
CS 441 

HW 2: PCA and Linear Models 
Due Date: Sep 29, 2025 11:59pm  

 

In this assignment we will explore linear projection, classification, and regression methods, 
again on digit recognition and temperature prediction.   

The aims of this homework are: 

1.​ Become familiar with PCA, Linear Logistic Regression, SVM, and Linear Regression 
methods.  

2.​ Gain practice using visualizations and analysis to better understand the models and their 
effectiveness 

3.​ Gain experience in classification and regression applications 

Read this document and the report template and tips and tricks before beginning to code.   

●​ Report template 
●​ Tips and Tricks 
●​ Starter code and data 

 

1.​ PCA on MNIST [30 points] 

Compute the principal components using sklearn.decomposition.PCA over the full training set.   

a.​ Display the first 10 principal components using the same tool that is used to display 
centroids (display_mnist). 

b.​ Scatterplot the first two dimensions of PCA-transformed x_train[:500]. Show a different 
color for each digit label. 

c.​ Plot cumulative explained variance (explained_variance_ratio_) of all components. 
d.​ Select the smallest number M of principal components that explains at least 90% of 

variance. Then, compress the training data and the test data using the first M principal 
components, and compute the total time and test error for 1-NN using the brute force Faiss 
method. Fit PCA on the training data only, then use the same components to transform both 
training and test data. Compare time and error for 1-NN using original vs compressed 
features. 

 

2.​  MNIST Classification with Linear Models [45 points] 

We revisit classification using linear logistic regression (LLR) and SVM. For logistic regression, 
use sklearn.linear_model.LogisticRegression with default parameters (unless stated 
otherwise), except max_iter=500. For SVM, use sklearn.svm.LinearSVC with default 
parameters, except max_iter=500.  Do not use svm.SVC since that is a non-linear SVM by 
default.   

https://docs.google.com/document/u/1/d/1pNbNPcmHsfbxqo_R3kmQ2N7IyCplbhol-jsoQfYrmkg/edit
https://docs.google.com/document/d/1B3fDNRJHE0nncinH5_fhr3Nya5um-POArwqGbb2GPaI/edit?usp=drive_link
https://drive.google.com/file/d/103w6--AffAHdRej8C4m4vT12fjvHBEIF/view?usp=drive_link
https://drive.google.com/file/d/1-99qdT5aF_RNc68MtVXUtytSgvEuuOYJ/view?usp=drive_link
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html


Note that it can take several minutes for each method to train on the full training set. I typically 
work on the next thing while a model is training. In practice, training ML algorithms can take 
days. With  max_iter=500, you may get a warning that it hasn’t converged, and that’s ok.  
We’re using a smaller number of iterations than ideal to save time. 

 

a.​ Train and test Linear Logistic Regression (LLR) and SVM 

For varying size training sets N in [100, 1000, 10000, 60000], compare and tabulate 
classification error for linear logistic regression and linear SVM, using x_train[:N] and x_test.     

 

b.​ Error visualization 

For each of LLR and SVM (full training set only), for each label (0 to 9), display the sample with 
the highest score for the correct label. E.g., out of all samples with a true label of 0, select the 
one that has the highest score for label 0. Display the 10 samples in a row for each method, 
showing the easy cases for each model.  Then, for each label, display the sample with the 
lowest score for the correct label. Again, display the 10 samples in a row, showing the difficult 
cases.  

 

c.​ Parameter Selection 

For linear SVM, use validation experiments (testing on the validation set) to estimate the best 
regularization strength C. Then evaluate a model trained with that C on the test set. For the 
sake of speed, in this section, use  x_train[:1000] as the training set for all experiments, with 
max_iter=1000 .  For the validation set, use x_train[50000:]. 

In selection, try to get the best result on the validation set within 0.1%.  To select C, start with the 
default and increase/decrease by a factor of 2 until results either level out or start to get worse. 
Then, you can try half way between the two best values. E.g. try C in [0.25, 0.5, 1, 2, 4].  
Suppose 0.5 and 1 give the best results.  Then, try 0.75.  Once the difference between the two 
best results is less than 0.1%, you can stop. You can also search outside of this range if 0.25 or 
4 gives the best result.  Plot the validation error for each C value tested on a semilogx plot, and 
record the best in a table. 

 

3.   Temperature Regression  [25 points] 

Forecasting, predicting a future value based on past values, is a common machine learning 
problem, which can apply to predicting prices, production, temperature, and many other things. 
The Temperature Regression problem is derived from a Kaggle dataset. The task is to predict 
the average temperature in Cleveland for the next day given the average temperature of major 
US cities in the preceding five days.  The dataset has three splits: train (used to fit parameters), 
val (used for evaluation to select parameters), and test (used for final evaluation).  For each 
split, you have “x”, the features used for prediction, and “y”, the values you should try to predict. 

https://www.kaggle.com/datasets/sudalairajkumar/daily-temperature-of-major-cities


Each feature column in “x” corresponds to a temperature for some city for some previous day.  
You can find out which day or city using feature_to_day and feature_to_city.   

We previously investigated using K nearest neighbor for prediction.  Now, we will investigate 
using linear regression for both prediction and feature selection. 

 

a.​ Train and Test Linear Regression (LR) 

Report RMSE results for L2-regularized linear regression (sklearn.linear_model.Ridge)  
using default regularization parameters on the temperature regression dataset, using original 
and normalized features (based on feature number 361, as defined in HW1). When normalizing, 
remember to normalize both the training and the test sets. 

 

b.​ Most important features 

Use original features for this part.  Identify the most important features by: (1) fitting a L1 Linear 
Regression model (sklearn.linear_model.Lasso) with default parameters; and (2) selecting 
the features that have coefficient magnitudes greater than 0.001 (model.coef_ is the linear 
coefficient vector; -0.02 and 0.02 both have magnitude greater than 0.001).  For the top 10 
features, report their indices and corresponding city and day. Also report the test RMSE error 
rates of L2 (ridge) linear regression when trained using only the top 10 selected features.  

Reflections (not reported/graded): Think about the cities and days of the best features – does it 
tell you anything about how the temperature tends to move across the country?  How does your 
linear regression compare in performance in interpretability to K-NN from HW1? 

 

4.  Stretch Goals 

 

a.  PR and ROC curves [10 points] 

Often, we want to evaluate performance in a threshold-invariant way, or to see how 
classification varies with the confidence threshold. On the MNIST data, for LLR with default 
parameters, create precision-recall and ROC plots for predicting whether a digit is a “0” vs. not 
“0”.  You can use any libraries to do this. Also report AP(Average Precision) and Area Under the 
Curve (AUC).   

 

b. Visualize weights  [10 points] 

 For each digit (0–9), display the linear classifier weights as an image.  Put all the images in a 
row.  Do this for the LLR weights using L1, L2, and elastic regularization (parameters can be 
default or of your choice) and for SVM weights. It’s OK to use a smaller training size for this, e.g. 
first 1000 samples – the main purpose is to visualize how regularization affects the weights. 

 



c. Other embeddings [15 points] 

Extending Part 1b, plot 2D points of x_train[:500] using at least two of t-SNE, MDS, UMAP, 
and Linear Discriminant Analysis, and display these plots alongside the PCA scatterplot. You 
may fit/train on 500 points as well. 

 

d. One city is all you need? [15 points] 

Suppose you are only allowed to know the temperature for one city from the previous five days. 
You can use any feature normalization or regression model.  Which city is best, and what RMSE 
do you get in testing?  Remember that for model selection (including choosing a city), you 
should use a validation set, only testing once you have made a selection.  Explain your process. 

 

e. SVM with RBF Kernel  [10 points] 

Compare results across training sizes for linear SVM (LinearSVC) and SVM with an RBF kernel, 
which is the default kernel when using SVC. For linear, you can copy-paste your results from 2a. 

 

Submission Instructions 

Append two files: (1) completed report template; (2) a pdf version of your Jupyter notebook.  Be 
sure to include your name and acknowledgments. The report is your primary deliverable. The 
notebook pdf is included for verification/clarification by the grader. To create PDF of notebook: 
Use "jupyter nbconvert" -- see starter code. To combine PDFs: use https://combinepdf.com/ or 
another free merge tool. The first pages should correspond to the report, followed by the code. 

Submit the combined file to Gradescope HW2. In Gradescope, select pages in your template 
and notebook that correspond to each subproblem.  Failure to correctly identify pages will 
result in a penalty. 

 

 

 

 

https://combinepdf.com/
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