
Rob wants to make some fun, interesting, and maybe even useful models from Killer Queen log 
data. 
 
What does equity have to do with Killer Queen?  Imagine you get paid a dollar for winning, and $0 for losing. Then your equity is 
your win probability. Make cents? 

 

Background 
 
Abby provided me with a hivemind data dump that includes all gameevents, hivemind logins, 
and game locations from 2019 until 2-27-2023.  There are about 200k games logged. Data 
before version 17.26 is messy and annoying but there are about 90k games since Sept 2022 
using 17.26 that pass validation/sanity checks.  The data format is documented on the HiveMind 
wiki.  It tracks important game events, player kills/deaths, warrior forms, snail positions when 
riders jump on or leave, and berry deposits.  It is what is used to make the end game screens by 
HiveMind.   
 

Candidate models 
Equity model 
This model predicts the probability of winning (henceforth equity) from a given game state.  
SumoLogic has built an equity model here using the same game log API, but used an inhouse 
data set from non-travel tournament games.   
 

https://kqhivemind.com/wiki/Stats_Socket_Events
https://www.sumologic.com/blog/machine-data-killer-queen/


 
 
Here is an equity/live win probability (LWP) graph for the SF league night on 2/13/23, the 
hivemind data is here  hivemind game 637156.  This was built from a LightGBM classifier and 
was not in the training data.  The big spike at ~140 corresponds to 45:51 which ends at an 
equity of around .88, which is a queen kill and then a 2x warrior kill which leaves blue with 2vs0 
eggs advantage, a 2 speed warriors, 2/3 of the warrior gates, snail out of the tunnel, snail 
control and gold is wiped. Seems reasonable? Maybe .88 is even too low? 

Vectorized game state models 
These models would take as input a vectorized summary of the game state.  All of the following 
are features computable from the game event logs.  The model wouldn’t know the position and 
velocity of players at any instant, but otherwise knows the important factors in the game. 
 

Current game state features 
 

●​ Map name 
●​ Queen eggs 
●​ Snail position.  But we only have snail on/off events, use interpolation/guessing to figure 

out snail position if there is a rider. 
●​ Deposited berry counts (split high vs low berries for dusk?) 
●​ Berry availability (might be some trickiness handling famine) 

https://www.youtube.com/watch?v=6Ke8qHIGd00&start=2604
https://kqhivemind.com/game/637156


●​ Warrior counts 
●​ Which characters have speed 
●​ Snail control 
●​ Gate control 
●​ Hivemind player IDs (sparse) 

 
 
 

Game history features 
In A Bayesian approach to in game win probability, the paper discusses contextual features for 
Rugby prediction, like goal scoring opportunities and successful attacking passes.  They are 
events that might indicate a team is performing well even if it is not ahead.  Rough analogs in 
Killer Queen might be things like warrior glances on the queen, clears on riders who are eating, 
kills on ledge guards, or successful pincers. 
 
 
 
The label for the equity model is the winning team. 
 
From these features/labels, there are many different kinds of models that could be built. 
 
Logistic regression on a vectorized game state summary is what SumoLogic built, which seems 
like a reasonable place to start.   
 
A gradient boosted tree or random forest on the vectorized game state would probably be a bit 
stronger and allow capturing some non-linear interaction effects.   
 
A multilevel neural net would also allow capturing non-linear interaction effects like the tree 
models, and have the advantage of being able to share representations and leverage other 
tasks, like an next event model (discussed later). 
 
Also try tabnet? https://github.com/dreamquark-ai/tabnet 
 
Also try transformer language model with on game event logs with game states/command 
based tasks littered in?  Conjoin taskspecific terms with buckets to embed a regression problem 
into an LM. 
 
Applications of the Equity model 
 
A graph of equity of time would make an interesting end of game display for hivemind. 
 
Take the equity over time graph, and find small time spans with big changes in equity.  These 
correspond to impactful moments in the game, and would make for good automatic highlights.  

https://arxiv.org/pdf/1906.05029
https://github.com/dreamquark-ai/tabnet


With timestamps and local recording set up, we could even extract/display these on a post 
game screen. 
 
Assign credit/blame to players for the relevant subset of events (kills, berry deposits, snail 
progress, gate tags) and sum the change in equity per player, we could compute an impact 
measure for each player in the game.  Of course, credit assignment here is itself a bit 
wonky/flawed, clearly snail progress is a function of the whole team and not just the rider.  Most 
kills can be credited to multiple cooperating teammates, but our assignment would fail to do 
that.  It still might be a good/interesting measure and end of game display. 
 

Next event prediction 
Build a model to predict the next event from a given game state.  This model takes the same 
input format as the equity model, but has a much richer label set, and many more labels per 
game.  If it was very good, it could have applications like predicting the chance that a team in 
lock out forms a warrior before their queen loses an egg.  In practice, I expect it would simply 
help as a form of self supervised learning, since there are many more events per game than 
there are game results per game.  For the Baltimore Brawl 5 data set, there is an average of 
318 events for a single game.  Training a dual task model on next event prediction will help the 
network form better representations, which could help mitigate data sparsity issues in equity 
prediction. 
 

Future game state prediction 
Given a game state, after N (1-5?) seconds, what is going to be the state of the game.  This is 
like next event prediction, but perhaps it’s a bit cleaner of a target, since it depends less on the 
exact order of events, and more on the game trend.  This will be another self supervised task.  It 
rewards a model with representations that can accurately predict things like the expected rate of 
change of important factors in the game like berry counts, snail progress, warrior counts, queen 
eggs, etc.   

Combat rating 
Each player will get 4 (5?) numbers. Queen, vanilla warrior, speed warrior, drone (speed 
drone?), which models the players ability to win fights. 
 
Treat each kill and death as a win or loss vs opposing players.  Apply a rating system like 
trueskill or elo to kill death interactions on a per player/position basis.   
 
Should pincerers be rewarded?  How should drones, which lack a direct ability to kill, be given 
some credit for being resilient or even offensive?  
 

https://en.wikipedia.org/wiki/Self-supervised_learning


Give bump assist credits to reward drones and the bumper side of a pincer include them in the 
calculation.  Perhaps consider drones bumping warriors or queens as a downweighted tie. 
Perhaps say, 10 bumps is treated as a kill and a death. Perhaps this should be limited to drones 
who have recently touched a snail, or bumps after a snail jump off should count more than 
bumps anywhere on the map?  

Snail inertia 
This model intends to measure how hard it is to move the snail from a given spot on the map.  
How likely is the rider to die, make progress, or jump off?  Jess had built a model that estimates 
the changes in equity as a function of incremental snail progress.  (Add her graph here?).  That 
would be part of our equity model.  This rather focuses on the difficulty of moving the snail, 
rather than its value.  
 

Model validation metric 
We’d like our model to work well at predicting future killer queen tournament games. 
 
Leave one tournament out cross validation using log loss of the equity model captures that 
intent pretty well, though it does have the advantage of being able to train on future tournament 
games when evaluating tournaments in the middle.  We should probably be careful to weight 
tournaments in proportion to their size, rather than naively averaging the loss per split. 
 
An alternative might be to use a progressive, time aware evaluation scheme that never has 
training data from the future, but it seems a bit more complicated. 
 
 
 

Data augmentation 
We don’t really have much data.  Aside from getting more data, here are some ideas for 
squeezing out more juice from what we have. 
 
Every game has a symmetric game where blue and gold are swapped, which could double the 
training data size, or form a free evaluation set, or be useful in a loss that penalizes differences 
in evaluation between a state and its team swapped symmetric state. 
 
Imagine any game state S from the perspective of the gold team.  As gold gets more speed 
upgrades, more gates, more berries, more queen kills, or more snail progress, we’d expect that 
their equity would improve.  Call this improved state S’.  An augmented example pair ranking 
loss that penalizes the model for scoring S below S’ would be a way of adding this monotonicity 
prior into the model.  A last egg is more valuable than a first egg, so a state where one queen is 



put on last in exchange for a first egg usually benefits the team with more eggs more.  Similarly, 
adding a berry to each team tends to benefit the team with a berry lead. 
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