
Code Coverage - Areas to improve
Please read Bazel Code of Conduct before commenting.

Authors: cmita@google.com​
Status: Draft | In review | Approved | Rejected | In progress | Implemented​
Reviewers: ​
Created: 2023-07-28​
Updated: 2023-07-28
Discussion thread: https://github.com/bazelbuild/bazel/discussions/19144

Overview
This document lists the current deficiencies and potential areas for improvement with
respect to Bazel's code coverage support. The goal is to better aid rule authors in
implementing coverage support in rules.

Problems

Documentation deficiencies
The Bazel docs do not adequately explain:

●​ What is currently supported for combined coverage reports.
●​ What is expected of rule implementations that want to support coverage collection.
●​ How rules can integrate with Bazel's coverage collection.

The principal reason for the lacking documentation is the lack of support actually available.
Despite this, some rules have been able to implement coverage support that integrates with
Bazel's combined reporting, although with some limitations.

API deficiencies
Bazel provides the following explicit APIs for rules to implement coverage collection:

●​ A means to determine if a build is being run in coverage mode via
ctx.configuration.coverage_enabled.

●​ Means to determine if a target (the current target or any dependency) should be
instrumented via ctx.coverage_instrumented.

https://www.contributor-covenant.org/version/1/4/code-of-conduct
https://github.com/bazelbuild/bazel/discussions/19144

●​ A way of indicating which source files will be instrumented (and, as of recently, what
other files are relevant for coverage collection) in InstrumentedFilesInfo.

Additionally, rules can define the following attributes which affect the behavior of coverage
collection, but this is not a supported API.

●​ _lcov_merger attribute - test rules can specify this attribute and provide a tool that
will be invoked after test execution. It collates whatever supported coverage files
(LCOV or gcov outputs) are found for that test run into a single LCOV file.

●​ _collect_cc_coverage - can be used to provide a script that will also be invoked
after test coverage, but before the _lcov_merger tool. The actual purpose of this is
for C++ rules to process the toolchain's coverage output before further processing
with lcov tool.

In addition to being undocumented and unsupported, they only affect the behavior of test
rules. This leaves the issue of cross-language support (where a test binary in language X
depends on a library in language Y); the only way this can currently be supported is either:

●​ x_test handles coverage for y_library
●​ y_library (or the Y rules in general) handles its own coverage data, likely at the

boundary between X and Y (feasible for languages with their own runtimes, but
tricky if they produce libraries or archives that can be linked by other language
toolchains (i.e. C/C++)).

Additionally, the semantics of InstrumentedFilesInfo is more complicated for rule
implementations than it arguably should be. Rules must specify which dependencies should
have their InstrumentedFilesInfo passed along (by specifying the attribute name rather
than targets within). Failure to include all dependencies will "break the chain" (coverage
won't be reported for anything along the missing edge). This motivates the existence of
code to automatically forward the provider from all non-tool dependencies if none is
configured for a particular target
(https://cs.opensource.google/bazel/bazel/+/f868582d:src/main/java/com/google/devtools/b
uild/lib/analysis/test/InstrumentedFilesCollector.java;l=65).

Confusing flags
There are several command line flags related to coverage collection, some of which are
confusingly named, alter tooling that is otherwise internal, or just have unexpected
behavior:

●​ --coverage_output_generator controls the setting of _lcov_merger for many
rules.

●​ --coverage_report_generator determines what tool is used to generate the
combined coverage report after all tests have run (the merged output).

●​ --coverage_support provides "collect_coverage.sh".
●​ --collect_code_coverage doesn't actually trigger coverage collection, but simply

requests that targets are built with instrumentation enabled.

https://cs.opensource.google/bazel/bazel/+/f868582d:src/main/java/com/google/devtools/build/lib/analysis/test/InstrumentedFilesCollector.java;l=65
https://cs.opensource.google/bazel/bazel/+/f868582d:src/main/java/com/google/devtools/build/lib/analysis/test/InstrumentedFilesCollector.java;l=65

●​ --instrumentation_filter takes a set of regexes matching target names, not
source paths, which may be unintuitive. It also has some complicated default
behavior based on test targets that is not fully documented.

●​ --instrument_test_targets enables instrumentation of test targets (disabled by
default). Rules have no way of customizing this behavior since this is handled inside
of ctx.coverage_instrumented().

●​ --combined_report triggers the creation of the merged coverage report
(combining lcov reports from all tests). Only the values lcov and none are
supported.

The naming of these flags isn't consistent; half begin with "--coverage_" and half do not.
Further, several change global implementation details, affecting test runs for all rules.

Reporting deficiencies
Currently Bazel can only process and output LCOV files (the tracefile format used by lcov).
Whilst these are very easy to read and produce because they are line-based plain text files,
it is not a widely used format for other languages and tools and is not useful for human
consumption.

HTML output is much better for a person to read and something like Cobertura XML may be
better for integration with other tooling.

Baseline Coverage
The Bazel docs briefly mention baseline coverage, describing it as "broken".

This technically exists at the "file" level; during a build with --collect_code_coverage,
Bazel will generate "baseline_coverage.dat" files for each target, but they will effectively
only contain a list of files for that target; there will be no function, line, or branch details.

Because the details of how to generate a useful baseline report differ between languages, it
will again be up to rule implementations to decide how to do it. However; because baseline
coverage doesn't require output binaries to be executed to gather data, it should be
something that can be reasoned about at analysis time.

Additional platform specific problems
OS X
C++ coverage doesn't integrate well at the moment. For gcov coverage, Bazel depends on
the ability to set "PWD" to /proc/self/cwd during compilation; overriding the path for the
.gcda that will be output later, providing an easy fixed prefix that can be stripped. This
facility is not available on OS X.

There is experimental support to process LLVM's source-level coverage into the LCOV
format. However, for this to correctly integrate with Bazel's LCOV merging, the

https://manpages.debian.org/stretch/lcov/geninfo.1.en.html
https://github.com/cobertura/web/blob/master/htdocs/xml/coverage-04.dtd

/proc/self/cwd issue still needs to be resolved. This may be fixable within the merge tool
however (unlike with the GCC solution, an LCOV file is actually produced by llvm-cov, so
the merge tool may be able to match filenames to files within its input list).

Windows
Coverage execution in general requires that Bash. However Bazel as a whole generally
assumes that Bash is available, so this may not be an issue.

As far as I know, C++ coverage is not supported on Windows.

Potential API improvements

Cleanup but "change nothing"
This acknowledges that coverage collection "basically works" (that is, sufficient for many
languages), although is undocumented. Documentation would be improved and the
expectations of rules would be made clear.

The issue around _collect_cc_coverage would remain. However we could formalize this
as part of the C++ rules which Bazel controls. There may be issues for rules_rust, but if they
use LLVM, it "may just work".

Allow rules to specify test-time conversions
For the majority of rules, this would not be necessary. However for some there really is no
alternative to having some shell code run after test execution (C/C++ and potentially Rust). It
is also desirable for test rules depending on such rules to not need to worry about
specifying a _collect_cc_coverage target.

How this would work needs to be determined, with care taken to avoid too much running
during test execution (we don't want a shell script running per transitive cc_library target for
instance after the tests have run).

Baseline Coverage
The requirements here are simple:

1.​ Baseline coverage should be generated as part of a build, not execution.
2.​ Rules need a way to provide a baseline coverage artifact to Bazel. This could either

be through an Output Group or a special provider.
3.​ Bazel needs to collate all output baseline reports and merge them as it would for

coverage runs.
4.​ Baseline coverage needs to be collectible for non-test targets.

The details for how to generate a baseline coverage report vary between languages and
tools, so Bazel cannot do anything itself (beyond generating an empty one as it does now),
so it will be up to rule authors to implement.

Because a baseline coverage report does not require execution data (it represents a
"null-run"), it should be able to be generated after a build, without execution, and can
therefore be reasoned about at analysis time. That is, a rule can declare a "baseline
coverage file" and generate an action for it.

Platform support
If the full logic for coverage collection and conversion to LCOV is handled by the rules (that
is, rules are given a way to specify post test execution steps), then this is largely a matter for
rules. Bazel must simply ensure that whatever wrapping logic supports multiple platforms
and that report merging works. This doesn't change the amount of work to be done, rather
it just moves it from Bazel's internal Java code to the Starlark API and rule implementations.

Document History

Date Description

2023-07-28 First suggestions

	Code Coverage - Areas to improve
	Overview
	Problems
	Documentation deficiencies
	API deficiencies
	Confusing flags
	Reporting deficiencies
	Baseline Coverage
	Additional platform specific problems
	OS X
	Windows

	Potential API improvements
	Cleanup but "change nothing"
	Allow rules to specify test-time conversions

	Baseline Coverage
	Platform support
	Document History

