Series and Parallel Circuits – Capacitors

Find the equivalent capacitor for the series, parallel, and complex circuit

2. C_{eq}=

3. C_{eq} =

4. C_{eq}=

Three capacitors 12 μF , $6\mu F$, and $4\mu F$ are connected in series with an 8 v battery. Determine:

- 1. The capacitance of the circuit.
- 2. The charge drawn from the battery.
- 3. The charge on each capacitor.
- 4. The energy supplied by the battery in charging the capacitors.
- 5. The energy stored in each capacitor.

- 5. For the arrangement of three capacitors shown in the diagram:
 - a. What value of C_1 will give a **total** equivalent capacitance of 1.7 μ ? (<u>Hint</u>: the diagram looks strange, but don't let that fool you)
 - b. Now that you know C₁, find the charge stored on and the voltage across each capacitor.

- 6. Given the arrangement of capacitors given to the right, answer the following questions. You will probably not answer these questions in the exact order they are asked.
 - a. What is the equivalent capacitance of this arrangement?
 - b. What is voltage across each capacitor?
 - c. What is the charge on each capacitor?

