091257989bc50/Scratch_-_Pass_it_on_-_Debugging_8.png
https://scratch.mit.edu/studios/4149066/
https://docs.google.com/spreadsheets/d/1IRAs7iRxQnUmpH9aJ2q4INx8f3JOWwSzJl8sRnI7lVA/edit?usp=sharing
https://docs.google.com/presentation/d/1ZqFg_GjL9sIpK2NpDyFzuAX0dB6iAM3J4iOgV3guym4/edit?usp=sharing
https://docs.google.com/presentation/d/1ZqFg_GjL9sIpK2NpDyFzuAX0dB6iAM3J4iOgV3guym4/edit?usp=sharing
http://scratched.gse.harvard.edu/ct/assessing.html
https://drive.google.com/file/d/0B4AcYgnkzzHOd0ExdWJUYWZIbm8/view
https://drive.google.com/file/d/0B4AcYgnkzzHOd0ExdWJUYWZIbm8/view

●​ What’s something we learned while working on this
project today?

○​ What are you proud of in your project?
○​ How did you work through a bug or difficult

challenge today?
●​ What other projects could we do using the same

concepts/blocks we used today?
●​ What’s something you had to debug today, and what

strategy did you use to debug the error?
●​ What mistakes did you make and how did you learn

from those mistakes?
●​ How did you help other coders with their projects?

○​ What did you learn from other coders today?
●​ What questions do you have about coding?

○​ What was challenging today?
●​ Why are comments helpful in our projects?
●​ How is this project similar to other projects you’ve

worked on?
○​ How is it different?

●​ What happened in your story that you didn’t expect?
●​ What code did other people use that was interesting

to you?
○​ What did you learn by looking at other

people’s code?
●​ In what ways might users interact with a story?
●​ More sample prompts

Peer sharing and learning video: Click here (1:33)
At the end of class, coders can share with each other
something they learned today. Encourage coders to ask
questions about each other’s code or share their journals with
each other. When sharing code, encourage coders to discuss
something they like about their code as well as a suggestion
for something else they might add.

Publicly sharing Scratch projects: If coders would like to
publicly share their Scratch projects, they can follow these
steps:

1.​ Video: Share your project (2:22)
a.​ Quick reference guide

2.​ Video (Advanced): Create a thumbnail (4:17)
a.​ Quick reference guide

http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
https://youtu.be/WC4qykY3OPI
https://youtu.be/hgaLsGbe2gA
https://docs.google.com/presentation/d/1nmV0T4i6DwsW3QWYSxOzhOTkskPVHW1Kb-RuTqMJoPg/edit?usp=sharing
https://youtu.be/ZSmeRyaWITc
https://docs.google.com/presentation/d/1Kl3a_Y_ahtOVNn-Wm4CgGC2L3ep6cdaM49KzC262tag/edit?usp=sharing

	 ​​​ ​
	Pass It On (Story Starters)
	At a Glance
	Overview and Purpose
	Objectives and Standards
	Process objective(s):
	Practices and Concepts
	Scratch Blocks
	Vocabulary
	Connections
	Resources

	Project Sequence
	Preparation (20+ minutes)
	Getting Started (13-22+ minutes)
	(Shorter) Project Work (45-50+ minutes; 1+ classes)
	(Longer) Project Work (120-135+ minutes; 3+ classes)
	Assessment

	Extended Learning
	Project Extensions
	Differentiation
	Debugging Exercises (1-5+ minutes each)
	Unplugged Lessons and Resources
	Reflection and Sharing

	

