
If you took CS 125, you’ve probably run test cases written by other people. However, in this
class, and in the real world, no one is going to write your test cases for you. In this reading, we’ll
discuss why tests are important, and how to write good tests.

Validation
Testing is an example of a more general process called validation. The purpose of validation is
to uncover problems in a program and thereby increase your confidence in the program’s
correctness.

Why software testing is hard
Here are some approaches that unfortunately don’t work well in the world of software.

Exhaustive testing is infeasible. The space of possible test cases is generally too big to cover
exhaustively. Imagine exhaustively testing a 32-bit floating-point multiply operation, a*b. There
are 264 test cases!

Haphazard testing (“just try it and see if it works”) is less likely to find bugs, unless the program
is so buggy that an arbitrarily-chosen input is more likely to fail than to succeed. It also doesn’t
increase our confidence in program correctness.

Random or statistical testing doesn’t work well for software. Other engineering disciplines can
test small random samples (e.g. 1% of hard drives manufactured) and infer the defect rate for
the whole production lot. Physical systems can use many tricks to speed up time, like opening a
refrigerator 1000 times in 24 hours instead of 10 years. These tricks give known failure rates
(e.g. mean lifetime of a hard drive), but they assume continuity or uniformity across the space of
defects. This is true for physical artifacts.

But it’s not true for software. Software behavior varies discontinuously and discretely across the
space of possible inputs. The system may seem to work fine across a broad range of inputs,
and then abruptly fail at a single boundary point. The famous Pentium division bug affected
approximately 1 in 9 billion divisions. Stack overflows, out of memory errors, and numeric
overflow bugs tend to happen abruptly, and always in the same way, not with probabilistic
variation. That’s different from physical systems, where there is often visible evidence that the
system is approaching a failure point (cracks in a bridge) or failures are distributed
probabilistically near the failure point (so that statistical testing will observe some failures even
before the point is reached).

Instead, test cases must be chosen carefully and systematically. Techniques for systematic
testing are the primary focus of this reading.



Test-first programming
Before we dive in, we need to define some terms:

● A module is a part of a software system that can be designed, implemented, tested, and
reasoned about separately from the rest of the system. In this reading, we’ll focus on
modules that are functions, represented by Java methods. In future readings we’ll
broaden our view to think about larger modules, like a class with multiple interacting
methods.

● A specification (or spec) describes the behavior of a module. For a function, the
specification gives the types of the parameters and any additional constraints on them
(e.g. sqrt’s parameter must be nonnegative). It also gives the type of the return value
and how the return value relates to the inputs. In Java code, the specification consists of
the method signature and the comment above it that describes what it does.

● A module has an implementation that provides its behavior, and clients that use the
module. For a function, the implementation is the body of the method, and the clients are
other code that calls the method. The specification of the module constrains both the
client and the implementation. We’ll have much more to say about specifications,
implementations, and clients a few classes from now.

● A test case is a particular choice of inputs, along with the expected output required by
the specification.

● A test suite is a set of test cases for a module.

In test-first-programming, you write the spec and the tests before you even write any code. The
development of a single function proceeds in this order:

1. Spec: Write a specification for the function.
2. Test: Write tests that exercise the specification.
3. Implement: Write the implementation.

Once your implementation passes the tests you wrote, you’re done.

It turns out that this is a good pattern to follow when designing a program from scratch. The
biggest benefit of test-first programming is safety from bugs. Don’t leave testing until the end of
development, when you have a big pile of unvalidated code. Leaving testing until the end only
makes debugging longer and more painful, because bugs may be anywhere in your code. It’s
far more pleasant to test your code as you develop it.

(For this week’s assignment, TicTacToe, we’re giving you the spec of the function that you have
to implement, so you can start at step 2. But in the future, assignments will be more complex
and open-ended, so it will be up to you to determine how to decompose all of the functionality of
your program into modules, and write specs for each of those modules.)



Systematic testing
Rather than exhaustive, haphazard, or randomized testing, we want to test systematically.
Systematic testing means that we are choosing test cases in a principled way, with the goal of
designing a test suite with three desirable properties:

● Correct. A correct test suite is a legal client of the specification, and it accepts all legal
implementations of the spec without complaint. This gives us the freedom to change how
the module is implemented internally without necessarily having to change the test suite.

● Thorough. A thorough test suite finds actual bugs in the implementation, caused by
mistakes that programmers are likely to make.

● Small. A small test suite, with few test cases, is faster to write in the first place, and
easier to update if the specification evolves. Small test suites are also faster to run. You
will be able to run your tests more frequently if your test suites are small and fast.

By these criteria, exhaustive testing is thorough but infeasibly large. Haphazard testing tends to
be small but not thorough. Randomized testing can achieve thoroughness only at the cost of
large size.

Designing a test suite for both thoroughness and small size requires having the right attitude.
Normally when you’re coding, your goal is to make the program work. But as a test suite
designer, you want to make it fail. That’s a subtle but important difference. A good tester
intentionally pokes at all the places the program might be vulnerable, so that those
vulnerabilities can be eliminated.

The need to adopt a testing attitude is another argument for test-first programming. It is all too
tempting to treat code you’ve already written as a precious thing, a fragile eggshell, and test it
very lightly just to see it work. For thorough testing, though, you have to be brutal. Test-first
programming allows you to put on your testing hat, and adopt that brutal perspective, before
you’ve even written any code.



Choosing test cases by partitioning
Creating a good test suite is a challenging and interesting design problem. We want to pick a set
of test cases that is small enough to be easy to write and maintain and quick to run, yet
thorough enough to find bugs in the program.

To do this, we divide the input space into subdomains, each consisting of a set of inputs. (The
name subdomain comes from the fact that it is a subset of the domain, another name for the
input space of a mathematical function.) Taken together, the subdomains form a partition: a
collection of disjoint sets that completely covers the input space, so that every input lies in
exactly one subdomain. Then we choose one test case from each subdomain, and that’s our
test suite.

The idea behind subdomains is to divide the input space into sets of similar inputs on which the
program has similar behavior. Then we use one representative of each set. This approach
makes the best use of limited testing resources by choosing dissimilar test cases, and forcing
the testing to explore areas of the input space that random testing might not reach.

Example: max()

/**
* ...
* @param a an argument
* @param b another argument
* @return the larger of a and b.
*/

public static int max(int a, int b)

Here, we have a two-dimensional input space, consisting of all the pairs of integers (a,b). Now
let’s partition it. From the specification, it makes sense to choose these subdomains:

● a < b
● a > b

because the spec calls for different behavior on each one. But we can’t stop there, because
these subdomains are not yet a partition of the input space. A partition must completely cover
the set of possible inputs. So we need to add:

● a = b

Our test suite might then be:
● (a, b) = (1, 2) to cover a < b
● (a, b) = (10, -8) to cover a > b
● (a, b) = (9, 9) to cover a = b



Include boundaries in the partition
Bugs often occur at boundaries between subdomains. Some examples:

● 0 is a boundary between positive numbers and negative numbers
● the maximum and minimum values of numeric types, like int or double
● emptiness for collection types, like the empty string, empty list, or empty set
● the first and last element of a sequence, like a string or list

Why do bugs often happen at boundaries? One reason is that programmers often make
off-by-one mistakes, like writing <= instead of <, or initializing a counter to 0 instead of 1.
Another is that some boundaries may need to be handled as special cases in the code. Another
is that boundaries may be places of discontinuity in the code’s behavior. When an int variable
grows beyond its maximum positive value, for example, it abruptly becomes a negative number.



Automated unit testing with JUnit
A well-tested program will have tests for every individual module that it contains. A test that tests
an individual module, in isolation if possible, is called a unit test.

JUnit is a widely-adopted Java unit testing library, and we will use it for all Java assignments in
CS 126. A JUnit unit test is written as a method preceded by the annotation @Test. A unit test
method typically contains one or more calls to the module being tested, and then checks the
results using assertion methods like assertEquals, assertTrue, and assertFalse.

For example, the tests we chose for max above might look like this when implemented for JUnit:

public class MaxTest {
@Test
public void testALessThanB() {

assertEquals(2, Math.max(1, 2));
}

@Test
public void testBothEqual() {

assertEquals(9, Math.max(9, 9));
}

@Test
public void testAGreaterThanB() {

assertEquals(10, Math.max(10, -9));
}

}

Note that the order of the parameters to assertEquals is important. The first parameter should
be the expected result, usually a constant, that the test wants to see. The second parameter is
the actual result, what the code actually does. If you switch them around, then JUnit will produce
a confusing error message when the test fails. All the assertions supported by JUnit follow this
order consistently: expected first, actual second. An assertion can also take an optional
message string as the last argument, which you can use to make the test failure clearer.

If an assertion in a test method fails, then that test method returns immediately, and JUnit
records a failure for that test. A test class can contain any number of @Test methods, which are
run independently when you run the test class with JUnit. Even if one test method fails, the
others will still be run.



Documenting your testing strategy
It’s a good idea to write down (in comments) the testing strategy you used to create a test suite:
the partition, and which subdomain of the partition each test case was chosen to cover. Writing
down the strategy makes the thoroughness of your test suite much more visible to the reader.

You should do this in your TicTacToe assignment! Not only will it help others understand your
testing strategy; it will also force you to make sure that you’ve covered all of the different types
of inputs/outcomes.

Here is an example of how to do this:

public class MaxTest {
/*
* Testing strategy
*
* Partitions max(a,b) as follows:
* a < b, a > b, a = b
*/

// covers a < b
@Test
public void testALessThanB() {

assertEquals(2, Math.max(1, 2));
}

// repeat for other test cases
}



Black box and glass box testing
Recall from above that the specification is the description of the function’s behavior — the types
of parameters, type of return value, and constraints and relationships between them.

Black box testing means choosing test cases only from the specification, not the implementation
of the function. That’s what we’ve been doing in our examples so far. We partitioned and looked
for boundaries in abs, max, and multiply without looking at the actual code for these functions.
In fact, following the test-first programming approach, we hadn’t even written the code for these
functions yet.

Glass box testing means choosing test cases with knowledge of how the function is actually
implemented. For example, if the implementation selects different algorithms depending on the
input, then you should partition around the points where different algorithms are chosen. If the
implementation keeps an internal cache that remembers the answers to previous inputs, then
you should test repeated inputs.

When doing glass box testing, you must take care that your test cases don’t require specific
implementation behavior that isn’t specifically called for by the spec. (Keep this in mind when
you’re answering the questions on PrairieLearn.) For example, if the spec says “throws an
exception if the input is poorly formatted,” then your test shouldn’t check specifically for a
NullPointerException just because that’s what the current implementation does. The
specification in this case allows any exception to be thrown, so your test case should likewise
be general in order to be correct, and preserve the implementor’s freedom. We’ll have much
more to say about this in the class on specs.



Automated testing and regression testing
Nothing makes tests easier to run, and more likely to be run, than complete automation.
Automated testing means running the tests and checking their results automatically.

The code that runs tests on a module is a test driver (also known as a test harness or test
runner). A test driver should not be an interactive program that prompts you for inputs and prints
out results for you to manually check. Instead, a test driver should invoke the module itself on
fixed test cases and automatically check that the results are correct. The result of the test driver
should be either “all tests OK” or “these tests failed: …” A good testing framework, like JUnit,
allows you to build and run this kind of test driver, with a suite of automated tests.

Note that automated testing frameworks like JUnit make it easy to run the tests, but you still
have to come up with good test cases yourself. Automatic test generation is a hard problem, still
a subject of active computer science research.

Once you have test automation, it’s very important to rerun your tests when you modify your
code. Software engineers know from painful experience that any change to a large or complex
program is dangerous. Whether you’re fixing another bug, adding a new feature, or optimizing
the code to make it faster, an automated test suite that preserves a baseline of correct behavior
– even if it’s only a few tests – will save your bacon. Running the tests frequently while you’re
changing the code prevents your program from regressing — introducing other bugs when you
fix new bugs or add new features. Running all your tests after every change is called regression
testing.

Whenever you find and fix a bug, take the input that elicited the bug and add it to your
automated test suite as a test case. This kind of test case is called a regression test. This helps
to populate your test suite with good test cases. Remember that a test is good if it elicits a bug
— and every regression test did in one version of your code! Saving regression tests also
protects against reversions that reintroduce the bug. The bug may be an easy error to make,
since it happened once already.

This idea also leads to test-first debugging. When a bug arises, immediately write a test case for
it that elicits it, and immediately add it to your test suite. Once you find and fix the bug, all your
test cases will be passing, and you’ll be done with debugging and have a regression test for that
bug.

In practice, these two ideas, automated testing and regression testing, are almost always used
in combination. Regression testing is only practical if the tests can be run often, automatically.
Conversely, if you already have automated testing in place for your project, then you might as
well use it to prevent regressions. So automated regression testing is a best-practice of modern
software engineering.



How testing relates to the themes of CS 126:
● Safe from bugs. Testing is about finding bugs in your code, and test-first programming is

about finding them as early as possible, right after you introduce them.
● Easy to understand. Systematic testing with a documented testing strategy makes it

easier to understand how test cases were chosen and how thorough a test suite is.
● Ready for change. Correct test suites only depend on behavior in the spec, which allows

the implementation to change within the confines of the spec. We also talked about
automated regression testing, which helps keep bugs from coming back when changes
are made to code.

Parts of this reading were excerpted from http://web.mit.edu/6.031/www/fa19/classes/03-testing/. This work is
licensed under CC BY-SA 4.0.

http://web.mit.edu/6.031/www/fa19/classes/03-testing/
http://creativecommons.org/licenses/by-sa/4.0/

