التحولات المقرونة بالتفاعلات حمض - قاعدة في محلول مائي.

1- الجداء الأيوني للماء.

1-1- التحليل البروتوني الذاتي للماء

و الماء الخالص عند 25^{0} ، موصلية $\sigma_{H_{2}O} = 5,5.10^{-6} \, \text{S/m}$ و $\sigma_{H_{2}O} = 5,5.10^{-6} \, \text{S/m}$ و الماء الخالص عند $\sigma_{H_{2}O} = 5,5.10^{-6} \, \text{S/m}$. H_2O و القاعدة H_2O و القاعدة $H_2O_{(\ell)}/OH^-_{(aq)}$ و حمض للمزدوجة وحمض للمزدوجة الماء $H_2O_{(\ell)}/OH^-_{(aq)}/OH^-_{(aq)}$ و القاعدة المزدوجة الماء $H_2O_{(\ell)}/OH^-_{(aq)}/OH^-_{(aq)}$

- نسمى تابثة التوازن المقرون بمعادلة التحلُّل البرتوني الذاتي للماء بالجداء الأيوني للماء تعبيره :OH].[+K_B=[H₃O]

$80^{\circ}\mathrm{C}$	60°C	25°C	درجة الحرارة
$2,5.10^{-13}$	1,0.10 ⁻¹³	$1,0.10^{-14}$	قيمة Ke

 $pKe = -\log Ke$ يمكن كذلك تعريف مقدار آخر هو *

2-1- المحاليل المحايدة و الحمضية و القاعدية

المحاليل القاعدية	المحاليل المحايدة	المحاليل الحمضية
[H ₃ O ⁺]<[OH]	[-H ₃ O+]=[OH]	['H ₃ O ⁺]>[OH]
[+H ₃ O+].[H ₃ O+]<[OH-].[H ₃ O]	[⁺ H ₃ O ⁺].[H ₃ O ⁺]=[OH ⁻].[H ₃ O]	[⁺ H ₃ O ⁺].[H ₃ O ⁺]>[OH ⁻].[H ₃ O]
$H_3O^+]^2 < K_e$	$H_3O^+]^2=K_e$	$H_3O^+]^2 > K_e$
K _e II>	К етт_	K eII c
<u>2</u> pH>	${2}$ pH=	$\frac{-2}{2}$ pH<

2- ثابتة الحمضية لمزدوجة حمض قاعدة

2-1- تعریف

 $(A^{-}_{(aq)} + H_{3}O^{+}_{(aq)} \leftrightarrow (AH_{(aq)} + H_{2}O_{(1)})$ عند ذوبان حمض AH في الماء كالتالي :

$$K_A = \frac{\left[A^-\right]\left[H_3O^+\right]}{\left[HA\right]}$$

* نسمي ثابتة التوازن المقرونة بهذا التفاعل ، ثابتة الحمضية نرمز لها ب K_A و نعبر عنها ب

 $pK_A = -\log K_A$: بالعلاقة بالمزدوجة pK_A للمزدوجة بالعلاقة بالعلاقة بالمزدوجة

أمثلة عند 25°C

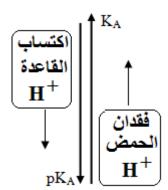
pΚ _A	K_A	المزدوجة
4,8	1,58.10-5	$CH_3COOH_{(aq)} / CH_3COO_{(aq)}^-$
9,2	6,3.10 ⁻¹⁰	$NH_{4(aq)}^+/NH_{3(aq)}$

ملحوظة: Ka لا تتعلق إلا بدرجة الحرارة و بطبيعة الحمض

. \mathbf{K}_{A} العلاقة بين الـ $\mathbf{p}\mathbf{H}$ و ثابتة الحمضية

$$K_A=rac{\left[B
ight]\!\!\left[H_3O^+
ight]}{\left[A
ight]}$$
. العلاقة بين PK و منكتب : العلاقة بين A/B و بالنسبة لمزدوجة

$$(\left[H_{3}O^{+}\right]\log(-(\frac{[B]}{[A]}\log(--(\frac{[B]}{[A]},\left[H_{3}O^{+}\right]\log K_{A}=-\log(-\frac{[B]}{[A]},K$$


2-3- ثابتة التوازن المقرونة بتفاعل حمض _ قاعدة .

نعتبر التفاعل حمض-قاعدة بين المزدوجتين

 $(K(AH_{(aq)}/A^{-}_{(aq)})$ ذات تابثة الحمضية ($AH_{(aq)}/A^{-}_{(aq)}$

و (K(BH_(a0)/B⁻(a0) BH_(a0)/B⁻(a0) و ذات تابثة الحمضية (BH_(a0)/B⁻(a0)

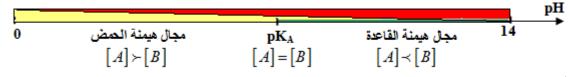
معادلة التفاعل
$$A^{-}_{[B^{-}],[AH]}$$
 $K=:$ تعبير تابثة التوازن $A^{-}_{(aq)}+BH_{(aq)} \leftrightarrow (AH_{(aq)}+B^{-}_{(aq)})$ $AH_{(aq)}+BH_{(aq)} \leftrightarrow (AH_{(aq)}+B^{-}_{(aq)})$ $AH_{(aq)}+BH_{(aq)} \leftrightarrow (AH_{(aq)}+B^{-}_{(aq)})$ $AH_{(aq)}+BH_{(aq)} \leftrightarrow (AH_{(aq)}+A^{-}_{(aq)})$ $AH_{(aq)}+AH_{(aq)}+AH_{(aq)} \leftrightarrow (AH_{(aq)}+AH_{(aq$

 $au = \frac{\left[H_3O^+
ight]}{C}$ مع مع الماء فأن تابثة التوازن هي تابثة الحمضية $K = K_A = \frac{\left[B\right]\left[H_3O^+
ight]}{\left[A\right]}$ مع مع الماء فأن تابثة التوازن المي تابثة الحمضية

 $K_A = \frac{C au^2}{1- au}$ نجد $K_A = \frac{C au^2}{1- au}$ منها نستنتج ان بالنسبة لتركيز نفسها يكون حمض أقوى (au كبيرة) كلما كانت تابثة الحمضية K_A كبيرة اي K_A اصغر K_A اصغر K_A مقارنة سلوك القواعد في محلول مائي

$$K=\frac{C au^2}{1- au}$$
 بنفاعل القاعدة مع الماء فان تابثة التوازن $K=\frac{[A][OH^-]}{[B]}$ مع $au=\frac{[OH^-]}{C}$ مع $au=\frac{[OH^-]}{C}$ مع $au=\frac{[OH^-]}{C}$ بنفاعل القاعدة مع الماء فان تابثة التوازن

$$K_A(A/B) = \frac{K_e}{K} = \frac{1-\tau}{C.\tau^2}. K_e$$
 ومنه $\frac{K_e(H_2O/OH^-)}{K_A(A/B)}$


نستنتج ان بالنسبة لتركيز نفسه تكون قاعدة أقوى (au كبيرة) ، كلما كانت تابثة الحمضية K_A صغيرة اي pK_A اكبر pK_A

$$pH=pK_{_A}+\lograc{\left[B
ight]}{\left[A
ight]}=10^{(pH-pK_{_A})}$$
 النسبة لمزدوجة $_{(A_{(aq)}/B_{(aq)})}$ في محلول مائي ، تتحقق العلاقة :

و النالي
$$B = 10^{(pH-pK_A)} < 1$$
 اي الحمض مهيمن في الوسط $10^{(pH-pK_A)} < 1$ الحمض مهيمن في الوسط الذا كان $10^{(pH-pK_A)} < 1$

ا ي
$$pH = pK_A$$
 و القالي: $[A] = [B]$ يساوي هيمنة الحمض و القاعدة $[A] = [B]$ يساوي هيمنة الحمض و القاعدة $[A] = [B]$

و التالي
$$B = 10^{(pH-pK_A)} > 1$$
 : اي $B = 10^{(pH-pK_A)} > 1$ و التالي القاعدة مهيمنة في الوسط الإداكان القاعدة العربية والم

-2-4 مخطط التوزيع المرافقة A و قاعدته المرافقة B .

$$\alpha(A) = \frac{A}{A + B}$$
 نسمي نسبة الحمض في محلول : *

$$lpha(B) = rac{B}{A + B}$$
 نسمي نسبة القاعدة في محلول: * نسمي نسبة المقاعل ، مخطط التو زيم لنوعي المزدوجة *

- $^{
 m pH}$ يمثل المخطط المقابل ، مخطط التوزيع لنوعي المزدوجة $^{
 m A/B}$ ، تطور (%) للحمض و القاعدة بدلالة $^{
 m pH}$ المحلول ، عند نفس درجة الحرارة .
- $pH=pK_A$: و منه $A=\begin{bmatrix} A\end{bmatrix}=\begin{bmatrix} B\end{bmatrix}$ و منه $\alpha(A)=\alpha(B)$ و منه *

4-3- حالة الكواشف الملونة

*تعريف: الكاشف الملون حمضي-قاعدي ، مز دوجة حمضية-قاعدية، نر مز لها ب HInd /Ind · ، بحيث يكون للشكلين الحمضي HInd و القاعدي Ind لونان مختلفان في محلول مائي.

 $\frac{[Ind^-]H_3O^+}{[HInd]}$ $K_{A,Ind}=$ و نعبر عنها بـ $K_{A,Ind}=$ گابتة الحمضية لكاشف ملون نرمز لها بـ $K_{A,Ind}=$

* مجال هيمنة لون الحمض و لون القاعدة

* إصطلاحا نقبل ان لون الحمض يغلب في الوسط إذا كان تركيز الحمضHInd * إصطلاحا نقبل ان لون القاعدة يغلب في الوسط إذا كان تركيز القاعدةInd- اكبر بعشر مرات من تركيز الحمض HInd أي $10 < \frac{[Ind]}{[HInd]}$ مع اکبر بعشر مرات من ترکیز القاعدة الم $\frac{[\mathit{HInd}]}{[\mathit{Ind}^-]} > 10$ أي ا pH>pK_{A,Ind}+1 و بالنالي نجد PH=pK_{A,Ind}+log

 $pH < pK_{A,Ind}$ و بالنالي نجد $pH = pK_{A,Ind} + log$

* منطقة انعطاف الكاشف الملون: هي المنطقة التي يغير فيها الكاشف الملون لونه من لون الصيغة القاعدية الي لون الصيغة الحمضية او العكس $pK_{A.Ind}$ -1<pH< $pK_{A.Ind}$ +1

في هذه الحالة يأخذ الكاشف الملون لون وسطيا بين لوني الحمض و القاعدة يسمى لوينة حساسة-teinte sensible

لوينة الصيغة الحمضية		لوينة حساسة		لوينة الصيغة القاعدية
	pK_A-1	pK_A	pK _A +1	

* بعض الكواشف الملونة ومميزاتها

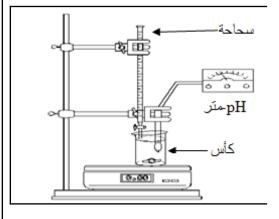
لون الشكل الحمضي	منطقة الانعطاف	لون الشكل القاعدي	الكاشف الملون
أحمـر	2,8 - 1,2	أصفر	أزرق الميتاكروزيل
أحمـر	4,4 - 3,1	أصفر	الهيليانتين
أصفر	5,4 - 3,8	أزرق	أخضر البروموكريزول
أصفر	6,4 - 4,8	أحمر	أحمر الكلوروفينول

5- المعابرة حمض قاعدة

1-5- المعايرة حمض_قاعدة بقياس pH.

* مبدأ المعايرة تهدف المعايرة الى تحديد تركيز محلول مجهول و ذالك بانجاز تفاعل حمض - قاعدة يسمى تفاعل المعايرة و يجب ان يكون سريعا و كليا و انتقائيا

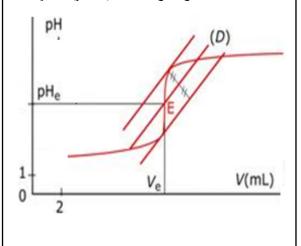
* التركيب التجريبي


* التكافؤ الحمضي _ القاعدي

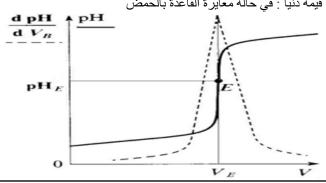
عند التكافؤ يكون الخليط متناسبا و تستهالك المتفاعلات وفق المعاملات التناسبية

ونكتب $\frac{n(A)}{a} = \frac{n(B)}{a}$ و a معاملات تناسبية

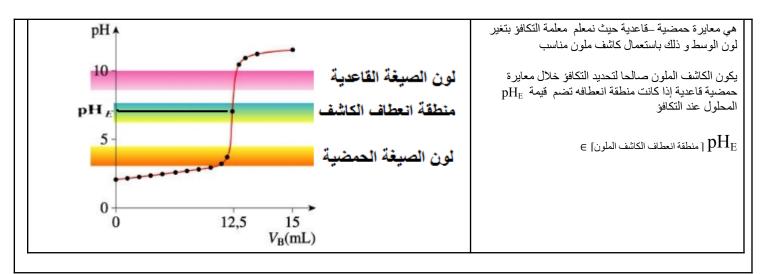
في كل تحول حمضي قاعدي a=b=1


 $C_A.V_A$ = $C_B.V_B$ اي (n(A)=n(B) علاقة التكافؤ الحمضي القاعدي

 $\frac{dpH}{dV_B} = g(V_B)$ الدالة


* تحديد نقطة التكافق.

طريقة الدالة المشتقة ${
m B}$ نخط المماسين ${
m T}_1$ و ${
m T}_1$ للمنحنى ${
m BH=f(V_B)}$ في النقطتين ، ثم نخط المستقيم (D) الموازي ل T_2 و T_1 الموجود على نفس E تسمي pH=f(V). تسمي T مع المنحنى المسافة بينهما نقطة تقاطع نرسم المنحنيين pH=f(V_B) و



 $\dfrac{dpH}{dV_{B}} = g(V_{B})$ المشتقة ل pH بدلالة الحجم V عند نقطة التكافؤ تأخد الدالة قيمة قصوى : في حالة معايرة الحمض بالقاعدة

قيمة دنيا: في حالة معايرة القاعدة بالحمض

 $\dfrac{dpH}{dV_{\scriptscriptstyle B}} = g(V_{\scriptscriptstyle B})$ حیث نمثل

خاص بالعلوم الفيزيائية و العلوم الرياضية

6- نسبة التقدم النهائي لتفاعل المعايرة الحمضية القاعدية.

معايرة القاعدة بالحمض	معايرة الحمض بالقاعدة	
$A^{-}(aq) + H_3O^{+}(aq) \rightarrow AH(aq) + H_2O(\ell)$	$AH(aq) + HO^{-}(aq) \rightarrow A^{-}(aq) + H_{2}O(\ell)$	معادلة التفاعل
قبل التكافؤ :الحمض H_3O متفاعل محد $n(A) \text{-} x_m = 0$ اي $n(A) \text{-} x_m = 0$ ومنه $n(A) \text{-} C_A \cdot V_A$	قبل التكافؤ :القاعدة $^{ ext{OH}}$ متفاعل محد $ m n(B)$ - $ m x_m$ = 0 ومنه $ m x_m$ = $ m n(B)$ = $ m C_B.V_B$	X _m تعبير
$ \begin{bmatrix} H_3 O^+ \end{bmatrix} = \frac{n(A) - x_f}{V_A + V_B} = 10^{(-pH)} $ $ V_A + V_B \cdot 10^{(-pH)} \cdot x_f = C_A \cdot V_A - V_B \cdot 10^{(-pH)} $	$[OH^{-}] = \frac{n(B) - x_{f}}{V_{A} + V_{B}} = 10^{(pH - pKe)}$ $V_{A} + V_{B}) \cdot 10^{(pH - pKe)} x_{f} = C_{B} \cdot V_{B} - V_{B}$	X _f تعبير
$\tau^{\frac{C_{_A}V_{_A}-(V_{_A}+V_{_B}).10^{(-pit)}}{C_{_A}V_{_A}}}$	$\tau = \frac{C_B V_B - (V_A + V_B) \cdot 10^{(pH - pKe)}}{C_B \cdot V_B}$	تعبير τ

Www.AdrarPhysic.Com