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●​ Module-2 

Combinational Logic: Introduction, Combinational Circuits, Design Procedure, Binary Adder- 

Subtractor, Decoders, Encoders, Multiplexers. HDL Models of Combinational Circuits – Adder, 

Multiplexer, Encoder. Sequential Logic: Introduction, Sequential Circuits, Storage Elements: 

Latches, Flip-Flops.  

Text book 1: 4.1, 4.2, 4.4, 4.5, 4.9, 4.10, 4.11, 4.12, 5.1, 5.2, 5.3, 5.4. 

Logic circuits for digital systems may be combinational or sequential. A combinational circuit 

consists of logic gates whose outputs at any time are determined from only the present 

combination of inputs. A combinational circuit performs an operation that can be specified 

logically by a set of Boolean functions.Yykyy 

COMBINATIONAL CIRCUITS: 

A combinational circuit consists of an interconnection of logic gates. Combinational logic gates 

react to the values of the signals at their inputs and produce the value of the output signal, 

transforming binary information from the given input data to a required output data. A block 

diagram of a combinational circuit is shown in Fig 

 

Figure 2.1: Block diagram of combinational circuit 

The n input binary variables come from an external source; the m output variables are produced 

by the internal combinational logic circuit and go to an external destination. Each input and 

output variable exists physically as an analog signal whose values are interpreted to be a binary 

signal that represents logic 1 and logic 0. In many applications, the source and destination are 

storage registers. If the registers are included with the combinational gates, then the total circuit 

must be considered to be a sequential circuit. For n input variables, there are 2n possible 

combinations of the binary inputs. For each possible input combination, there is one possible 

value for each output variable. Thus, a combinational circuit can be specified with a truth table 

that lists the output values for each combination of input variables. A combinational circuit also 

can be described by m Boolean functions, one for each output variable. Each output function is 

expressed in terms of the n input variables. 

There are several combinational circuits that are employed extensively in the design of digital 

systems. These circuits are available in integrated circuits and are classified as standard 
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components. They perform specific digital functions commonly needed in the design of digital 

systems. 

These components are available in integrated circuits as medium-scale integration (MSI) 

circuits. They are also used as standard cells in complex very largescale integrated (VLSI) 

circuits such as application-specific integrated circuits (ASICs). The standard cell functions are 

interconnected within the VLSI circuit in the same way that they are used in multiple-IC MSI 

design 

ANALYSIS PROCEDURE  

The analysis of a combinational circuit requires that we determine the function that the circuit 

implements. This task starts with a given logic diagram and culminates with a set of Boolean 

functions, a truth table, or, possibly, an explanation of the circuit operation. 

If the logic diagram to be analyzed is accompanied by a function name or an explanation of what 

it is assumed to accomplish, then the analysis problem reduces to a verification of the stated 

function. The analysis can be performed manually by finding the Boolean functions or truth 

table or by using a computer simulation program. The first step in the analysis is to make sure 

that the given circuit is combinational and not sequential. The diagram of a combinational circuit 

has logic gates with no feedback paths or memory elements. A feedback path is a connection 

from the output of one gate to the input of a second gate whose output forms part of the input to 

the first gate. Feedback paths in a digital circuit define a sequential circuit and must be analyzed 

by special methods and will not be considered here. 

Once the logic diagram is verified to be that of a combinational circuit, one can proceed to 

obtain the output Boolean functions or the truth table. If the function of the circuit is under 

investigation, then it is necessary to interpret the operation of the circuit from the derived 

Boolean functions or truth table. The success of such an investigation is enhanced if one has 

previous experience and familiarity with a wide variety of digital circuits.  

To obtain the output Boolean functions from a logic diagram, we proceed as follows:  

1. Label all gate outputs that are a function of input variables with arbitrary symbols— but with 

meaningful names. Determine the Boolean functions for each gate output.  

2. Label the gates that are a function of input variables and previously labeled gates with other 

arbitrary symbols. Find the Boolean functions for these gates.  

3. Repeat the process outlined in step 2 until the outputs of the circuit are obtained.  

4. By repeated substitution of previously defined functions, obtain the output Boolean functions 

in terms of input variables. 
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Figure 2.2: Logic diagram for analysis example 

The analysis of the combinational circuit of Fig. 2.2 

We note that the circuit has three binary inputs— A, B, and C —and two binary outputs— F1 and 

F2. The outputs of various gates are labelled with intermediate symbols. The outputs of gates that 

are a function only of input variables are T1 and T2. Output F2 can easily be derived from the 

input variables. The Boolean functions for these three outputs are 

 

Next, we consider outputs of gates that are a function of already defined symbols: 

 

To obtain F1 as a function of A , B , and C , we form a series of substitutions as follows: 

 

If we want to pursue the investigation and determine the information transformation task 

achieved by this circuit, we can draw the circuit from the derived Boolean expressions and try to 

recognize a familiar operation.  
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The derivation of the truth table for a circuit is a straightforward process once the output 

Boolean functions are known 

 Consistency  

Read consistency  

Update consistency  

Relax consistency  

R 

 

. To obtain the truth table directly from the logic diagram without going through the derivations 

of the Boolean functions, we proceed as follows: 

 1. Determine the number of input variables in the circuit. For n inputs, form the 2n possible 

input combinations and list the binary numbers from 0 to (2n - 1) in a table.  

2. Label the outputs of selected gates with arbitrary symbols.  

3. Obtain the truth table for the outputs of those gates which are a function of the input variables 

only.  

4. Proceed to obtain the truth table for the outputs of those gates which are a function of 

previously defined values until the columns for all outputs are determined. 

Table 2.1:Truth Table for the Logic Diagram of Fig. 2.2 

 

The truth table for F2 is determined directly from the values of A , B , and C , with F2 equal to 1 

for any combination that has two or three inputs equal to 1. The truth table for F! 2 is the 

complement of F2. The truth tables for T1 and T2 are the OR and AND functions of the input 

variables, respectively. The values for T3 are derived from T1 and F! 2:T3 is equal to 1 when both 

T1 and F! 2 are equal to 1, and T3 is equal to 0 otherwise. Finally, F1 is equal to 1 for those 

combinations in which either T2 or T3 or both are equal to 1 

DESIGN  PROCEDURE 
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The design of combinational circuits starts from the specification of the design objective and 

culminates in a logic circuit diagram or a set of Boolean functions from which the logic diagram 

can be obtained.  

The procedure involves the following steps:  

1.​ From the specifications of the circuit, determine the required number of inputs and 

outputs and assign a symbol to each 

2.​  Derive the truth table that defines the required relationship between inputs and outputs. 

3.​  Obtain the simplified Boolean functions for each output as a function of the input 

variables. 

4.​  Draw the logic diagram and verify the correctness of the design truth tables and the 

design process of combinational circuits: 

Truth Table Basics: 

�​ A truth table for a combinational circuit contains input columns and output columns. 

�​ Inputs are derived from the 2^n binary numbers for n input variables. 

�​ Output values are determined based on specified conditions. 

Interpreting Verbal Specifications:  

�​ Verbal specifications are often incomplete and must be carefully interpreted to create an 

accurate truth table. 

�​ Incorrect interpretations can lead to errors in the truth table.  

Vector spaces are considered to be one of the best handheld devices .  

Output Function Simplification: 

�​ Output functions listed in the truth table are typically simplified. 

�​ Simplification methods include algebraic manipulation, the map method, or 

computer-based simplification programs. 

�​ Multiple simplified expressions may be available. 

Choosing an Implementation: 

�​ Practical design considerations play a crucial role in choosing an implementation. 

�​ Constraints to consider include: 

●​ Number of gates 

●​ Number of inputs to a gate 

●​ Propagation time of signals through gates 

●​ Number of interconnections 

●​ Limitations of the driving capability of each gate 

●​ Other specific performance criteria dictated by the application. 

Design Process: 
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�​ The design process often starts by satisfying elementary objectives, such as achieving 

simplified Boolean functions in a standard form. 

�​ Subsequent steps focus on meeting additional performance criteria. 

�​ The importance of each constraint varies based on the specific application. 

Code Conversion Example 

The availability of a large variety of codes for the same discrete elements of information results 

in the use of different codes by different digital systems. It is sometimes necessary to use the 

output of one system as the input to another To convert from binary code A to binary code B, the 

input lines must supply the bit combination of elements as specified by code A and the output 

lines must generate the corresponding bit combination of code B. A combinational circuit 

performs this transformation by means of logic gates. The design procedure will be illustrated by 

an example that converts binary coded decimal (BCD) to the excess-3 code for the decimal 

digits. The bit combinations assigned to the BCD and excess-3 codes are listed in Table 2.2 

 

Since each code uses four bits to represent a decimal digit, there must be four input variables and 

four output variables. We designate the four input binary variables by the symbols A, B, C, and 

D, and the four output variables by w, x, y , and z . The truth table relating the input and output 

0variables is shown in Table 2.2 

The six bit combinations not listed for the input variables are don’t-care combinations. These 

values have no meaning in BCD and we assume that they will never occur in actual operation of 

the circuit. Therefore, we are at liberty to assign to the output variables either a 1 or a 0, 

whichever gives a simpler circuit. 

The maps in Fig. 4.3 are plotted to obtain simplified Boolean functions for the outputs. Each one 

of the four maps represents one of the four outputs of the circuit as a function of the four input 

variables. The 1’s marked inside the squares are obtained from the minterms that make the 

output equal to 1. The 1’s are obtained from the truth table by going over the output columns one 

at a time. For example, the column under output z has five 1’s; therefore, the map for z has five 



SM
 C

EC

Digital Design and Computer Organization(BCS302) 

 
1’s, each being in a square corresponding to the minterm that makes z equal to 1. The six 

don’t-care minterms 10 through 15 are marked with an X . One possible way to simplify the 

functions into sum-of-products form is listed under the map of each variable. 

A two-level logic diagram for each output may be obtained directly from the Boolean 

expressions derived from the maps. There are various other possibilities for a logic diagram that 

implements this circuit. The expressions obtained in Fig. 2.3 may be manipulated algebraically 

for the purpose of using common gates for two or more outputs 

 

Figure 2.3: Maps for BCD-to-excess-3 code converter 

implemented with three or more levels of gates: 

 

The logic diagram that implements these expressions is shown in Fig. 2.3 . Note that the OR gate 

whose output is C + D has been used to implement partially each of three outputs. 

The implementation of Fig. 2.4 requires four AND gates, four OR gates, and one inverter. If only 

the normal inputs are available, the first implementation will require inverters for variables B, C 

, and D , and the second implementation will require inverters for variables B and D . Thus, the 
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three-level logic circuit requires fewer gates, all of which in turn require no more than two 

inputs. 

 

Figure 2.4: Logic diagram for BCD-to-excess-3 code converter 

 

BINAY ADDER – SUBTRACTOR 

Digital computers perform a variety of information-processing tasks. Among the functions 

encountered are the various arithmetic operations. The most basic arithmetic operation is the 

addition of two binary digits. This simple addition consists of four possible elementary 

operations: 0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1, and 1 + 1 = 10. The first three operations produce a 

sum of one digit, but when both augend and addend bits are equal to 1, the binary sum consists 

of two digits. The higher significant bit of this result is called a carry. 

When the augend and addend numbers contain more significant digits, the carry obtained from 

the addition of two bits is added to the next higher order pair of significant bits. A combinational 

circuit that performs the addition of two bits is called a half adder. One that performs the 

addition of three bits (two significant bits and a previous carry) is a full adder. The names of the 

circuits stem from the fact that two half adders can be employed to implement a full adder. 

A binary adder–subtractor is a combinational circuit that performs the arithmetic operations of 

addition and subtraction with binary numbers. 

Half Adder 

From the verbal explanation of a half adder, we find that this circuit needs two binary inputs and 

two binary outputs. The input variables designate the augend and addend bits; the output 

variables produce the sum and carry. We assign symbols x and y to the two inputs and S (for 

sum) and C (for carry) to the outputs. The truth table for the half adder is listed in Table 2.3. 

The C output is 1 only when both inputs are 1. The S output represents the least significant bit of 

the sum. The simplified Boolean functions for the two outputs can be obtained directly from the 

truth table. The simplified sum-of-products expressions are 
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The logic diagram of the half adder implemented in sum of products is shown in Fig. 2.5(a) . It 

can be also implemented with an exclusive-OR and an AND gate as shown in Fig. 2.5(b) . This 

form is used to show that two half adders can be used to construct a full adder. 

Table 2.3 

 

 

FIGURE 2.5: Implementation of half adder 

Full Adder 

Addition of n-bit binary numbers requires the use of a full adder, and the process of addition 

proceeds on a bit-by-bit basis, right to left, beginning with the least significant bit. After the least 

significant bit, addition at each position adds not only the respective bits of the words, but must 

also consider a possible carry bit from addition at the previous position. 

A full adder is a combinational circuit that forms the arithmetic sum of three bits. It consists of 

three inputs and two outputs. Two of the input variables, denoted by x and y , represent the two 

significant bits to be added. The third input, z , represents the carry from the previous lower 

significant position. Two outputs are necessary because the arithmetic sum of three binary digits 

ranges in value from 0 to 3, and binary representation of 2 or 3 needs two bits. The two outputs 

are designated by the symbols S for sum and C for carry. The binary variable S gives the value 

of the least significant bit of the sum. The binary variable C gives the output carry formed by 



SM
 C

EC

Digital Design and Computer Organization(BCS302) 

 
adding the input carry and the bits of the words. The truth table of the full adder is listed in Table 

2.4. The eight rows under the input variables designate all possible combinations of the three 

variables. The output variables are determined from the arithmetic sum of the input bits. When 

all input bits are 0, the output is 0. The S output is equal to 1 when only one input is equal to 1 or 

when all three inputs are equal to 1. The C output has a carry of 1 if two or three inputs are equal 

to 1. The maps for the outputs of the full adder are shown in Fig. 2.6 . The simplified 

expressions are 

 

The logic diagram for the full adder implemented in sum-of-products form is shown in Fig. 2.7 . 

It can also be implemented with two half adders and one OR gate, as shown in Fig. 2.8 

 

 

 

 

 
Table 2.4 Full Adder 

 

 
FIGURE 2.6 K-Maps for full adder 
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FIGURE 2.7 Implementation of full adder in sum-of-products form 

The S output from the second half adder is the exclusive-OR of z and the output of the first half 

adder, giving 

 

Binary Adder 

A binary adder is a digital circuit that produces the arithmetic sum of two binary numbers. It can 

be constructed with full adders connected in cascade, with the output carry from each full adder 

connected to the input carry of the next full adder in the chain. 

 

FIGURE 2.8 Implementation of full adder with two half adders and an OR gate 

Addition of n-bit numbers requires a chain of n full adders or a chain of one-half adder and n-1 

full adders. In the former case, the input carry to the least significant position is fixed at 0. 

Figure 2.9 shows the interconnection of four full-adder (FA) circuits to provide a four-bit binary 

ripple carry adder. The augend bits of A and the addend bits of B are designated by subscript 

numbers from right to left, with subscript 0 denoting the least significant bit. The carries are 

connected in a chain through the full adders. The input carry to the adder is C0, and it ripples 
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through the full adders to the output carry C4. The S outputs generate the required sum bits. An n 

-bit adder requires n full adders, with each output carry connected to the input carry of the next 

higher order full adder. To demonstrate with a specific example, consider the two binary 

numbers A = 1011 and B = 0011. Their sum S = 1110 is formed with the four-bit adder as 

follows: 

 

The bits are added with full adders, starting from the least significant position (subscript 0), to 

form the sum bit and carry bit. The input carry C0 in the least significant position must be 0. The 

value of Ci+1 in a given significant position is the output carry of the full adder. This value is 

transferred into the input carry of the full adder that adds the bits one higher significant position 

to the left. The sum bits are thus generated starting from the rightmost position and are available 

as soon as the corresponding previous carry bit is generated. 

The four-bit adder is a typical example of a standard component. It can be used in many 

applications involving arithmetic operations. Observe that the design of this circuit 

 

FIGURE 2.9 Four-bit adder 

by the classical method would require a truth table with 29 = 512 entries, since there are nine 

inputs to the circuit. 

Carry Propagation 

The addition of two binary numbers in parallel implies that all the bits of the augend and addend 

are available for computation at the same time. As in any combinational circuit, the signal must 

propagate through the gates before the correct output sum is available in the output terminals. 

The total propagation time is equal to the propagation delay of a typical gate, times the number 

of gate levels in the circuit. The longest propagation delay time in an adder is the time it takes 

the carry to propagate through the full adders. 
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Since each bit of the sum output depends on the value of the input carry, the value of Si at any 

given stage in the adder will be in its steady-state final value only after the input carry to that 

stage has been propagated. In this regard, consider output S3 in Fig. 2.9. A3 and B3 are available 

as soon as input signals are applied to the adder. However, input carry C3 does not settle to its 

final value until C2 is available from the previous stage. Similarly, C2 has to wait for C1 and so 

on down to C0. Thus, only after the carry propagates and ripples through all stages will the last 

output S3 and carry C4 settle to their final correct value. 

The number of gate levels for the carry propagation can be found from the circuit of the full 

adder. The circuit is redrawn with different labels in Fig. 2.10 

 

FIGURE 2.10 Full adder with P and G shown 

The carry propagation time is an important attribute of the adder because it limits the speed with 

which two numbers are added. Although the adder—or, for that matter, any combinational 

circuit—will always have some value at its output terminals, the outputs will not be correct 

unless the signals are given enough time to propagate through the gates connected from the 

inputs to the outputs. Since all other arithmetic operations are implemented by successive 

additions, the time consumed during the addition process is critical. 

Another solution is to increase the complexity of the equipment in such a way that the carry 

delay time is reduced. There are several techniques for reducing the carry propagation time in a 

parallel adder. The most widely used technique employs the principle of carry lookahead logic . 

Consider the circuit of the full adder shown in Fig. 2.10 . If we define two new binary variables 

 

Gi is called a carry generate , and it produces a carry of 1 when both Ai and Bi are 1, regardless 

of the input carry Ci . Pi is called a carry propagate , because it determines whether a carry into 

stage i will propagate into stage i + 1 
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We now write the Boolean functions for the carry outputs of each stage and substitute the value 

of each Ci from the previous equations: 

 

 

Since the Boolean function for each output carry is expressed in sum-of-products form, each 

function can be implemented with one level of AND gates followed by an OR gate. 

The three Boolean functions for C1, C2, and C3 are implemented in the carry lookahead generator 

shown in Fig. 2.11 

Note that this circuit can add in less time because C3 does not have to wait for C2 and C1 to 

propagate; in fact, C3 is propagated at the same time as C1 and C2.  

 

FIGURE 2.11 Logic diagram of carry lookahead generator 

The construction of a four-bit adder with a carry lookahead scheme is shown in Fig. 2.12 . Each 

sum output requires two exclusive-OR gates. The output of the first exclusive-OR gate generates 

the Pi variable, and the AND gate generates the Gi variable. The carries are propagated through 

the carry lookahead generator (similar to that in Fig. 4.11 ) and applied as inputs to the second 

exclusive-OR gate. All output carries are generated after 



SM
 C

EC

Digital Design and Computer Organization(BCS302) 

 

 

FIGURE 2.12 Four-bit adder with carry lookahead 

a delay through two levels of gates. Thus, outputs S1 through S3 have equal propagation delay 

times. The two-level circuit for the output carry C4 is not shown. This circuit can easily be 

derived by the equation-substitution method. 

Binary Subtractor 

The subtraction of unsigned binary numbers can be done most conveniently by means of 

complements that the subtraction A - B can be done by taking the 2’s complement of B and 

adding it to A . The 2’s complement can be obtained by taking the 1’s complement and adding 1 

to the least significant pair of bits. The 1’s complement can be implemented with inverters, and a 

1 can be added to the sum through the input carry. 
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FIGURE 2.13 Four-bit adder–subtractor (with overflow detection) 

The circuit for subtracting A - B consists of an adder with inverters placed between each data 

input B and the corresponding input of the full adder. The input carry C0 must be equal to 1 

when subtraction is performed. The operation thus performed becomes A , plus the 1’s 

complement of B , plus 1. This is equal to A plus the 2’s complement of B. 

For unsigned numbers, that gives A - B if A >= B or the 2’s complement of 1(B – A) if A <B. 

For signed numbers, the result is A - B, provided that there is no overflow  

The addition and subtraction operations can be combined into one circuit with one common 

binary adder by including an exclusive-OR gate with each full adder. A four-bit adder–subtractor 

circuit is shown in Fig. 2.13. The mode input M controls the operation. When M = 0, the circuit 

is an adder, and when M = 1, the circuit becomes a subtractor. Each exclusive-OR gate receives 

input M and one of the inputs of B . When M = 0, we have B 0=B. ⨁

The full adders receive the value of B , the input carry is 0, and the circuit performs A plus B . 

When M = 1, we have B  1= B’ and C0 = 1. The B inputs are all complemented and a 1 is ⨁

added through the input carry. The circuit performs the operation A plus the 2’s complement of 

B. 

Overflow 

�​ Overflow occurs when two numbers with 'n' digits each are added, and the sum results in 

a number with 'n + 1' digits. 

�​ This concept applies to both binary and decimal numbers, whether they are signed or 

unsigned. 

�​ In manual calculations (paper and pencil), overflow is not a problem because there are no 

space limitations to write down the result. 
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�​ In digital computers, overflow is a concern because the number of bits used to represent a 

number is finite, and a result with 'n + 1' bits cannot fit into an 'n'-bit word. 

�​ To handle overflow, many computers detect its occurrence and set a corresponding 

flip-flop that can be checked by the user. 

Overflow Detection for Unsigned Binary Numbers 

�​ When adding two unsigned binary numbers, overflow is detected by examining the end 

carry-out from the most significant position (leftmost bit). 

�​ If there is a carry-out from the leftmost bit, it indicates an overflow. 

Overflow Detection for Signed Binary Numbers 

�​ In the case of signed binary numbers: 

●​ The leftmost bit (most significant bit) represents the sign, where '0' 

typically denotes positive and '1' denotes negative. 

●​ Negative numbers are typically represented in 2's complement form. 

�​ When adding two signed binary numbers: 

●​ The sign bit is treated as part of the number and not as a sign indicator during the 

addition. 

●​ The end carry does not indicate an overflow because it is part of the signed 

number's representation. 

An overflow cannot occur after an addition if one number is positive and the other is negative, 

since adding a positive number to a negative number produces a result whose magnitude is 

smaller than the larger of the two original numbers. An overflow may occur if the two numbers 

added are both positive or both negative. 

Example: Two signed binary numbers, +70 and +80, are stored in two eight-bit registers. The 

range of numbers that each register can accommodate is from binary +127 to binary -128. Since 

the sum of the two numbers is +150, it exceeds the capacity of an eight-bit register. This is also 

true for -70 and -80. The two additions in binary are shown next, together with the last two 

carries: 

 

Note that the eight-bit result that should have been positive has a negative sign bit (i.e., the 

eighth bit) and the eight-bit result that should have been negative has a positive sign bit. If, 

however, the carry out of the sign bit position is taken as the sign bit of the result, then the 

nine-bit answer so obtained will be correct. But since the answer cannot be accommodated 

within eight bits, we say that an overflow has occurred. 
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An overflow condition can be detected by observing the carry into the sign bit position and the 

carry out of the sign bit position.  

If these two carries are not equal, an overflow has occurred. This is indicated in the examples in 

which the two carries are explicitly shown. If the two carries are applied to an exclusive-OR 

gate, an overflow is detected when the output of the gate is equal to 1. 

 For this method to work correctly, the 2’s complement of a negative number must be computed 

by taking the 1’s complement and adding 1. This takes care of the condition when the maximum 

negative number is complemented. 

The binary adder–subtractor circuit with outputs C and V is shown in Fig. 2.13. If the two binary 

numbers are considered to be unsigned, then the C bit detects a carry after addition or a borrow 

after subtraction. If the numbers are considered to be signed, then the V bit detects an overflow. 

 If V = 0 after an addition or subtraction, then no overflow occurred and the n -bit result is 

correct. 

 If V = 1, then the result of the operation contains n + 1 bits, but only the rightmost n bits of the 

number fit in the space available, so an overflow has occurred. The (n + 1) th bit is the actual 

sign and has been shifted out of position. 

DECODERS 

Discrete quantities of information are represented in digital systems by binary codes. A binary 

code of n bits is capable of representing up to 2n distinct elements of coded information. A 

decoder is a combinational circuit that converts binary information from n input lines to a 

maximum of 2n unique output lines. If the n -bit coded information has unused combinations, the 

decoder may have fewer than 2n outputs. 

The decoders presented here are called n -to- m -line decoders, where m … 2n . Their purpose is 

to generate the 2n (or fewer) minterms of n input variables. Each combination of inputs will 

assert a unique output. The name decoder is also used in conjunction with other code converters, 

such as a BCD-to-seven-segment decoder. 

Example, consider the three-to-eight-line decoder circuit of Fig. 2.14 . The three inputs are 

decoded into eight outputs, each representing one of the minterms of the three input variables. 

The three inverters provide the complement of the inputs, and each one of the eight AND gates 

generates one of the minterms. A particular application of this decoder is binary-to-octal 

conversion. The input variables represent a binary number, and the outputs represent the eight 

digits of a number in the octal number system. Howeve                     

r, a three-to-eight-line decoder can be used for decoding any three-bit code to provide eight 

outputs, one for each element of the code. 
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FIGURE 2.14 Three-to-eight-line decoder 

Table 2.5 Truth Table of a Three-to-Eight-Line Decoder 

 

The operation of the decoder may be clarified by the truth table listed in Table 2.5 . For each 

possible input combination, there are seven outputs that are equal to 0 and only one that is equal 

to 1. 

 The binary number now existing in the input lines is represented by the output whose value is 1, 

which is the minterm equivalent. NAND gates are used in the construction of some decoders. It 

is more cost-effective to manufacture the decoder minimum terms in their complemented form 

since a NAND gate generates the AND operation with an inverted output.  

Furthermore, decoders include one or more enable inputs to control the circuit operation. A 

two-to-four-line decoder with an enable input constructed with NAND gates is shown in Fig. 

2.15 .  

�​ The circuit operates with complemented outputs and a complement enable input.  
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�​ The decoder is enabled when E is equal to 0 (i.e., active-low enable). As indicated by the 

truth table, only one output can be equal to 0 at any given time; all other outputs are 

equal to 1. 

�​ The output whose value is equal to 0 represents the minterm selected by inputs A and B .  

�​ The circuit is disabled when E is equal to 1, regardless of the values of the other two 

inputs.  

�​ When the circuit is disabled, none of the outputs are equal to 0 and none of the minterms 

are selected. In general, a decoder may operate with complemented or uncomplemented 

outputs. The enable input may be activated with a 0 or with a 1 signal.  

�​ Some decoders have two or more enable inputs that must satisfy a given logic condition 

in order to enable the circuit 

 
FIGURE 2.15 Two-to-four-line decoder with enable input 

A decoder with enable input can function as a demultiplexer— a circuit that receives information 

from a single line and directs it to one of 2n possible output lines. The selection of a specific 

output is controlled by the bit combination of n selection lines. 

The decoder of Fig. 2.15 can function as a one-to-four-line demultiplexer when E is taken as a 

data input line and A and B are taken as the selection inputs. The single input variable E has a 

path to all four outputs, but the input information is directed to only one of the output lines, as 

specified by the binary combination of the two selection lines A and B. This feature can be 

verified from the truth table of the circuit. For example, if the selection lines AB = 10, output D2 

will be the same as the input value E, while all other outputs are maintained at 1. Because 

decoder and demultiplexer operations are obtained from the same circuit, a decoder with an 

enable input is referred to as a decoder – demultiplexer. 

Decoders with enable inputs can be connected together to form a larger decoder circuit. Figure 

2.16 shows two 3-to-8-line decoders with enable inputs connected to form a 4-to-16-line 

decoder. When w=0, the top decoder is enabled and the other is disabled. The bottom decoder 

outputs are all 0’s, and the top eight outputs generate minterms 0000 to 0111. When w=1, the 
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enable conditions are reversed: The bottom decoder outputs generate minterms 1000 to 1111, 

while the outputs of the top decoder are all 0’s. This example demonstrates the usefulness of 

enable inputs in decoders and other combinational logic components. In general, enable inputs 

are a convenient feature for interconnecting two or more standard components for the purpose of 

combining them into a similar function with more inputs and outputs. 

 
FIGURE 2.16 4x16 decoder constructed with two 3x8 decoders 

Combinational Logic Implementation 

A decoder provides the 2n minterms of n input variables. Each asserted output of the decoder is 

associated with a unique pattern of input bits. Since any Boolean function can be expressed in 

sum-of-minterms form, a decoder that generates the minterms of the function, together with an 

external OR gate that forms their logical sum, provides a hardware implementation of the 

function. In this way, any combinational circuit with n inputs and m outputs can be implemented 

with an n -to-2n -line decoder and m OR gates. The procedure for implementing a combinational 

circuit by means of a decoder and OR gates requires that the Boolean function for the circuit be 

expressed as a sum of minterms. A decoder is then chosen that generates all the minterms of the 

input variables. The inputs to each OR gate are selected from the decoder outputs according to 

the list of minterms of each function. This procedure will be illustrated by an example that 

implements a full-adder circuit. From the truth table of the full adder (see Table 2.4 ), we obtain 

the functions for the combinational circuit in sum-of-minterms form: 

 

Since there are three inputs and a total of eight minterms, we need a three-to-eight-line decoder. 

The implementation is shown in Fig. 2.17 . The decoder generates the eight minterms for x , y , 

and z . The OR gate for output S forms the logical sum of minterms 1, 2, 4, and 7. The OR gate 

for output C forms the logical sum of minterms 3, 5, 6, and 7. 
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FIGURE 2.17 Implementation of a full adder with a decoder 

A function with a long list of minterms requires an OR gate with a large number of inputs. A 

function having a list of k minterms can be expressed in its complemented form F’ with 2n - k 

minterms. If the number of minterms in the function is greater than 2n/2, then F, can be expressed 

with fewer minterms. 

The output of the NOR gate complements this sum and generates the normal output F . If NAND 

gates are used for the decoder, as in Fig. 2.17, then the external gates must be NAND gates 

instead of OR gates. This is because a two-level NAND gate circuit implements a 

sum-of-minterms function and is equivalent to a two-level AND–OR circuit. 

ENCODERS 

An encoder is a digital circuit that performs the inverse operation of a decoder. An encoder has 

2n (or fewer) input lines and n output lines. The output lines, as an aggregate, generate the binary 

code corresponding to the input value. 

Example of an encoder is the octal-to-binary encoder whose truth table is given in Table 2.6 . It 

has eight inputs (one for each of the octal digits) and three outputs that generate the 

corresponding binary number. It is assumed that only one input has a value of 1 at any given 

time. 

The encoder can be implemented with OR gates whose inputs are determined directly from the 

truth table. Output z is equal to 1 when the input octal digit is 1, 3, 5, or 7. Output y is 1 for octal 

digits 2, 3, 6, or 7, and output x is 1 for digits 4, 5, 6, or 7. These conditions can be expressed by 

the following Boolean output functions: 

 

The encoder can be implemented with three OR gates. 

Table 2.6 Truth Table of an Octal-to-Binary Encoder 
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The encoder defined in Table 2.6 has the limitation that only one input can be active at any given 

time. If two inputs are active simultaneously, the output produces an undefined combination. For 

example, if D3 and D6 are 1 simultaneously, the output of the encoder will be 111 because all 

three outputs are equal to 1. The output 111 does not represent either binary 3 or binary 6. To 

resolve this ambiguity, encoder circuits must establish an input priority to ensure that only one 

input is encoded. If we establish a higher priority for inputs with higher subscript numbers, and 

if both D3 and D6 are 1 at the same time, the output will be 110 because D6 has higher priority 

than D3. Another ambiguity in the octal-to-binary encoder is that an output with all 0’s is 

generated when all the inputs are 0; but this output is the same as when D0 is equal to 1. The 

discrepancy can be resolved by providing one more output to indicate whether at least one input 

is equal to 1. 

Priority Encoder 

A priority encoder is an encoder circuit that includes the priority function. The operation of the 

priority encoder is such that if two or more inputs are equal to 1 at the same time, the input 

having the highest priority will take precedence. 

The truth table of a four-input priority encoder is given in Table 2.7 . In addition to the two 

outputs x and y , the circuit has a third output designated by V ; this is a valid bit indicator that is 

set to 1 when one or more inputs are equal to 1. If all inputs are 0, there is no valid input and V is 

equal to 0. The other two outputs are not inspected when V equals 0 and are specified as 

don’t-care conditions. Note that whereas X ’s in output columns represent don’t-care conditions, 

the X ’s in the input columns are useful for representing a truth table in condensed form. Instead 

of listing all 16 minterms of four variables, the truth table uses an X to represent either 1 or 0. 

For example, X 100 represents the two minterms 0100 and 1100. 

According to Table 2.7 , the higher the subscript number, the higher the priority of the input. 

Input D3 has the highest priority, so, regardless of the values of the other inputs, when this input 

is 1, the output for xy is 11 (binary 3). D2 has the next priority level. The output is 10 if D2 = 1, 

provided that D3 = 0, regardless of the values of the other two lower priority inputs. The output 

for D1 is generated only if higher priority inputs are 0, and so on down the priority levels. 

Table 2.7 Truth Table of a Priority Encoder 
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FIGURE 2.18 Maps for a priority encoder 

The maps for simplifying outputs x and y are shown in Fig. 2.18 . The minterms for the two 

functions are derived from Table 4.8. Although the table has only five rows, when each X in a 

row is replaced first by 0 and then by 1, we obtain all 16 possible input combinations. For 

example, the fourth row in the table, with inputs XX10, represents the four minterms 0010, 

0110, 1010, and 1110. The simplified Boolean expressions for the priority encoder are obtained 

from the maps. The condition for output V is an OR function of all the input variables. The 

priority encoder is implemented in Fig. 2.19 according to the following Boolean functions: 

 
FIGURE 2.19 Four-input priority encoder 

MULTIPLEXERS 

A multiplexer is a combinational circuit that selects binary information from one of many input 

lines and directs it to a single output line. The selection of a particular input line is controlled by 

a set of selection lines. Normally, there are 2n input lines and n selection lines whose bit 

combinations determine which input is selected. 

A two-to-one-line multiplexer connects one of two 1-bit sources to a common destination, as 

shown in Fig. 2.20. The circuit has two data input lines, one output line, and one selection line S. 

When S = 0, the upper AND gate is enabled and I0 has a path to the output. When S = 1, the 
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lower AND gate is enabled and I1 has a path to the output. The multiplexer acts like an 

electronic switch that selects one of two sources. The block diagram of a multiplexer is 

sometimes depicted by a wedge-shaped symbol, as shown in Fig. 2.20(b). It suggests visually 

how a selected one of multiple data sources is directed into a single destination. The multiplexer 

is often labeled “MUX” in block diagrams. 

 
FIGURE 2.20 Two-to-one-line multiplexer 

A four-to-one-line multiplexer is shown in Fig. 2.21. Each of the four inputs, I0 through I3, is 

applied to one input of an AND gate. Selection lines S1 and S0 are decoded to select a particular 

AND gate. The outputs of the AND gates are applied to a single OR gate that provides the 

one-line output. The function table lists the input that is passed to the output for each 

combination of the binary selection values. To demonstrate the operation of the circuit, consider 

the case when S1S0 = 10. The AND gate associated with input I2 has two of its inputs equal to 1 

and the third input connected to I2. The other three AND gates have at least one input equal to 0, 

which makes their outputs equal to 0. The output of the OR gate is now equal to the value of I2, 

providing a path from the selected input to the output. A multiplexer is also called a data 

selector, since it selects one of many inputs and steers the binary information to the output line. 
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FIGURE 2.21 Four-to-one-line multiplexer 

The AND gates and inverters in the multiplexer resemble a decoder circuit, and indeed, they 

decode the selection input lines. In general, a 2n -to-1-line multiplexer is constructed from an n 

-to-2n decoder by adding 2n input lines to it, one to each AND gate. The outputs of the AND 

gates are applied to a single OR gate. The size of a multiplexer is specified by the number 2n of 

its data input lines and the single output line. The n selection lines are implied from the 2n data 

lines. As in decoders, multiplexers may have an enable input to control the operation of the unit. 

When the enable input is in the inactive state, the outputs are disabled, and when it is in the 

active state, the circuit functions as a normal multiplexer. 

Multiplexer circuits can be combined with common selection inputs to provide multiple-bit 

selection logic. As an illustration, a quadruple 2-to-1-line multiplexer is shown in Fig. 2.22. The 

circuit has four multiplexers, each capable of selecting one of two input lines. Output Y0 can be 

selected to come from either input A0 or input B0. Similarly, output Y1 may have the value of A1 

or B1, and so on. Input selection line S selects one of the lines in each of the four multiplexers. 

The enable input E must be active (i.e., asserted) for normal operation. Although the circuit 

contains four 2-to-1-line multiplexers, we are more likely to view it as a circuit that selects one 

of two 4-bit sets of data lines. As shown in the function table, the unit is enabled when E = 0. 

Then, if S = 0, the four A inputs have a path to the four outputs. If, by contrast, S = 1, the four B 

inputs are applied to the outputs. The outputs have all 0’s when E = 1, regardless of the value of 

S. 
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FIGURE 2.22 Quadruple two-to-one-line multiplexer 

Boolean Function Implementation 

An examination of the logic diagram of a multiplexer reveals that it is essentially a decoder that 

includes the OR gate within the unit. The minterms of a function are generated in a multiplexer 

by the circuit associated with the selection inputs. The individual minterms can be selected by 

the data inputs, thereby providing a method of implementing a Boolean function of n variables 

with a multiplexer that has n selection inputs and 2n data inputs, one for each minterm. 

Implementing a Boolean function of n variables with a multiplexer that has n - 1 selection 

inputs. The first n - 1 variables of the function are connected to the selection inputs of the 

multiplexer. The remaining single variable of the function is used for the data inputs. If the 

single variable is denoted by z , each data input of the multiplexer will be z , z’, 1, or 0. To 

demonstrate this procedure, consider the Boolean function F (x, y, z) = ∑(1, 2, 6, 7) 

This function of three variables can be implemented with a four-to-one-line multiplexer as 

shown in Fig. 2.23 
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FIGURE 2.23 Implementing a Boolean function with a multiplexer 

The two variables x and y are applied to the selection lines in that order; x is connected to the S1 

input and y to the S0 input. The values for the data input lines are determined from the truth table 

of the function. When xy = 00, output F is equal to z because F = 0 when z = 0 and F = 1 when z 

= 1. This requires that variable z be applied to data input 0. The operation of the multiplexer is 

such that when xy = 00, data input 0 has a path to the output, and that makes F equal to z . In a 

similar fashion, we can determine the required input to data lines 1, 2, and 3 from the value of F 

when xy = 01, 10, and 11, respectively. 

The general procedure for implementing any Boolean function of n variables with a multiplexer 

with n - 1 selection inputs and 2n-1 data inputs follows from the previous example. To begin 

with, Boolean function is listed in a truth table. Then first n - 1 variables in the table are applied 

to the selection inputs of the multiplexer. For each combination of the selection variables, we 

evaluate the output as a function of the last variable. This function can be 0, 1, the variable, or 

the complement of the variable. These values are then applied to the data inputs in the proper 

order. As a second example, consider the implementation of the Boolean function  

F (A, B, C, D) = ∑(1, 3, 4, 11, 12, 13, 14, 15) 

This function is implemented with a multiplexer with three selection inputs as shown in Fig. 

2.24 . Note that the first variable A must be connected to selection input S2 so that A , B, and C 

correspond to selection inputs S2, S1, and S0, respectively. 
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FIGURE 2.24 Implementing a four-input function with a multiplexer 

data inputs are determined from the truth table listed in the figure. The corresponding data line 

number is determined from the binary combination of ABC. For example, the table shows that 

when ABC = 101, F = D, so the input variable D is applied to data input 5. The binary constants 

0 and 1 correspond to two fixed signal values. When integrated circuits are used, logic 0 

corresponds to signal ground and logic 1 is equivalent to the power signal, depending on the 

technology. 

Three-State Gates 

A multiplexer can be constructed with three-state gates—digital circuits that exhibit three states. 

Two of the states are signals equivalent to logic 1 and logic 0 as in a conventional gate. The third 

state is a high-impedance state in which 

 (1) the logic behaves like an open circuit, which means that the output appears to be 

disconnected,  

(2) the circuit has no logic significance, and  

(3) the circuit connected to the output of the three-state gate is not affected by the inputs to the 

gate. 

Three-state gates may perform any conventional logic, such as AND or NAND. The graphic 

symbol for a three-state buffer gate is shown in Fig. 2.25 . 

 

FIGURE 2.25 Graphic symbol for a three-state buffer 

It is distinguished from a normal buffer by an input control line entering the bottom of the 

symbol. The buffer has a normal input, an output, and a control input that determines the state of 
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the output. When the control input is equal to 1, the output is enabled and the gate behaves like a 

conventional buffer, with the output equal to the normal input. When the control input is 0, the 

output is disabled and the gate goes to a high-impedance state, regardless of the value in the 

normal input. The high-impedance state of a three-state gate provides a special feature not 

available in other gates. Because of this feature, a large number of three-state gate outputs can be 

connected with wires to form a common line without endangering loading effects. 

The construction of multiplexers with three-state buffers is demonstrated in Fig. 2.26 . Figure 

2.26(a) shows the construction of a two-to-one-line multiplexer with 2 three-state buffers and an 

inverter. The two outputs are connected together to form a single output line. (Note that this type 

of connection cannot be made with gates that do not have three-state outputs.) When the select 

input is 0, the upper buffer is enabled by its control input and the lower buffer is disabled. 

Output Y is then equal to input A . When the select input is 1, the lower buffer is enabled and Y 

is equal to B . The construction of a four-to-one-line multiplexer is shown in Fig. 2.26 (b) . The 

outputs of 4 three-state buffers are connected together to form a single output line. The control 

inputs to the buffers determine which one of the four normal inputs I0 through 

 

FIGURE 2.26 Multiplexers with three-state gates 

I3 will be connected to the output line. No more than one buffer may be in the active state at any 

given time. The connected buffers must be controlled so that only 1 three state buffer has access 

to the output while all other buffers are maintained in a high impedance state. One way to ensure 

that no more than one control input is active at any given time is to use a decoder, as shown in 

the diagram. When the enable input of the decoder is 0, all of its four outputs are 0 and the bus 

line is in a high-impedance state because all four buffers are disabled. When the enable input is 

active, one of the three state buffers will be active, depending on the binary value in the select 
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inputs of the decoder. Careful investigation reveals that this circuit is another way of 

constructing a four-to-one-line multiplexer. 

HDL MODELS OF COMBINATIONAL CIRCUITS 

The logic of a module can be described in any one (or a combination) of the following modeling 

styles:  

• Gate-level modeling using instantiations of predefined and user-defined primitive gates. 

 • Dataflow modeling using continuous assignment statements with the keyword assign.  

• Behavioral modeling using procedural assignment statements with the keyword always. 

Gate-level (structural) modeling describes a circuit by specifying its gates and how they are 

connected with each other.  

Dataflow modeling is used mostly for describing the Boolean equations of combinational logic. 

Behavioral modeling that is used to describe combinational and sequential circuits at a higher 

level of abstraction used to describe combinational and sequential circuits at a higher level of 

abstraction. Combinational logic can be designed with truth tables, Boolean equations, and 

schematics; Verilog has a construct corresponding to each of these “classical” approaches to 

design: user-defined primitives, continuous assignments, and primitives, as shown in Fig. 2.27. 

There is one other modeling style, called switch-level modeling. It is sometimes used in the 

simulation of MOS transistor circuit models, but not in logic synthesis. 

 

FIGURE 2.27 Relationship of Verilog constructs to truth tables, Boolean equations, and 

schematics 

Gate-Level Modeling 

In this type of representation, a circuit is specified by its logic gates and their interconnections. 

Gatelevel modeling provides a textual description of a schematic diagram. The Verilog HDL 

includes 12 basic gates as predefined primitives. Four of these primitive gates are of the 

three-state type. They are all declared with the lowercase keywords and, nand, or, nor, xor, xnor, 

not, and buf . Primitives such as and are n -input primitives. They can have any number of scalar 
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inputs (e.g., a three-input and primitive). The buf and not primitives are n -output primitives. A 

single input can drive multiple output lines distinguished by their identifiers. 

�​ Verilog, a hardware description language, includes a functional description for each type 

of gate. 

�​ Verilog uses a four-valued logic system, including 0, 1, unknown (x), and high 

impedance (z). 

�​ An unknown value (x) is assigned when the logic value of a signal is ambiguous, such as 

in the absence of a reset condition in a flip-flop. 

�​ High-impedance (z) occurs at the output of three-state gates that are not enabled or when 

a wire is left unconnected. 

�​ The four-valued logic truth tables for and, or, xor, and not primitives are provided, where 

x represents ambiguity and z represents high impedance. 

�​ For the and gate, the output is 1 only when both inputs are 1, and it's 0 if any input is 0. If 

either input is x or z, the output is x. 

�​ The or gate's output is 0 if both inputs are 0, 1 if any input is 1, and x otherwise. 

�​ The truth tables for the other four gates are similar but with complemented outputs. 

�​ Verilog, a hardware description language, includes a functional description for each type 

of gate. 

�​ Verilog uses a four-valued logic system, including 0, 1, unknown (x), and high 

impedance (z). 

�​ An unknown value (x) is assigned when the logic value of a signal is ambiguous, such as 

in the absence of a reset condition in a flip-flop. 

�​ High-impedance (z) occurs at the output of three-state gates that are not enabled or when 

a wire is left unconnected. 

�​ The four-valued logic truth tables for and, or, xor, and not primitives are provided, where 

x represents ambiguity and z represents high impedance. Shown in table 2.8. 

Table 2.8 Truth Table for Predefined Primitive Gates 
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�​ For the and gate, the output is 1 only when both inputs are 1, and it's 0 if any input is 0. If 

either input is x or z, the output is x. 

�​ The or gate's output is 0 if both inputs are 0, 1 if any input is 1, and x otherwise. 

�​ The truth tables for the other four gates are similar but with complemented outputs. 

The following Verilog statements specify two vectors:  

output [0: 3] D;  

wire [7: 0] SUM; 

The first statement declares an output vector D with four bits, 0 through 3. The second declares a 

wire vector SUM with eight bits numbered 7 through 0. The individual bits are specified within 

square brackets, so D[2] specifies bit 2 of D . It is also possible to address parts of vectors. For 

example, SUM[2: 0] specifies the three least significant bits of vector SUM . 

HDL Example 2.1 shows the gate-level description of a two-to-four-line decoder. (See Fig. 2.15 

.) This decoder has two data inputs A and B and an enable input E . The four outputs are 

specified with the vector D . The wire declaration is for internal connections. Three not gates 

produce the complement of the inputs, and four nand gates provide the outputs for D . 

Remember that the output is always listed first in the port list of a primitive , followed by the 

inputs. 

Note that the keywords not and nand are written only once and do not have to be repeated for 

each gate, but commas must be inserted at the end of each of the gates in the series, except for 

the last statement, which must be terminated with a semicolon. 

HDL Example 2.1 (Two-to-Four-Line Decoder) 

 

Two or more modules can be combined to build a hierarchical description of a design. There are 

two basic types of design methodologies: top down and bottom up. In a top-down design, the 

top-level block is defined and then the subblocks necessary to build the top-level block are 
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identified. In a bottom-up design, the building blocks are first identified and then combined to 

build the top-level block. 

A bottom-up hierarchical description of a four-bit adder is shown in HDL Example 2.2. The half 

adder is defined by instantiating primitive gates. The next module describes the full adder by 

instantiating and connecting two half adders. The third module describes the four-bit adder by 

instantiating and connecting four full adders. Note that the first character of an identifier cannot 

be a number, but can be an underscore, so the module name _4bitadder is valid. An alternative 

name that is meaningful, but does not require a leading underscore, is adder_4_bit . The 

instantiation is done by using the name of the module that is instantiated together with a new (or 

the same) set of port names. For example, the half adder HA1 inside the full adder module is 

instantiated with ports S1 , C1 , x, and y . This produces a half adder with outputs S1 and C1 and 

inputs x and y. 

HDL Example 2.2 (Ripple-Carry Adder) 
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Note that modules can be instantiated (nested) within other modules, but module declarations 

cannot be nested; that is, a module definition (declaration) cannot be placed within another 

module declaration.  

Three-State Gates 

a three-state gate has a control input that can place the gate into a high-impedance state. The 

high-impedance state is symbolized by z in Verilog. There are four types of three-state gates, as 

shown in Fig. 2.28 . The bufif1 gate behaves like a normal buffer if control = 1. The output goes 

to a high-impedance state z when control = 0. The bufif0 gate behaves in a similar fashion, 

except that the high-impedance state occurs when control = 1. The two notif gates operate in a 

similar manner, except that the output is the complement of the input when the gate is not in a 

high-impedance state. The gates are instantiated with the statement 

gate name 1output,input, control2; 

 

FIGURE 2.28 Three-state gates 

The gate name can be that of any 1 of the 4 three-state gates. In simulation, the output can result 

in 0, 1, x , or z . Two examples of gate instantiation are  

bufif1 (OUT, A, control); 

notif0 (Y, B, enable); 

In the first example, input A is transferred to OUT when control = 1. OUT goes to z when 

control = 0. In the second example, output Y = z when enable = 1 and output Y = B’ when 

enable = 0.  

The outputs of three-state gates can be connected together to form a common output line. 

To identify such a connection, Verilog HDL uses the keyword tri (for tristate) to indicate that the 

output has multiple drivers. As an example, consider the two-to-one line multiplexer with 

three-state gates shown in Fig. 2.29 .  

The HDL description must use a tri data type for the output: 
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The 2 three-state buffers have the same output. In order to show that they have a 

common connection, it is necessary to declare m_out with the keyword tri.  

Keywords wire and tri are examples of a set of data types called nets , which represent 

connections between hardware elements. In simulation, their value is determined by a 

continuous assignment statement or by the device whose output they represent. The word net is 

not a keyword, but represents a class of data types, such as wire , wor, wand, tri, supply1, and 

supply0. The wire declaration is used most frequently. In fact, if an identifier is used, but not 

declared, the language specifies that it will be interpreted (by default) as a wire . The net wor 

models the hardware implementation of the wired-OR configuration (emitter-coupled logic). The 

nets supply1 and supply0 represent power supply and ground, respectively. They are used to 

hardwire an input of a device to either 1 or 0. 

 

FIGURE 2.29 Two-to-one-line multiplexer with three-state buffers 

Dataflow Modeling 

Dataflow modeling of combinational logic uses a number of operators that act on binary 

operands to produce a binary result. Verilog HDL provides about 30 different operators. 

Table 2.9 lists some of these operators, their symbols, and the operation that they perform. 

It is necessary to distinguish between arithmetic and logic operations, so different symbols are 

used for each. The plus symbol (+) indicates the arithmetic operation of addition; the bitwise 

logic AND operation (conjunction) uses the symbol &. There are special symbols for bitwise 

logical OR (disjunction), NOT, and XOR. The equality symbol uses two equals signs (without 

spaces between them) to distinguish it from the equals sign used with the assign statement. The 

bitwise operators operate bit by bit on a pair of vector operands to produce a vector result. The 

concatenation operator provides a mechanism for appending multiple operands. For example, 

two operands with two bits each can be concatenated to form an operand with four bits.  

Table 2.9 Some Verilog HDL Operators 
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​ Dataflow modeling uses continuous assignments and the keyword assign. A continuous 

assignment is a statement that assigns a value to a net. The data type family net is used in Verilog 

HDL to represent a physical connection between circuit elements. A net is declared explicitly by 

a net keyword (e.g., wire ) or by declaring an identifier to be an input port. The logic value 

associated with a net is determined by what the net is connected to. If the net is connected to an 

output of a gate, the net is said to be driven by the gate, and the logic value of the net is 

determined by the logic values of the inputs to the gate and the truth table of the gate. If the 

identifier of a net is the left-hand side of a continuous assignment statement or a procedural 

assignment statement, the value assigned to the net is specified by a Boolean expression that 

uses operands and operators. As an example, assuming that the variables were declared, a 

two-to-one-line multiplexer with scalar data inputs A and B , select input S , and output Y is 

described with the continuous assignment 

 

The relationship between Y , A , B , and S is declared by the keyword assign , followed by the 

target output Y and an equals sign. Following the equals sign is a Boolean expression. In 

hardware terms, this assignment would be equivalent to connecting the output of the OR gate to 

wire Y. 

The next two examples show the dataflow models of the two previous gate-level examples. The 

dataflow description of a two-to-four-line decoder with active-low output enable and inverted 

output is shown in HDL Example 2.3. The circuit is defined with four continuous assignment 

statements using Boolean expressions, one for each output. 

HDL Example 2.3 (Dataflow: Two-to-Four Line Decoder) 
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The dataflow description of the four-bit adder is shown in HDL Example 2.4. The addition logic 

is described by a single statement using the operators of addition and concatenation. The plus 

symbol (+) specifies the binary addition of the four bits of A with the four bits of B and the one 

bit of C _ in . The target output is the concatenation of the output carry C _ out and the four bits 

of Sum . Concatenation of operands is expressed within braces and a comma separating the 

operands. Thus, {C_out, Sum} represents the five-bit result of the addition operation. 

HDL Example 2.4 (Dataflow: Four-Bit Adder) 

 

Dataflow HDL models describe combinational circuits by their function rather than by their gate 

structure. 

To show how dataflow descriptions facilitate digital design, consider the 4-bit magnitude 

comparator described in HDL Example 2.5. The module specifies two 4-bit inputs A and B and 

three outputs. One output (A_lt_B) is logic 1 if A is less than B, a second output (A_gt_B) is 

logic 1 if A is greater than B, and a third output (A_eq_B) is logic 1 if A is equal to B. Note that 

equality (identity) is symbolized with two equals signs (= =) to distinguish the operation from 

that of the assignment operator (=). 

HDL Example 2.5 (Dataflow: Four-Bit Comparator) 
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The next example uses the conditional operator (?: ). This operator takes three operands:  

condition? true-expression : false-expression; 

The condition is evaluated. If the result is logic 1, the true expression is evaluated and used to 

assign a value to the left-hand side of an assignment statement. If the result is logic 0, the false 

expression is evaluated. The two conditions together are equivalent to an if–else condition. HDL 

Example 2.6 describes a two-to-one-line multiplexer using the conditional operator. The 

continuous assignment. 

 
specifies the condition that OUT = A if select = 1, else OUT =B if select =0. 

HDL Example 2.6 (Dataflow: Two-to-One Multiplexer) 

 

Behavioral Modeling 
Behavioral modeling represents digital circuits at a functional and algorithmic level. It is used 

mostly to describe sequential circuits, but can also be used to describe combinational circuits. 

Behavioral descriptions use the keyword always , followed by an optional event control 

expression and a list of procedural assignment statements. The event control expression specifies 

when the statements will execute. The target output of a procedural assignment statement must 

be of the reg data type. Contrary to the wire data type, whereby the target output of an 

assignment may be continuously updated, a reg data type retains its value until a new value is 

assigned. 

HDL Example 2.7 shows the behavioral description of a two-to-one-line multiplexer. Since 

variable m_out is a target output, it must be declared as reg data. The procedural assignment 

statements inside the always block are executed every time there is a change in any of the 

variables listed after the @ symbol. In this case, these variables are the input variables A, B, and 

select. The statements execute if A, B, or select changes value. Note that the keyword or, instead 

of the bitwise logical OR operator “|”, is used between variables. The conditional statement 
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if–else provides a decision based upon the value of the select input. The if statement can be 

written without the equality symbol: 

 
The statement implies that select is checked for logic 1. 

HDL Example 2.7 (Behavioral: Two-to-One Line Multiplexer) 

 
HDL Example 2.8 describes the function of a four-to-one-line multiplexer. The select input is defined as a 

two-bit vector, and output y is declared to have type reg . The always statement, in this example, has a 

sequential block enclosed between the keywords case and endcase. The block is executed whenever any 

of the inputs listed after the @ symbol changes in value. The case statement is a multiway conditional 

branch construct. Whenever in_0, in_1, in_2, in_3 or select change, the case expression ( select ) is 

evaluated and its value compared, from top to bottom, with the values in the list of statements that follow, 

the so-called case items. The statement associated with the first case item that matches the case 

expression is executed. In the absence of a match, no statement is executed. Since select is a two-bit 

number, it can be equal to 00, 01, 10, or 11. The case items have an implied priority because the list is 

evaluated from top to bottom. 

HDL Example 2.8 (Behavioral: Four-to-One Line Multiplexer) 

 
Binary numbers in Verilog are specified and interpreted with the letter b preceded by a prime. The size of 

the number is written first and then its value. 

The case construct has two important variations: casex and casez . The first will treat as don’t-cares any 

bits of the case expression or the case item that have logic value x or z . The casez construct treats as 
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don’t-cares only the logic value z , for the purpose of detecting a match between the case expression and 

a case item. 

​ The list of case items need not be complete. If the list of case items does not include all possible 

bit patterns of the case expression, no match can be detected. Unlisted case items, i.e., bit patterns that are 

not explicitly decoded can be treated by using the default keyword as the last item in the list of case 

items. 

Writing a Simple Test Bench 

A test bench is an HDL program used for describing and applying a stimulus to an HDL model of a 

circuit in order to test it and observe its response during simulation. Test benches can be quite complex 

and lengthy and may take longer to develop than the design that is tested. The results of a test are only as 

good as the test bench that is used to test a circuit. Care must be taken to write stimuli that will test a 

circuit thoroughly, exercising all of the operating features that are specified. 

In addition to employing the always statement, test benches use the initial statement to provide a stimulus 

to the circuit being tested. We use the term “always statement” loosely. Actually, always is a Verilog 

language construct specifying how the associated statement is to execute #.  

For example, consider the initial block 

 
The block is enclosed between the keywords begin and end . At time 0, A and B are set to 0. Ten time 

units later, A is changed to 1. Twenty time units after that (at t =30 ), A is changed to 0 and B to 1. Inputs 

specified by a three-bit truth table can be generated with the initial block: 

 
When the simulator runs, the three-bit vector D is initialized to 000 at time =0. The keyword repeat 

specifies a looping statement: D is incremented by 1 seven times, once every 10-time units. The result is a 

sequence of binary numbers from 000 to 111. A stimulus module has the following form: 

 

�​ Test Module Structure: A test module in Verilog is written like any other module but 

usually doesn't have any inputs or outputs of its own. 
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�​ Stimulus Module: In Verilog, signals that are applied as inputs to the design module for 

simulation are declared in the stimulus module using local reg data types. 

�​ Displaying Outputs: The outputs of the design module that need to be observed and 

tested are declared in the stimulus module as local wire data types. 

�​ Instantiating the Design Module: To perform testing, the module under test (the design 

module) is instantiated within the stimulus module using the local identifiers defined for 

inputs and outputs. 

�​ Identifier Association: The Verilog simulator associates the actual local identifiers in the 

test bench (e.g., t_A, t_B, t_C) with the formal identifiers of the design module's ports 

(e.g., A, B, C) based on their positions in the port list. 

�​ Flexible Port Connection: Verilog provides a more flexible name association mechanism 

for connecting ports in larger circuits, allowing you to explicitly connect ports by name 

rather than relying on position. 

�​ Simulation Results: The response to the stimulus generated by initial and always blocks 

in the test module appears as text output in standard output. Simulators with graphical 

capabilities can also display the results as waveforms (timing diagrams). 

�​ Numerical Outputs: Verilog provides system tasks for displaying numerical outputs. 

These tasks are recognized by keywords that start with the symbol $. 

$display —display a one-time value of variables or strings with an end-of-line return, 

$write —same as $display , but without going to next line,  

$monitor —display variables whenever a value changes during a simulation run, 

 $time —display the simulation time,  

$finish —terminate the simulation. 

The syntax for $display, $write, and $monitor is of the form  

Task-name (format specification, argumentlist); 

The format specification uses the symbol % to specify the radix of the numbers that are displayed and 

may have a string enclosed in quotes (&). The base may be binary, decimal, hexadecimal, or octal, 

identified with the symbols %b, %d, %h, and %o, respectively (%B, %D, %H, and %O are valid too).  

For example, the statement 

$display ("%d %b %b", C, A, B); 

specifies the display of C in decimal and of A and B in binary. Note that there are no commas in the 

format specification, that the format specification and argument list are separated by a comma, and that 

the argument list has commas between the variables. An example that specifies a string enclosed in 

quotes may look like the statement 

 ​ ​ $display ("time= %0d A=%b", $time, A, B);  

and will produce the display  

time=3 A =10 B=1 
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where (time=), (A=), and (B =) are part of the string to be displayed. The format specifiers %0d, %b, and 

%b specify the base for $time , A , and B , respectively. In displaying time values, it is better to use the 

format %0d instead of %d. This provides a display of the significant digits without the leading spaces that 

%d will include. (%d will display about 10 leading spaces because time is calculated as a 32-bit number.) 

An example of a stimulus module is shown in HDL Example 2.9. The circuit to be tested is the 

two-to-one-line multiplexer described in Example 2.6. The module t_mux_2x1_df has no ports. The 

inputs for the mux are declared with a reg keyword and the outputs with a wire keyword. The mux is 

instantiated with the local variables. The initial block specifies a sequence of binary values to be applied 

during the simulation. The output response is checked with the $monitor system task. Every time a 

variable in its argument changes value, the simulator displays the inputs, output, and time. The result of 

the simulation is listed under the simulation log in the example. It shows that m_out =A when select = 1 

and m_out = B when select ! 0 verifying the operation of the multiplexer. 

 

HDL Example 2.9 (Test Bench) 

 



SM
 C

EC

Digital Design and Computer Organization(BCS302) 

 
 
Logic simulation is a fast and accurate method of verifying that a model of a combinational circuit is 

correct. There are two types of verification: functional and timing. This can be done by observing the 

waveforms at the outputs of the gates when they respond to a given input. An example HDL Example 2.3 

A $monitor system task displays the output caused by the given stimulus. A commented alternative 

statement having a $display task would create a header that could be used with a $monitor statement to 

eliminate the repetition of names on each line of output. 

The gate-level description of this circuit is shown in HDL Example 4.10. The circuit has three inputs, two 

outputs, and nine gates. The description of the circuit follows the interconnections between the gates 

according to the schematic diagram of Fig. 2.2 . The stimulus for the circuit is listed in the second 

module. The inputs for simulating the circuit are specified with a three-bit reg vector D . D[2] is 

equivalent to input A , D[1] to input B , and D[0] to input C . The outputs of the circuit F1 and F2 are 

declared as wire. The complement of F2 is named F2_b to illustrate a common industry practice for 

designating the complement of a signal (instead of appending _not ).  

The repeat loop provides the seven binary numbers after 000 for the truth table. The result of the 

simulation generates the output truth table displayed with the example. The truth table listed shows that 

the circuit is a full adder. 

HDL Example 2.10 (Gate-Level Circuit) 
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Synchronous Sequential Logic 
A block diagram of a sequential circuit is shown in Fig 2.30. It consists of a combinational circuit to 

which storage elements are connected to form a feedback path. The storage elements are devices capable 

of storing binary information. The binary information stored in these elements at any given time defines 

the state of the sequential circuit at that time. The sequential circuit receives binary information from 

external inputs that, together with the present state of the storage elements, determine the binary value of 

the outputs. These external inputs also determine the condition for changing the state in the storage 

elements. The block diagram demonstrates that the outputs in a sequential circuit are a function not only 

of the inputs, but also of the present state of the storage elements. The next state of the storage elements is 

also a function of external inputs and the present state. Thus, a sequential circuit is specified by a time 

sequence of inputs, outputs, and internal states . In contrast, the outputs of combinational logic depend 

only on the present values of the inputs. 

 

FIGURE 2.30 Block diagram of sequential circuit 

Sequential Circuits Classification: 

�​ There are two main types of sequential circuits. 

�​ Classification is based on the timing of their signals. 

Synchronous Sequential Circuits: 

�​ Behavior is defined at discrete instants of time. 

�​ Behavior determined by knowledge of signals at specific time points. 

Asynchronous Sequential Circuits: 

�​ Behavior depends on input signals at any instant of time. 

�​ Behavior influenced by the order in which inputs change. 

Storage Elements in Asynchronous Sequential Circuits: 

�​ Commonly use time-delay devices. 

�​ Storage capability varies with signal propagation time through the device. 

Internal Propagation Delay: 

�​ In practice, logic gate propagation delays are often sufficient for required delays. 

�​ Eliminates the need for separate delay units. 

Gate-Type Asynchronous Systems: 

�​ Storage elements are logic gates. 

�​ Propagation delay of these gates provides the necessary storage. 

Asynchronous Sequential Circuit Nature: 
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�​ Can be regarded as a combinational circuit with feedback. 

�​ Feedback among logic gates is a characteristic feature. 

Potential for Instability: 

�​ Due to feedback, asynchronous sequential circuits may become unstable at times. 

�​ Stability must be carefully managed in the design. 

 

 

�​ Synchronous sequential circuits rely on discrete clock pulses for synchronization, 

ensuring that storage elements are affected only at specific time instants. 

�​ A clock generator generates periodic clock pulses denoted as "clock" or "clk," regulating 

when changes occur within the circuit. 

�​ The clock pulses dictate when computational operations happen, while external inputs 

determine what changes affect storage elements and outputs. 

�​ For instance, in binary addition, the sum is computed from input values and stored when 

a clock pulse arrives. 

�​ These circuits are known as clocked sequential circuits and are prevalent in practical 

applications due to their stability and well-defined timing. 

�​ Synchronous circuits break down their timing into separate, independent steps, 

simplifying their design and analysis. 

�​ Flip-flops are storage elements in clocked sequential circuits. 

�​ They store one binary bit of information each. 

�​ In a stable state, flip-flop output is 0 or 1. 

�​ Sequential circuits use multiple flip-flops. 

�​ Flip-flops collectively store multi-bit data. 

�​ Clock signals control flip-flop transitions. 

�​ Each flip-flop has a unique identifier in a circuit. 

�​ Flip-flops enable memory and state retention. 

�​ They facilitate data processing and logic operations. 

�​ Key components in digital circuit design and automation. 

The block diagram of a synchronous clocked sequential circuit is shown in Fig. 2.31 . 
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FIGURE 2.31 Synchronous clocked sequential circuit 

�​ Combinational Logic Outputs: Outputs in digital circuits are determined by 

combinational logic functions of inputs and flip-flop values. 

�​ Flip-Flop State Determination: The value stored in a flip-flop during a clock pulse is 

influenced by inputs and current flip-flop values. 

�​ Clock Pulse Update: Flip-flop values are updated during a clock pulse. 

�​ Timing Criticality: Combinational logic speed is crucial to meet clock pulse intervals, 

ensuring correct operation. 

�​ Propagation Delays: Delays in signal propagation impact the minimum allowable clock 

pulse interval. 

�​ Clock Pulse Trigger: Flip-flop state changes occur only during clock pulse transitions 

(e.g., from 0 to 1). 

�​ Feedback Loop Disconnection: During inactive clock pulses, the feedback loop between 

flip-flop values and inputs is disrupted. 

�​ Deterministic State Transition: Transitions between states occur at predetermined 

intervals defined by clock pulses. 

STORAGE ELEMENTS : LATCHES 
�​ A storage element in a digital circuit can maintain a binary state indefinitely, until 

directed by an input signal to switch states.  

�​ The major differences among various types of storage elements are in the number of 

inputs they possess and in the manner in which the inputs affect the binary state.  

�​ Storage elements that operate with signal levels are referred to as latches; those 

controlled by a clock transition are flip-flops.  

�​ Latches are said to be level sensitive devices; flip-flops are edge-sensitive devices. 

�​ The two types of storage elements are related because latches are the basic circuits from 

which all flip-flops are constructed. Although latches are useful for storing binary 
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information and for the design of asynchronous sequential circuits, they are not practical 

for use as storage elements in synchronous sequential circuits. 

SR Latch 

�​ The SR latch is a circuit with two cross-coupled NOR gates or two cross-coupled NAND gates, 

and two inputs labelled S for set and R for reset. 

�​ The SR latch constructed with two cross-coupled NOR gates is shown in Fig. 2.32. The latch has 

two useful states. When output Q = 1 and Q’ = 0, the latch is said to be in the set state. When Q = 

0 and Q’ = 1, it is in the reset state.  

�​ Outputs Q and Q’ are normally the complement of each other. However, when both inputs are 

equal to 1 at the same time, a condition in which both outputs are equal to 0 (rather than be 

mutually complementary occurs. If both inputs are then switched to 0 simultaneously, the device 

will enter an unpredictable or undefined state or a metastable state. 

�​ Under normal conditions, both inputs of the latch remain at 0 unless the state has to be changed. 

The application of a momentary 1 to the S input causes the latch to go to the set state.  

�​ The S input must go back to 0 before any other changes take place, in order to avoid the 

occurrence of an undefined next state that results from the forbidden input condition. As shown 

in the function table of Fig. 2.32 (b) , two input conditions cause the circuit to be in the set state. 

 
FIGURE 2.32 SR latch with NOR gates 

�​ The first condition (S = 1,R = 0) is the action that must be taken by input S to bring the circuit to 

the set state. R 

�​ emoving the active input from S leaves the circuit in the same state.  

�​ After both inputs return to 0, it is then possible to shift to the reset state by momentary applying a 

1 to the R input.  

�​ The 1 can then be removed from R, where upon the circuit remains in the reset state. Thus, when 

both inputs S and R are equal to 0, the latch can be in either the set or the reset state, depending 

on which input was most recently a 1. 

�​ If a 1 is applied to both the S and R inputs of the latch, both outputs go to 0. This action produces 

an undefined next state, because the state that results from the input transitions depends on the 

order in which they return to 0. 

�​ It also violates the requirement that outputs be the complement of each other. In normal 

operation, this condition is avoided by making sure that 1’s is not applied to both inputs 

simultaneously. 
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The SR latch with two cross-coupled NAND gates is shown in Fig. 2.32 . It operates with both inputs 

normally at 1, unless the state of the latch has to be changed. The application of 0 to the S input causes 

output Q to go to 1, putting the latch in the set state. When the S input goes back to 1, the circuit remains 

in the set state. After both inputs go back to 1, we are allowed to change the state of the latch by placing a 

0 in the R input. This action causes the circuit to go to the reset state and stay there even after both inputs 

return to 1. The condition that is forbidden for the NAND latch is both inputs being equal to 0 at the same 

time, an input combination that should be avoided. 

 
FIGURE 2.32 SR latch with NAND gates 

In comparing the NAND with the NOR latch, note that the input signals for the NAND require the 

complement of those values used for the NOR latch. Because the NAND latch requires a 0 signal to 

change its state, it is sometimes referred to as an S’R’ latch. 

The operation of the basic SR latch can be modified by providing an additional input signal that 

determines (controls) when the state of the latch can be changed by determining whether S and R (or S" 

and R") can affect the circuit. An SR latch with a control input is shown in Fig. 2.33 . It consists of the 

basic SR latch and two additional NAND gates. The control input En acts as an enable signal for the other 

two inputs. The outputs of the NAND gates stay at the logic-1 level as long as the enable signal 

remains at 0. This is the quiescent condition for the SR latch. When the enable input goes to 1, 

information from the S or R input is allowed to affect the latch. The set state is reached with S = 1, R = 0, 

and En = 1. 

To change to the reset state, the inputs must be S = 0, R = 1, and En = 1. In either case, when En returns 

to 0, the circuit remains in its current state. The control input disables the circuit by applying 0 to En, so 

that the state of the output does not change regardless of the values of S and R . Moreover, when En = 1 

and both the S and R inputs are equal to 0, the state of the circuit does not change. These conditions are 

listed in the function table accompanying the diagram. 

 
FIGURE 2.33 SR latch with control inpu 

D Latch (Transparent Latch) 
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One way to eliminate the undesirable condition of the indeterminate state in the SR latch is to ensure that 

inputs S and R are never equal to 1 at the same time. This is done in the D latch, shown in Fig. 2.34 . This 

latch has only two inputs: D (data) and En (enable). The D input goes directly to the S input, and its 

complement is applied to the R input. As long as the enable input is at 0, the cross-coupled SR latch has 

both inputs at the 1 level and the circuit cannot change state regardless of the value of D . The D input is 

sampled when En = 1. If D = 1, the Q output goes to 1, placing the circuit in the set state. If D = 0, output 

Q goes to 0, placing the circuit in the reset state. 

 
FIGURE 2.34 D latch 

�​ D Latch Purpose: The D latch is named for its ability to store data internally, making it 

useful as a temporary binary information storage device between a unit and its external 

environment. 

 

�​ Data Transfer: Binary data present at the D (data) input of the D latch is copied to the Q 

(output) when the enable input is activated (asserted). 

�​ Transparency: The D latch operates as a transparent latch while the enable input is active, 

meaning it mirrors changes in the data input, allowing a direct path from input D to the 

output Q. 

�​ Data Retention: When the enable input is de-asserted, the D latch holds and stores the 

binary information that was present at the data input when the transition occurred. 

�​ Enable Input Polarity: Depending on the circuit design, an inverter can be added to the 

enable input, making it either active low (0) or active high (1) for external control. 

The graphic symbols for the various latches are shown in Fig. 2.35 . A latch is designated by a 

rectangular block with inputs on the left and outputs on the right. One output designates the normal 

output, and the other (with the bubble designation) designates the complement output. The graphic 

symbol for the SR latch has inputs S and R indicated inside the block. 
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FIGURE 2.35 Graphic symbols for latches 

STORAGE  ELEMENTS : FLIP - FLOPS 
The state of a latch or flip-flop is switched by a change in the control input. This momentary change is 

called a trigger, and the transition it causes is said to trigger the flip-flop. The D latch with pulses in its 

control input is essentially a flip-flop that is triggered every time the pulse goes to the logic-1 level. As 

long as the pulse input remains at this level, any changes in the data input will change the output and the 

state of the latch. Consequently, the inputs of the flip-flops are derived in part from the outputs of the 

same and other flip-flops. When latches are used for the storage elements, a serious difficulty arises. The 

state transitions of the latches start as soon as the clock pulse changes to the logic-1 level. The new state 

of a latch appears at the output while the pulse is still active. This output is connected to the inputs of the 

latches through the combinational circuit. If the inputs applied to the latches change while the clock pulse 

is still at the logic-1 level, the latches will respond to new values and a new output state may occur. The 

result is an unpredictable situation, since the state of the latches may keep changing for as long as the 

clock pulse stays at the active level.  

Flip-flop Functionality: Flip-flops are essential components in sequential circuits, designed to 

work in synchronization with a common clock signal. Unlike latches, flip-flops are triggered 

only during specific signal transitions, ensuring reliable operation. 

Latch Behavior: Latches respond to changes in their enable input, allowing output changes 

when the D input changes while the clock pulse is at logic 1, resulting in sensitivity to level 

changes. 

 

Positive and Negative Transitions: Flip-flops distinguish between two clock signal transitions: 

the positive edge (0 to 1) and the negative edge (1 to 0). These transitions are crucial for proper 

operation. As shown in figure 2.36 

Feedback Elimination: To transform a latch into a flip-flop, the feedback path inherent in 

latches must be eliminated to prevent output interference while input changes occur. 

Dual-Latch Configuration: One approach to creating a flip-flop is using two latches in a 

special configuration. This setup isolates the flip-flop's output and safeguards it from changes 

during input transitions. 

Transition-Triggered Flip-Flop: Another method is to design a flip-flop that triggers 

exclusively during signal transitions (0 to 1 or 1 to 0) of the clock signal. It remains disabled 

during the remainder of the clock pulse for reliable operation in sequential circuits. 

Synchronization with Clock: Flip-flops are synchronized with a clock signal to ensure changes 

occur precisely during clock transitions, enhancing the predictability and reliability of sequential 

circuit operation. 
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FIGURE 2.36 Clock response in latch and flip-flop 

Edge-Triggered D Flip-Flop 
Master and Slave Latches: The D flip-flop consists of two D latches: a master and a slave 

latch. These latches work together to store and transfer data. 

Clock-Triggered Operation: The D flip-flop operates based on a clock signal (Clk). Changes in 

the output Q occur only at the negative edge (falling edge) of the clock signal. This means that 

data is sampled and transferred precisely at the moment when the clock transitions from 1 to 0. 

Inverter and Clock Control: An inverter is used to control the enable inputs of the master and 

slave latches. When the clock signal is 0, the inverter outputs 1, enabling the slave latch and 

disabling the master latch. This means that the flip-flop is in a "latch" state when the clock is 

low, and no changes can occur in Q. As shown in the figure 2.37. 

Data Transfer on Clock Transition: When the clock signal transitions from 0 to 1, the D input 

data is transferred to the master latch. However, the slave latch remains disabled because its 

enable input is 0 when the clock is high. Therefore, changes in the D input do not affect the 

flip-flop's output during this time. 

 
FIGURE 2.37 Master–slave D flip-flop 

Output Update on Falling Clock Edge: The key operation occurs when the clock signal 

transitions from 1 to 0 (falling edge). At this moment, the master latch is disabled and isolated 

from the D input, while the slave latch is enabled. The value stored in the master latch (Y) is 

then transferred to the flip-flop's output Q. Therefore, any change in the output of the flip-flop 

can only occur during this specific clock transition. 

The behavior of the master–slave flip-flop just described dictates that  
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(1) the output may change only once,  

(2) a change in the output is triggered by the negative edge of the clock, and  

(3) the change may occur only during the clock’s negative level. The value that is produced at the output 

of the flip-flop is the value that was stored in the master stage immediately before the negative edge 

occurred . 

 It is also possible to design the circuit so that the flip-flop output changes on the positive edge of the 

clock. This happens in a flip-flop that has an additional inverter between the Clk terminal and the junction 

between the other inverter and input En of the master latch. Such a flip-flop is triggered with a negative 

pulse, so that the negative edge of the clock affects the master and the positive edge affects the slave and 

the output terminal. 

Another construction of an edge-triggered D flip-flop uses three SR latches as shown in Fig. 2.38 . Two 

latches respond to the external D (data) and Clk (clock) inputs. The third latch provides the outputs for 

the flip-flop. The S and R inputs of the output latch are maintained at the logic-1 level when Clk = 0. This 

causes the output to remain in its present state. Input D may be equal to 0 or 1. If D = 0 when Clk 

becomes 1, R changes to 0. This causes the flip-flop to go to the reset state, making Q = 0. If there is a 

change in the D input while Clk = 1, terminal R remains at 0 because Q is 0. Thus, the flip-flop is locked 

out and is unresponsive to further changes in the input. When the clock returns to 0, R goes to 1, placing 

the output latch in the quiescent condition without changing the output. Similarly, if D = 1 when Clk goes 

from 0 to 1, S changes to 0. This causes the circuit to go to the set state, making Q = 1. Any change in D 

while Clk = 1 does not affect the output. 

 
FIGURE 2.38 D-type positive-edge-triggered flip-flop 

In sum, when the input clock in the positive-edge-triggered flip-flop makes a positive transition, the value 

of D is transferred to Q . A negative transition of the clock (i.e., from 1 to 0) does not affect the output, 

nor is the output affected by changes in D when Clk is in the steady logic-1 level or the logic-0 level. 

Hence, this type of flip-flop responds to the transition from 0 to 1 and nothing else. 

The timing of the response of a flip-flop to input data and to the clock must be taken into consideration 

when one is using edge-triggered flip-flops. There is a minimum time called the setup time during which 
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the D input must be maintained at a constant value prior to the occurrence of the clock transition. 

Similarly, there is a minimum time called the hold time during which the D input must not change after 

the application of the positive transition of the clock. The propagation delay time of the flip-flop is 

defined as the interval between the trigger edge and the stabilization of the output to a new state.  

The graphic symbol for the edge-triggered D flip-flop is shown in Fig. 2.39 . It is similar to the symbol 

used for the D latch, except for the arrowhead-like symbol in front of the letter Clk, designating a 

dynamic input. The dynamic indicator (>) denotes the fact that the flip-flop responds to the edge 

transition of the clock. A bubble outside the block adjacent to the dynamic indicator designates a negative 

edge for triggering the circuit. 

 

FIGURE 2.39 Graphic symbol for edge-triggered D flip-flop 

Other Flip-Flops 

Other types of flip-flops can be constructed by using the D flip-flop and external logic. Two flip-flops 

less widely used in the design of digital systems are the JK and T flip-flops. 

There are three operations that can be performed with a flip-flop: Set it to 1, reset it to 0, or complement 

its output. With only a single input, the D flip-flop can set or reset the output, depending on the value of 

the D input immediately before the clock transition. Synchronized by a clock signal, the JK flip-flop has 

two inputs and performs all three operations. The circuit diagram of a JK flip-flop constructed with a D 

flip-flop and gates is shown in Fig. 2.40 (a). The J input sets the flip-flop to 1, the K input resets it to 0, 

and when both inputs are enabled, the output is complemented. This can be verified by investigating the 

circuit applied to the D input: 

 

When J = 1 and K = 0, D = Q’ + Q = 1, so the next clock edge sets the output to 1. When J = 0 and K = 1, 

D = 0, so the next clock edge resets the output to 0. When both J = K = 1 and D = Q’, the next clock edge 

complements the output. When both J = K = 0 and D = Q, the clock edge leaves the output unchanged. 

The graphic symbol for the JK flip-flop is shown in Fig. 2.40 (b). It is similar to the graphic symbol of the 

D flip-flop, except that now the inputs are marked J and K . 
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FIGURE 2.40 JK flip-flop 

The T (toggle) flip-flop is a complementing flip-flop and can be obtained from a JK flip-flop when inputs 

J and K are tied together. This is shown in Fig. 2.41 (a).  

 

FIGURE 2.41 T flip-flop 

When T = 0 (J = K = 0), a clock edge does not change the output. When T = 1 (J = K = 1), a clock edge 

complements the output. The complementing flip-flop is useful for designing binary counters. The T 

flip-flop can be constructed with a D flip-flop and an exclusive-OR gate as shown in Fig. 2.41 (b). The 

expression for the D input is 

 

When T = 0, D = Q and there is no change in the output. When T = 1, D = Q" and the output 

complements. The graphic symbol for this flip-flop has a T symbol in the input. 

Characteristic Tables 

 A characteristic table defines the logical properties of a flip-flop by describing its operation in tabular 

form. The characteristic tables of three types of flip-flops are presented in Table 2.10 . They define the 

next state . 

Table 2.10 Flip-Flop Characteristic Tables 
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as a function of the inputs and the present state. Q ( t ) refers to the present state (i.e., the state present 

prior to the application of a clock edge). Q(t + 1) is the next state one clock period later. Note that the 

clock edge input is not included in the characteristic table, but is implied to occur between times t and t + 

1. Thus, Q(t) denotes the state of the flip-flop immediately before the clock edge, and Q(t + 1) denotes the 

state that results from the clock transition.  

The characteristic table for the JK flip-flop shows that the next state is equal to the present state when 

inputs J and K are both equal to 0. This condition can be expressed as Q(t + 1) = Q(t), indicating that the 

clock produces no change of state. When K = 1 and J = 0, the clock resets the flip-flop and Q(t + 1) = 0. 

With J = 1 and K = 0, the flip-flop sets and Q(t + 1) = 1. When both J and K are equal to 1, the next state 

changes to the complement of the present state, a transition that can be expressed as Q(t + 1) = Q’(t). 

The next state of a D flip-flop is dependent only on the D input and is independent of the present state. 

This can be expressed as Q(t + 1) = D. It means that the next-state value is equal to the value of D . Note 

that the D flip-flop does not have a “no-change” condition. 

The characteristic table of the T flip-flop has only two conditions: When T = 0, the clock edge does not 

change the state; when T = 1, the clock edge complements the state of the flip-flop. 

The logical properties of a flip-flop, as described in the characteristic table, can be expressed 

algebraically with a characteristic equation. For the D flip-flop, we have the characteristic equation 

Q(t + 1) = D 

which states that the next state of the output will be equal to the value of input D in the present state. The 

characteristic equation for the JK flip-flop can be derived from the characteristic table or from the circuit 

of Fig. 2.40 . We obtain 

 

where Q is the value of the flip-flop output prior to the application of a clock edge. The characteristic 

equation for the T flip-flop is obtained from the circuit of Fig. 2.41 : 

 

When T = 0, D = Q and there is no change in the output. When T = 1, D = Q’ and the output 

complements. The graphic symbol for this flip-flop has a T symbol in the input. 

Direct Inputs 



SM
 C

EC

Digital Design and Computer Organization(BCS302) 

 
Some flip-flops have asynchronous inputs that are used to force the flip-flop to a particular state 

independently of the clock. The input that sets the flip-flop to 1 is called preset or direct set . The input 

that clears the flip-flop to 0 is called clear or direct reset . When power is turned on in a digital system, 

the state of the flip-flops is unknown. The direct inputs are useful for bringing all flip-flops in the system 

to a known starting state prior to the clocked operation. 

A positive-edge-triggered D flip-flop with active-low asynchronous reset is shown in Fig. 2.42. When the 

reset input is 0, it forces output Q’ to stay at 1, which, in turn, clears output Q to 0, thus resetting the 

flip-flop. Two other connections from the reset input ensure that the S input of the third SR latch stays at 

logic 1 while the reset input is at 0, regardless of the values of D and Clk . 

The graphic symbol for the D flip-flop with a direct reset has an additional input marked with R . The 

bubble along the input indicates that the reset is active at the logic-0 level. Flip-flops with a direct set use 

the symbol S for the asynchronous set input.  

The function table specifies the operation of the circuit. When R = 0, the output is reset to 0. This state is 

independent of the values of D or Clk . Normal clock operation can proceed only after the reset input 

goes to logic 1. The clock at Clk is shown with an upward arrow to indicate that the flip-flop triggers on 

the positive edge of the clock. The value in D is transferred to Q with every positive-edge clock signal, 

provided that R = 1. 

 
FIGURE 2.42 D flip-flop with asynchronous reset 


