https://www.pearson.com/channels/physics

1. Intro to Physics Units	13. Rot.l Inertia & Energy	25. Electric Potential
2. 1D Motion/Kinematics	14. Torque & Rot. Dynamics	26. Capacitors & Dielectrics
3. Vectors	15. Rotational Equilibrium	27. Resistors & DC Circuits
4. 2D Kinematics	16. Angular Momentum	28. Magnetic Fields & Forces
5. Projectile Motion	17. Periodic Motion	29. Sources of Magnetic Field
6. Intro to Forces (Dynamics)	18. Waves & Sound	30. Induction and Inductance
7. Friction, Inclines, Systems	19. Fluid Mechanics	31. Alternating Current
8. Centripetal Force & Gravity	20. Heat and Temperature	32. Electromagnetic Waves
9. Work & Energy	21. Kinetic Theory of Gases	33. Geometric Optics
10. Conservation of Energy	22. 1st Law Thermodynamics	34. Wave Optics
11. Momentum & Impulse	23. 2nd Law Thermo.	35. Relativity
12. Rotational Kinematics	24. Electric Force & Field	36. Quantum Mechanics

1. Intro to Physics Units

Introduction to Units

<u>Units of Measure: Scientific Measurements & SI System</u> <u>by ProEdify</u>

Metric Prefixes and Conversions by turdfurg67

<u>Dimensions and Units</u> <u>by Robert Cruikshank</u>

Physical Quantities and Units (Crash Course) | Measurement | Physics | GCE O-Level by Cognito Academy

Unit Conversions

<u>Anderson Video - Unit Conversion</u> <u>by Professor Anderson</u>

Anderson Video - How Old are You in Seconds? by Professor Anderson

<u>Anderson Video - Converting Units (Area)</u> by Professor Anderson

<u>Anderson Video - Converting Units (Volume)</u> by Professor Anderson

<u>Anderson Video - Estimating with Large Numbers</u> <u>by Professor Anderson</u>

<u>Unit conversion within the metric system | Pre-Algebra | Khan Academy</u> <u>by Khan Academy</u>

<u>Unit Conversion the Easy Way (Dimensional Analysis)</u> by ketzbook

<u>Understanding Conversion Factors</u> <u>by Tyler DeWitt</u>

Metric Prefixes and Conversions by turdfurg67

Physics Unit Conversion Review by stanphillscience

Solving Density Problems

<u>Density Practice Problems</u> <u>by Tyler DeWitt</u>

<u>Density, Mass and Volume Problems Part 2</u> <u>by BrainSTEM</u>

<u>Density, Mass, and Volume Problems Part 1</u> <u>by BrainSTEM</u>

<u>Density problem examples - IGCSE Physics</u> by Chris Gozzard

Dimensional Analysis

How To Use Dimensional Analysis To Find The Units of a Variable by The Organic Chemistry Tutor

<u>Dimensional Analysis - in physics</u> <u>by Jennifer Cash</u>

Problem in dimensional analysis. #1 by Physics Solution Manual

<u>Dimensional Analysis</u> <u>by Garrison Turner</u>

Counting Significant Figures

Measurement and Significant Figures by Professor Dave Explains

Significant Figures Step by Step | How to Pass Chemistry by Melissa Maribel

<u>Significant figures | Decimals | Pre-Algebra | Khan Academy</u> by Khan Academy

<u>The importance of significant figures</u> by Study Force

More on significant figures | Decimals | Pre-Algebra | Khan Academy by Khan Academy

Why are Significant Figures Important? by Tyler DeWitt

Significant Zero Practice Problems (1.4) by Tyler DeWitt

Significant Figures and Zero (1.3) by Tyler DeWitt

Operations with Significant Figures

Multiplying and dividing with significant figures | Decimals | Pre-Algebra | Khan Academy by Khan Academy

Addition and subtraction with significant figures | Decimals | Pre-Algebra | Khan Academy by Khan Academy

Significant Figures Step by Step | How to Pass Chemistry by Melissa Maribel

<u>Using Significant Figures Practice Problems (1.9)</u> <u>by Tyler DeWitt</u>

Add and Subtract with Significant Figures (1.6) by Tyler DeWitt

Measurement and Significant Figures by Professor Dave Explains

Math Toolbox

A Basic Algebra Review for Physics Hunter Valls

<u>Algebra Review - Manipulating equations in Physics HeddenScience</u>

AP Physics C: Intro to Calculus Gregory DeCecco

AP Physics C: Intro to Calculus (2)
Gregory DeCecco

AP Physics C: Intro to Calculus (3)
Gregory DeCecco

AP Physics C: Intro to Calculus (4)
Gregory DeCecco

AP Physics C: Intro to Calculus (5)

2. 1D Motion / Kinematics

Distance vs. Displacement; Scalars vs. Vectors

Scalars, Vectors, and Vector Operations
by Professor Dave Explains

Intro to vectors & scalars | One-dimensional motion | Physics | Khan Academy by Khan Academy

<u>Distance and displacement introduction</u> <u>One-dimensional motion</u> <u>| AP Physics 1 | Khan Academy by Khan Academy</u>

<u>Distance and displacement in one dimension | One-dimensional motion | AP Physics 1 | Khan Academy</u>
by Khan Academy

<u>Displacement verses Distance</u> <u>by Jennifer Cash</u>

Displacement in 1D by Jennifer Cash

<u>Kinematics 2: Distance, Displacement, Speed and Velocity by fizxtchr</u>

<u>Distance, Position, Displacement, Velocity, and Acceleration by lasseviren1</u>

Average Velocity

<u>Position/Velocity/Acceleration Part 1: Definitions</u> by Professor Dave Explains

<u>Speed, Velocity, and Acceleration | Physics of Motion Explained by 2 Minute Classroom</u>

<u>Kinematics 2: Distance, Displacement, Speed and Velocity</u> by fizxtchr

<u>Distance</u>, <u>Position</u>, <u>Displacement</u>, <u>Velocity</u>, <u>and Acceleration</u> by lasseviren1

Intro to Acceleration

Acceleration | One-dimensional motion | Physics | Khan Academy by Khan Academy

Average Acceleration by Jennifer Cash

<u>Distance</u>, <u>Position</u>, <u>Displacement</u>, <u>Velocity</u>, <u>and Acceleration</u> <u>by lasseviren1</u>

<u>Position/Velocity/Acceleration Part 1: Definitions</u> <u>by Professor Dave Explains</u>

Speed, Velocity, and Acceleration | Physics of Motion Explained by 2 Minute Classroom

Position-Time Graphs & Velocity

<u>Anderson Video - Motion Diagram of Accelerating Car</u> by Professor <u>Anderson</u>

<u>Position/Velocity/Acceleration Part 2: Graphical Analysis</u> by Professor Dave Explains

Position-time graphs | One-dimensional motion | AP Physics 1 | Khan Academy by Khan Academy

Position vs. time graphs | One-dimensional motion | Physics | Khan Academy by Khan Academy Physics

<u>Position or Distance Time Graphs Part 1 Kinematics Physics Lesson</u> <u>by Physicshelp Canada</u>

Position or Distance Time Graphs Part 2 Kinematics Physics Lesson by Physicshelp Canada

<u>Position or Distance Time Graphs Part 3 Kinematics Physics Lesson</u> <u>by Physicshelp Canada</u> Motion Graphs (1 of 8) Position vs. Time Graph Part 1, Constant Velocity by Step by Step Science

<u>Distance (position) to Velocity Time Graph Physics Help</u> by Physicshelp Canada

<u>Instantaneous Velocity</u> <u>by Jennifer Cash</u>

Interpreting Position graphs by Jennifer Cash

Conceptual Problems with Position-Time Graphs

Worked example: distance and displacement from position-time graphs | AP Physics 1 | Khan Academy by Khan Academy

<u>Velocity time graph conversion to Position time graph</u> <u>by JEMdevelopers</u>

Physics 2.4 - Converting Position and Velocity Time Graphs by DHart

Velocity-Time Graphs & Acceleration

<u>Anderson Video - Motion Diagram of Accelerating Car</u> <u>by Professor Anderson</u>

Motion Graphs - Velocity vs. Time Graph Part 1 by Step by Step Science

Motion Graphs - Velocity vs. Time Graph Part 2 by Step by Step Science

Average velocity for constant acceleration | One-dimensional motion | Physics | Khan Academy by Khan Academy

Interpreting Velocity graphs by Jennifer Cash

Graphing Velocity by Jennifer Cash

Calculating Displacement from Velocity-Time Graphs

Motion Graphs (6 of 8) Displacement from the Velocity vs. Time Graph by Step by Step Science

<u>Velocity to Distance (position) Time Graph Tutorial</u> <u>by Physicshelp Canada</u>

v-t to d-t graphs by chhsphysics

Conceptual Problems with Velocity-Time Graphs

<u>Anderson Video - Motion Diagram for a Falling Object</u> by Professor Anderson

<u>Velocity Time Graphs Part 1 Kinematics Physics Lesson Tutorial</u> <u>by Physicshelp Canada</u>

<u>Velocity Time Graphs Part 2 Kinematics Physics Lesson Tutorial</u> by Physicshelp Canada

<u>Velocity Time Graphs Part 3 Area Kinematics Physics Lesson</u> by Physicshelp Canada

<u>Velocity Time Graphs Part 4 Area Kinematics Physics Tutorial</u> <u>by Physicshelp Canada</u>

Calculating Change in Velocity from Acceleration-Time Graphs

Acceleration vs. time graphs | One-dimensional motion | Physics | Khan Academy by Khan Academy Physics

<u>Drawing Velocity Graphs Given Acceleration Graphs</u> <u>by E Donatelli</u>

Acceleration Time Graphs Area Kinematics Physics Tutorial by Physicshelp Canada

Graphing Position, Velocity, and Acceleration Graphs

Position, Velocity and Acceleration by Bozeman Science

Interpreting Motion Graphs by Jennifer Cash

Position, Velocity, and Acceleration vs. Time Graphs by When The Bleep Are We Going to Use That!

How to Match Motion Graphs in Physics by How To Physics

Kinematics Equations

Kinematics Part 2: Vertical Motion by Professor Dave Explains

<u>Anderson Video - Kinematic Equations 1D</u> <u>by Professor Anderson</u>

Anderson Video - Kinematic Equations from Calculus by Professor Anderson

<u>Anderson Video - Car Accelerating Dragster</u> by Professor Anderson

<u>Anderson Video - Time in Air During a Dunk</u> by Professor Anderson

<u>Anderson Video - Rocket Loses Bolt on Takeoff</u> <u>by Professor Anderson</u>

<u>Anderson Video - Block on Incline</u> by Professor Anderson

Physics, Kinematics (1 of 7) One Dimensional Horizontal Motion: An Explanation by Step by Step Science

Choosing kinematic equations | One-dimensional motion | AP Physics 1 | Khan Academy by Khan Academy

Constant Acceleration Strategy by Jennifer Cash

Constant Acceleration Equations by Jennifer Cash

Vertical Motion and Free Fall

<u>Anderson Video - Time for Dropped Object to Hit Ground</u> by Professor Anderson

<u>Anderson Video - Free Fall and Gravity</u> <u>by Professor Anderson</u>

<u>Physics, Kinematics, Free Fall - Solving for Final Velocity, No.1</u> <u>by Step by Step Science</u>

<u>Physics, Kinematics, Free Fall - Solving for Final Velocity, No. 2</u> <u>by Step by Step Science</u>

<u>Physics, Kinematics, Free Fall - Solving for Time to Fall from Known Height by Step by Step Science</u>

Physics, Kinematics, Free Fall - Height Reached from Known Initial Velocity by Step by Step Science

<u>Physics, Kinematics, Free Fall - Final Velocity at Bottom</u> by Step by Step Science

Free Fall: Initial Velocity Effects by Jennifer Cash

Free Fall: Concepts by Jennifer Cash

Catch/Overtake Problems

<u>Kinematics Part 1: Horizontal Motion</u> by Professor Dave Explains

guided solution to solving physics chase problem

by STEM Space

Physics, Kinematics (6 of 7) 1 D Horizontal Motion, Solve for Time, No. 1 by Step by Step Science

Physics, Kinematic (5 of 7) 1 D Horizontal Motion, Solve for Distance, No. 2 by Step by Step Science

<u>Tricky Acceleration Equations Sample Problem Can Superman Catch Up With a Bullet by Physicshelp Canada</u>

Catch up problem physics motion area of study by StephensKangury

Motion 5 : Catch Up Questions by MisterJern

3. Vectors

Review of Vectors vs. Scalars

Scalars, Vectors, and Vector Operations by Professor Dave Explains

Intro to vectors & scalars | One-dimensional motion | Physics | Khan Academy by Khan Academy

<u>Vectors vs Scalars - IB Physics</u> <u>by Andy Masley's IB Physics Lectures</u>

Vectors and Scalars by Jennifer Cash

Introduction to Vectors

<u>Anderson Video - Vector Laws</u> <u>by Professor Anderson</u>

<u>Vector Scalar Multiplication</u> <u>by Jennifer Cash</u> <u>Vectors: equals and opposites</u> <u>by Jennifer Cash</u>

<u>Vector Notation</u> by Jennifer Cash

Adding Vectors Graphically

<u>Vector Addition (Graphically) Physics Lesson for high school</u> <u>by Physicshelp Canada</u>

<u>Vector Graphical Subtraction</u> <u>by Jennifer Cash</u>

<u>Vector Graphical Addition</u> <u>by Jennifer Cash</u>

Vector Composition & Decomposition

<u>Anderson Video - Vector Components</u> <u>by Professor Anderson</u>

<u>Vector Components Introduction</u> by Physicshelp Canada

<u>Vector Components- Samples (Physics)</u> <u>by Physicshelp Canada</u>

Breaking down vectors into components | Vectors | Precalculus | Khan Academy by Khan Academy

<u>Vector components on a grid</u> <u>by Jennifer Cash</u>

Adding Vectors by Components

<u>Anderson Video - Displacement Vectors and Adding Vectors by Professor Anderson</u>

Anderson Video - Adding Vector Components

by Professor Anderson

<u>Anderson Video - Adding Vectors Example</u> <u>by Professor Anderson</u>

<u>Anderson Video - Adding Vector Components Example</u> by Professor Anderson

Adding Vectors: How to Find the Resultant of Three or More Vectors by PhunScience

<u>Physics Vector Addition (Algebraic)</u> by Physicshelp Canada

<u>Vector Component Addition and Subtraction</u> <u>by Jennifer Cash</u>

Trig Review

<u>Anderson Video - Trigonometry</u> by Professor Anderson

Physics: 1. Basic Trigonometry by Club Academia

Physics CH 0: General Introduction (17 of 20) Basic Trigonometry for Physics - The Triangle by Michel van Biezen

<u>Trig Review for Physics - Common Math Tools - Physics 101, AP Physics 1 Review with Physics Girl by Physics Girl</u>

Unit Vectors

<u>Anderson Video - Cartesian Coordinates</u> <u>by Professor Anderson</u>

<u>Anderson Video - Unit Vectors</u> by Professor Anderson

<u>Unit Vector Notation Physics</u> <u>by This Guy</u> <u>Unit vector notation | Vectors and spaces | Linear Algebra | Khan Academy</u> by Khan Academy

Vector Notation by Jennifer Cash

Introduction to Dot Product (Scalar Product)

The Vector Dot Product
by Professor Dave Explains

<u>Physics 1 - Vectors (12 of 21) Product Of Vectors: Dot Product by Michel van Biezen</u>

Dot Product by lasseviren1

Calculating Dot Product Using Components

<u>Physics 1 - Vectors - Product Of Vectors: Dot Product: Finding the Angle by Michel van Biezen</u>

Physics 1 - Vectors - Product Of Vectors: Dot Product: Example 2 by Michel van Biezen

<u>Physics 1 - Vectors - Product Of Vectors: Dot Product: Example 1</u> by Michel van Biezen

<u>Vectors - The Dot Product</u> <u>by patrickJMT</u>

Intro to Cross Product (Vector Product)

The Vector Cross Product by Professor Dave Explains

<u>Physics 1 - Vectors (17 of 21) Product Of Vectors: Cross Product: Example 1</u> by Michel van Biezen

30.2 Cross Product by MIT OpenCourseWare <u>Physics 1 - Vectors (16 of 21) Product Of Vectors: Cross Product: Vector Product by Michel van Biezen</u>

Right-hand rule for vector cross product by BraunVideos

Calculating Cross Product Using Components

<u>Cross Product of Two Vectors Explained!</u> <u>by The Organic Chemistry Tutor</u>

Calculating dot and cross products with unit vector notation | Physics | Khan Academy by Khan Academy

The Cross Product by patrickJMT

<u>Cross product, determinant method</u> <u>by General Physics - Lowe</u>

<u>Vector Cross Product - Example 1</u> <u>by Firefly Lectures</u>

4. 2D Kinematics

Intro to Motion in 2D: Position & Displacement

<u>Anderson Video - 2D Motion and Displacement</u> <u>by Professor Anderson</u>

<u>Displacement in 2-D</u> by The Science Classroom

2D Displacement by Jennifer Cash

2D Position by Jennifer Cash

Velocity in 2D

<u>Anderson Video - 2D Motion and Velocity</u> <u>by Professor Anderson</u>

Anderson Video - 2D Motion and Derivatives by Professor Anderson

<u>Anderson Video - 2D Motion and Speed</u> by Professor Anderson

<u>Anderson Video - Projectile Motion Example: Impact Speed</u> <u>by Professor Anderson</u>

<u>Velocity in 2-D</u> <u>by The Science Classroom</u>

2D Velocity by Jennifer Cash

Acceleration in 2D

Acceleration in 2-D by The Science Classroom

2D Acceleration by Jennifer Cash

Kinematics in 2D

<u>Anderson Video - Kinematic Equations 2D</u> <u>by Professor Anderson</u>

<u>Anderson Video - Vector Kinematic Equations</u> <u>by Professor Anderson</u>

Constant Acceleration in 2D by Jennifer Cash

2D Equations of Motion by Jennifer Cash

Intro to Relative Velocity

<u>Anderson Video - Relative Motion</u> by Professor Anderson

<u>Anderson Video - Relative Motion Example</u> <u>by Professor Anderson</u>

<u>Anderson Video - Boat Crossing River</u> <u>by Professor Anderson</u>

<u>Anderson Video - Swimming Across River</u> by Professor Anderson

5. Projectile Motion

Intro to Projectile Motion: Horizontal Launch

<u>Anderson Video - Throw Baseball off a Building</u> <u>by Professor Anderson</u>

<u>Anderson Video - Fire a Bullet Horizontally</u> by Professor Anderson

<u>Anderson Video - Horizontal Bullet vs Dropped Bullet by Professor Anderson</u>

More Horizontally Launched Projectile Problems by How To Physics

<u>How to Solve Horizontally Launched Projectile Motion Problems</u> <u>by How To Physics</u>

Two Dimensional Motion (4 of 4) Horizontal Projection, Worked Example by Step by Step Science

Two Dimensional Motion (3 of 4) Horizontal Projection, An Explanation by Step by Step Science

Two Dimensional Motion (1 of 4) An Explanation by Step by Step Science

Projectile Motion Introduction by Jennifer Cash

Negative (Downward) Launch

Physics 3: Motion in 2-D Projectile Motion (4 of 21) Projectile Downward Angle by Michel van Biezen

<u>Projectile motion with downward initial velocity component. Find flight time and impact velocity.</u> <u>by Zak's Lab</u>

<u>Projectile Motion Airplane Dropping Object Sample Problem</u> <u>by Physicshelp Canada</u>

Symmetrical Launch

Two Dimensional Motion (2 of 4) Worked Example by Step by Step Science

Projectile at an angle | Two-dimensional motion | Physics | Khan Academy by Khan Academy

Projectiles Launched From Moving Vehicles

Physics 3: Motion in 2-D Projectile Motion (12 of 21) Example 1: Plane Dropping Object by Michel van Biezen

<u>Projectile Motion Airplane Dropping Object Sample Problem</u> <u>by Physicshelp Canada</u>

Special Equations in Symmetrical Launches

<u>Introduction to Projectile Motion - Formulas and Equations</u> <u>by The Organic Chemistry Tutor</u>

Positive (Upward) Launch

<u>Anderson Video - Projectile Motion Example: Time in Air</u> by Professor Anderson

Kinematics Part 3: Projectile Motion by Professor Dave Explains

Projectile Motion Problem by Jennifer Cash

6. Intro to Forces (Dynamics)

Newton's First & Second Laws

Newton's Second Law of Motion: F = ma by Professor Dave Explains

Newton's First Law of Motion: Mass and Inertia by Professor Dave Explains

<u>Anderson Video - Newton's First Law</u> <u>by Professor Anderson</u>

<u>Anderson Video - Newton's Second Law</u> by Professor Anderson

<u>Anderson Video - How Many Rubber Bands</u> by Professor Anderson

<u>Anderson Video - Double the Force What's the Acceleration by Professor Anderson</u>

Newton's First & Second Law Part 3 physics lesson by Physicshelp Canada

Newton's First & Second Law Part 2 physics lesson by Physicshelp Canada

Newton's First & Second Law Part 1 physics lesson by Physicshelp Canada

Newton's Three Laws of Motion (Clear and Easy to Follow) by Step by Step Science

Newton's 2nd Law by Jennifer Cash

Newton's 1st Law by Jennifer Cash

Types Of Forces & Free Body Diagrams

<u>Anderson Video - Force</u> by Professor Anderson

Anderson Video - What Do Forces Do by Professor Anderson

<u>Anderson Video - Free Body Diagrams</u> <u>by Professor Anderson</u>

<u>Anderson Video - Components in Free Body Diagrams</u> <u>by Professor Anderson</u>

Forces on Boxes at Angles Part 2 Physics Lesson by Physicshelp Canada

Newton's 2nd Law (15 of 21) Free Body Diagrams, One Dimensional Motion by Step by Step Science

Newton's 2nd Law (14 of 21) Free Body Diagrams; An Explanation by Step by Step Science

Free-Body Diagrams by Bozeman Science

diagram from force equation by Jennifer Cash

equations from force diagram by Jennifer Cash

force diagrams by Jennifer Cash

Tension Forces by Jennifer Cash Normal Force by Jennifer Cash

<u>Free Body Diagrams (FBD) Basics Part 1 Naming Forces</u> by Physicshelp Canada

Forces & Kinematics

<u>Dynamics: What are Forces?</u> <u>by Professor Dave Explains</u>

Newton's First & Second Law Part 7 physics lesson by Physicshelp Canada

Newton's First & Second Law Part 5 physics lesson by Physicshelp Canada

<u>Forces: Equilibrium and Non-Equilibrium</u> by Jennifer Cash

Newton's 2nd Law (1 of 21) Calculate Acceleration w/o Friction, Net Force Horizontal by Step by Step Science

Vertical Forces & Acceleration

<u>Anderson Video - Weight in an Elevator</u> <u>by Professor Anderson</u>

<u>Anderson Video - Rocket Launch</u> <u>by Professor Anderson</u>

<u>Anderson Video - The Forces from Jumping</u> <u>by Professor Anderson</u>

<u>Elevator Problems Part 1 Free Body Diagram Physics Lesson</u> <u>by Physicshelp Canada</u>

Newton's 2nd Law (6a of 21) The Normal Force, The Elevator by Step by Step Science

non equilibrium forces

by Jennifer Cash

Vertical Equilibrium & The Normal Force

Anderson Video - Mass vs Weight by Professor Anderson

<u>Anderson Video - Terminal Velocity</u> <u>by Professor Anderson</u>

<u>Anderson Video - Weight During a Full Moon</u> <u>by Professor Anderson</u>

<u>Anderson Video - Weight on Earth vs Weight on Moon</u> <u>by Professor Anderson</u>

<u>Anderson Video - Weight</u> <u>by Professor Anderson</u>

<u>Elevator Problems Part 3 Free Body Diagram Physics Lesson</u> <u>by Physicshelp Canada</u>

<u>Elevator Problems Part 2 Free Body Diagram Physics Lesson</u> <u>by Physicshelp Canada</u>

<u>Friction & Newtons Law's Fn is not %\$#! equal to Fg! Part 5 Simple Version by Physicshelp Canada</u>

Newton's 2nd Law (5 of 21) The Normal Force, An Explanation by Step by Step Science

Normal Force by Jennifer Cash

Forces in 2D

<u>Forces on Boxes at Angles Part 4 Physics Lesson</u> <u>by Physicshelp Canada</u>

<u>Forces on Boxes at Angles Part 3 Physics Lesson</u> <u>by Physicshelp Canada</u> <u>Forces on Boxes at Angles Part 1 Physics Lesson</u> by Physicshelp Canada

Newton's 2nd Law (4 of 21) Calculate Acceleration with Friction, Net Force Above the Horizontal by Step by Step Science

Equilibrium in 2D

equilibrium forces by Jennifer Cash

Newton's Third Law & Action-Reaction Pairs

Newton's Third Law of Motion: Action and Reaction by Professor Dave Explains

<u>Anderson Video - Newton's Third Law Introduction</u> by Professor Anderson

<u>Anderson Video - Newton's Third Law</u> <u>by Professor Anderson</u>

Newton's Three Laws of Motion (Clear and Easy to Follow) by Step by Step Science

Newton's Third Law by Bozeman Science

Newton's 3rd Law by Jennifer Cash

Newton's Third Law Part 2 Physics Lessons by Physicshelp Canada

Newton's Third Law Part 1 Physics Lessons by Physicshelp Canada

Forces in Connected Systems of Objects

<u>Anderson Video - Tension to Keep a Wire Perfectly Horizontal</u> <u>by Professor Anderson</u> <u>Anderson Video - Two Blocks on a Table</u> <u>by Professor Anderson</u>

<u>Anderson Video - Newton's Third Law, Two Blocks Tied Together</u> by Professor Anderson

<u>Anderson Video - Pulley with Two Masses</u> <u>by Professor Anderson</u>

<u>Anderson Video - Box with Pulley</u> <u>by Professor Anderson</u>

<u>Anderson Video - Tension Problem</u> <u>by Professor Anderson</u>

<u>Anderson Video - Tension Problem - Part 2</u> <u>by Professor Anderson</u>

Newton's 2nd Law (19 of 21) Will it Accelerate? Table with Pulley and Two Masses by Step by Step Science

Newton's 2nd Law (12 of 21) Calculate Acceleration w/o Friction; Inclined Plane, Pulley, Two Masses

Newton's 2nd Law (10 of 21) Calculate Acceleration w/o Friction; Table, Pulley, Two Masses by Step by Step Science

Newton's 2nd Law (7 of 21) Atwood Machine, Acceleration & Tension (revised) by Step by Step Science

Newton's Third Law Part 6 Boxes Pulled Physics Lessons by Physicshelp Canada

Newton's Third Law Part 5 Boxes Pushed Physics Lessons by Physicshelp Canada

7. Friction, Inclines, Systems

<u>Anderson Video - Acceleration on an Incline</u> <u>by Professor Anderson</u> <u>Vectors on an inclined plane, and how normal force compares to weight. Vector components on incline. by Zak's Lab</u>

Newton's Second Law, Calculating Acceleration, With and Without Friction by Step by Step Science

Newton's 2nd Law (20 of 21) Will it Accelerate? Inclined Plane w/o Friction and a Pulley by Step by Step Science

Newton's 2nd Law (18 of 21) Will it Accelerate? Inclined Plane and One Mass by Step by Step Science

Newton's 2nd Law (8 of 21) Calculate Acceleration w/o Friction; Inclined Plane, One Mass by Step by Step Science

Kinetic Friction

<u>Anderson Video - Sliding with Friction</u> <u>by Professor Anderson</u>

<u>Anderson Video - Friction and Cars</u> by Professor Anderson

<u>Friction & Newton's Laws Part 4 Sample Problem</u> <u>by Physicshelp Canada</u>

<u>Friction & Newton's Laws Part 3 Sample Problem</u> <u>by Physicshelp Canada</u>

<u>Friction & Newton's Laws Part 1 Coefficient Intro</u> <u>by Physicshelp Canada</u>

<u>Frictional Forces: Static and Kinetic</u> <u>by Professor Dave Explains</u>

Newton's 2nd Law (2 of 21) Calculate Acceleration with Friction, Net Force Horizontal by Step by Step Science

Kinetic Friction Equation by Jennifer Cash

Static Friction

<u>Anderson Video - Book Gripping</u> <u>by Professor Anderson</u>

<u>Anderson Video - Propulsion Force of a Car</u> by Professor Anderson

<u>Friction & Newton's Laws Part 2 Kinetic Vs Static Friction</u> <u>by Physicshelp Canada</u>

<u>Frictional Forces: Static and Kinetic</u> <u>by Professor Dave Explains</u>

Static Friction Equation by Jennifer Cash

Inclined Planes with Friction

<u>Anderson Video - Box Sliding on Incline</u> by Professor Anderson

Newton's Second Law, Calculating Acceleration, With and Without Friction by Step by Step Science

Newton's 2nd Law (18 of 21) Will it Accelerate? Inclined Plane and One Mass by Step by Step Science

Newton's 2nd Law (9 of 21) Calculate Acceleration with Friction; Inclined Plane, One Mass by Step by Step Science

Systems of Objects with Friction

<u>Friction & Newton's Laws Part 6 Boxes Pulled FBD Physics</u> <u>by Physicshelp Canada</u>

Newton's 2nd Law (19 of 21) Will it Accelerate? Table with Pulley and Two Masses by Step by Step Science

Newton's 2nd Law (11 of 21) Calculating Acceleration with Friction; Table, Pulley, Two Masses by Step by Step Science

Systems of Objects on Inclined Planes with Friction

<u>Anderson Video - Two Masses, a Pulley and an Incline</u> <u>by Professor Anderson</u>

<u>Tilted Atwood machine with friction: diagram, normal force, friction force, acceleration, tension.</u>
<u>by Zak's Lab</u>

Newton's 2nd Law (21 of 21) Will it Accelerate? Inclined Plane with Friction and a Pulley by Step by Step Science

Newton's 2nd Law (13 of 21) Calculate Acceleration with Friction; Inclined Plane, Pulley, Two Masses by Step by Step Science

Stacked Blocks

Friction & Newton's Laws Part 8 Staked Blocks FBD Physics by Physicshelp Canada

Friction & Newton's Laws Part 7 Stacked Blocks FBD Physics by Physicshelp Canada

Intro to Springs (Hooke's Law)

<u>High School Physics - Springs and Hooke's Law</u> <u>by Dan Fullerton</u>

Hooke's Law by Niall Murphy

Simple Harmonic Motion (9 of 16): Hooke's Law, Example Problems by Step by Step Science

Hooke's Law Demo: Assorted Springs by Physics Demos

Spring Force by Jennifer Cash

8. Centripetal Forces & Gravitation

Uniform Circular Motion

Anderson Video - Uniform Circular Motion by Professor Anderson

Relating linear and angular speed in physics. by Zak's Lab

Obtaining an expression for angular velocity and a formula for angle as a function of time. by Zak's Lab

Period and Frequency in Uniform Circular Motion

5.1 Uniform Circular Motion by Physics Demos

Angular velocity, frequency and period for a spinning disk. by Zak's Lab

Centripetal Forces

<u>Anderson Video - Weight on Rotating Earth</u> by Professor Anderson

<u>Anderson Video - Spinning Room Amusement Park Ride</u> <u>by Professor Anderson</u>

Solving the conical pendulum (uniform circular motion for a string that sags below the horizontal). by Zak's Lab

<u>Finding the tension in the string for a rock whirled around horizontally in uniform circular motion.</u>
<u>by Zak's Lab</u>

Physics Help: Centripetal Force Free Body Diagrams Part 7 by Physicshelp Canada

<u>Centripetal Force & Acceleration Physics Lesson Part 5 Dynamics by Physicshelp Canada</u>

Vertical Centripetal Forces

<u>Anderson Video - Roller Coaster Loop the Loop</u> <u>by Professor Anderson</u>

Anderson Video - Forces on a Ball Attached to a String by Professor Anderson

Normal force during a dip in the road. by Zak's Lab

Computing normal force for a roller coaster rider at the top and bottom of a loop. by Zak's Lab

<u>Centripetal Force Sample Problem Using Free Body Diagrams and a Ferris Wheel</u> <u>by Physicshelp Canada</u>

<u>Centripetal Force & Acceleration Physics Lesson Part 3 Dynamics for High School by Physicshelp Canada</u>

<u>Centripetal Force & Acceleration Physics Lesson Part 2 Dynamics</u> <u>by Physicshelp Canada</u>

Flat Curves

<u>Anderson Video - Which Coin Flies Off Turntable First</u> <u>by Professor Anderson</u>

<u>Anderson Video - How Fast Can I Drive in a Circle</u> by Professor Anderson

How fast can a car take a turn on a flat road (with friction)? by Physics Explained

Car on a Flat Circular Track (unbanked curve) by Dr Muhammad Adeel Ajaib

<u>Calculating the maximum speed for a car rounding a corner on a flat road, uniform circular motion.</u> by Zak's <u>Lab</u>

Banked Curves

<u>Anderson Video - Car on a Banked Curve</u> by Professor Anderson

Banked Curve with Friction: Finding Maximum and Minimum Speed by Physics Ninja

Banked Curve Physics - Uniform Circular Motion by Physics Ninja

Banked turn with friction. by Zak's Lab

Ideal banking angle car rounds a banked turn without friction, frictionless banked curve by Zak's Lab

<u>Centripetal Force & Acceleration Physics Lesson Part 4 Dynamics</u> by Physicshelp Canada

Newton's Law of Gravity

<u>Anderson Video - Gravity at Altitude</u> <u>by Professor Anderson</u>

<u>Anderson Video - Gravity at the Center of the Earth</u> <u>by Professor Anderson</u>

<u>Anderson Video - Newton's Big G and Earth's Little g</u> <u>by Professor Anderson</u>

<u>Anderson Video - Newton's Universal Gravitation</u> <u>by Professor Anderson</u>

<u>Anderson Video - Weight on Earth vs Moon</u> <u>by Professor Anderson</u>

<u>Anderson Video - Difference Between the Sun and Earth's Gravity by Professor Anderson</u>

<u>Anderson Video - Dropping a Rock on Mars</u> by Professor Anderson

Newton's Law of Universal Gravitation by Professor Mac by learnwithmac AP Physics 1: Universal Gravitation Review by Flipping Physics

<u>Gravity, Universal Gravitation Constant - Gravitational Force Between Earth, Moon & Sun.</u>
<u>Physics by The Organic Chemistry Tutor</u>

Newton's law of gravitation explained by PhysicsHigh

Newton's Law of Universal Gravitation by Professor Dave Explains

12.2 Angular Momentum and Orbital Motion by Jamie Turner

AP Physics 1: Universal Gravitation Review by Flipping Physics

Henry Cavendish.mov Janet's Planet

<u>The Cavendish Experiment - Obvious Gravitational Attraction</u>
MrLundScience

The Cavendish experiment and G Genevieve

Gravitational Forces in 2D

<u>Introduction to the gravitational force</u> <u>by Rhett Allain</u>

<u>Gravitational Force</u> <u>by Bozeman Science</u>

<u>Gravitational Force | Physics Animation</u> <u>by EarthPen</u>

Gravitational Forces
by Bozeman Science

Gravity Demo Part 2 Basic Demo by SpaceSciNewsroom

Net Gravitational Force in 2D (Example) by Clutch Prep

Chapter 13: 2D Gravitational Force by Physics with Doc Harris

Acceleration Due to Gravity

<u>Anderson Video - Hole Through the Center of the Earth</u> <u>by Professor Anderson</u>

<u>Freely Falling Objects and Acceleration Due to Gravity by TutorVista</u>

Measure Acceleration Due to Gravity by Simple Science and Maths

<u>Analyzing the Apollo 15 Feather and Hammer Drop - A Basic, Introductory Free-Fall Problem by Flipping Physics</u>

Acceleration Due to Gravity: Slo-mo ball drop by GazdonianProductions

<u>Gravitational Acceleration Physics Problems, Formula & Equations</u> by The Organic Chemistry Tutor

Introduction to Free-Fall and the Acceleration due to Gravity by Flipping Physics

Gravitation (4 of 17) Calculating Acceleration Due to Gravity (g) by Step by Step Science

Satellite Motion: Intro

Satellite Motion Principles by The Physics Classroom

Satellite Motion

by Drew McGlashen

Satellite Motion Introduction by andrew Minczeski

Intro To Satellite Motion by Michael Dunkle

Satellite Motion Introduction by Dana Daugharthy

How Satellite Works (Animation) by KINETIC SCHOOL

Satellite Motion: Speed & Period

Satellite motion [™]
by Tension-Free Physics

A satellite is in a circular orbit around the Earth at an altitude of 2.80 x 10⁶ m. Find (a) the pe by The Study Hall

<u>Gravitation (6 of 17) Calculating the Orbital Period of a Satelite by Step by Step Science</u>

Satellite Motion Mathematics by The Physics Classroom

orbital period of a satellite by stewartphysics

Speed of a Satellite in Circular Orbit, Orbital Velocity, Period, Centripetal Force, Physics Problem by The Organic Chemistry Tutor

<u>Calculating the Speed, Period, and Acceleration of a Satellite</u> <u>by Study Force</u>

Geosynchronous Orbits

<u>Calculating the Height of a Geosynchronous Satellite</u> <u>by Harold Walden</u> <u>Calculations for Earth's Geosynchronous (aka Geostationary) Orbit: Physics Problem</u> by dcaulf

Satellite Orbit Types by sternen welten

<u>Gravitation (8 of 17) Geosynchronous and Geostationary Orbits</u> <u>by Step by Step Science</u>

<u>Physical Science 2.6o - Geosynchronous Orbits</u> <u>by Derek Owens</u>

Altitude of Geostationary Orbit (a special case of Geosynchronous Orbit) by Flipping Physics

<u>Physics - Mechanics: Gravity (15 of 20) What is Geosynchronous Orbit?</u> by Michel van Biezen

Overview of Kepler's Laws

<u>Anderson Video - Kepler's Laws</u> <u>by Professor Anderson</u>

<u>Anderson Video - Speed of Pluto</u> <u>by Professor Anderson</u>

Anderson Video - Kepler's Second Law by Professor Anderson

<u>Earth Science Review Video 8: Astronomy Unit 3 - Kepler's 3 Laws by Mr Zinke</u>

Kepler's Laws and How Newton Got Cool | Doc Physics by Doc Schuster

<u>Gravitation: Kepler's Laws of Planetary Motion, An Explanation</u> <u>by Step by Step Science</u>

Kepler's Laws of Planetary Motion by Science with Thomas Stevenson

<u>History of Astronomy Part 4: Kepler's Laws and Beyond</u> <u>by Professor Dave Explains</u>

KEPLER'S LAWS | Physics Animation by EarthPen

Kepler's First Law

<u>Physics - Mechanics: Gravity (10 of 20) Keppler's 1st Law For Planetary Orbits by Michel van Biezen</u>

Kepler's First Law DERIVATION by AstroNaught

<u>Lecture 15.6 - Deriving Kepler's 1st Law, Pt. 1</u> <u>by HMC Mooc</u>

<u>Lecture 15.7 - Deriving Kepler's 1st Law, Pt. 2</u> by HMC Mooc

Kepler's First Law by Lawrence Flint

Kepler's First Law by Saul Hernandez

Kepler's First Law of Planetary Motion by Flipping Physics

<u>Kepler's First Law of Motion - Elliptical Orbits (Astronomy)</u> by Socratica

Kepler's Third Law

<u>Anderson Video - Periods of Different Orbits</u> <u>by Professor Anderson</u>

Kepler's 3rd Law for Planetary Celestial Mechanics Physics Lesson by Physicshelp Canada

<u>Physics - Mechanics: Gravity (13 of 20) Keppler's 3rd Law</u> by Michel van Biezen

Kepler's Third Law Derivation

by Flipping Physics

How to solve a Kepler's Third Law problem by PhysicsHigh

Physics S08 7c - Keplers Third Law by Derek Owens

Kepler's Third Law of Motion - Law of Periods (Astronomy) by Socratica

9. Work & Energy

Intro to Energy & Kinetic Energy

Kinetic Energy: Example Problems by Step by Step Science

Where does the kinetic energy formula come from? by Zak's Lab

Work and Energy by Professor Dave Explains

Intro to Calculating Work

Anderson Video - Work by Professor Anderson

<u>Anderson Video - Work and Dot Product</u> <u>by Professor Anderson</u>

Anderson Video - Work Done by Friction by Professor Anderson

<u>Anderson Video - Work due to Multiple Forces</u> <u>by Professor Anderson</u>

Work done by a constant force + examples. by Zak's Lab

Work and the Dot Product by Jennifer Cash

Work: Angle Affects by Jennifer Cash

Work: by a constant force by Jennifer Cash

Net Work & Work-Energy Theorem

<u>Anderson Video - Work Lowering an Object</u> <u>by Professor Anderson</u>

Work Energy Principle by Bozeman Science

Work done by a constant force on a brick, and final speed. Includes friction. by Zak's Lab

<u>Calculating work done by drag in a vertical fall. Work done by gravity and drag given final speed.</u>
<u>by Zak's Lab</u>

<u>Calculating total work and final speed when the force is constant over time.</u>
<u>by Zak's Lab</u>

<u>Calculating net work and final speed, with applied force at an angle and friction.</u> by Zak's Lab

<u>Physics Lesson: Kinetic Energy and Work, Conservation Part 3 Help Lesson</u> by Physicshelp Canada

<u>Physics Lesson: Kinetic Energy and Work, Conservation Part 2 Help Lesson</u> by Physicshelp Canada

Work - Kinetic Energy Theorem by Jennifer Cash

Work: Introduction by Jennifer Cash

Work On Inclined Planes

Physics 8 Work, Energy, and Power (7 of 37) Inclined Plane (Friction) by Michel van Biezen

Physics 8 Work, Energy, and Power (6 of 37) Inclined Plane (Frictionless) by Michel van Biezen

Work done by friction at constant speed on inclined plane. Work energy theorem friction concepts. by Zak's Lab

Calculating the total work and final speed for a block sliding down an incline. by Zak's Lab

Work By Springs

Anderson Video - Work Done by a Spring by Professor Anderson

<u>Anderson Video - Box Hits Spring with Friction</u> <u>by Professor Anderson</u>

Find the spring constant and the work done by/on the spring. by Zak's Lab

Work done *on* a spring vs. work done *by* a spring. by Zak's Lab

Work: Spring Forces by Jennifer Cash

Work As Area Under F-x Graphs

Work as area under curve | Work and energy | Physics | Khan Academy by Khan Academy Physics

Energy, Work & Power (22 of 31) Work from the Force vs. Displacement Graph, No. 1 by Step by Step Science

<u>Calculating work and final speed from a graph of F(x), varying force.</u>
<u>by Zak's Lab</u>

Work by Variable Forces by Jennifer Cash

Power

<u>Anderson Video - Power</u> <u>by Professor Anderson</u>

<u>Anderson Video - Hydroelectric Dam</u> <u>by Professor Anderson</u>

<u>Anderson Video - Your Electric Bill</u> <u>by Professor Anderson</u>

<u>Calculating Power in Physics: Example Problems</u> <u>by Step by Step Science</u>

Average power output for a crane lifting a load. by Zak's Lab

Introduction to power: definition, examples, power vs. time graphs, constant velocity power formula. by Zak's Lab

Power: Introduction by Jennifer Cash

10. Conservation of Energy

Intro to Energy Types

<u>Anderson Video - Energy</u> <u>by Professor Anderson</u>

<u>Physics - Energy - Types of Energy</u> by expertmathstutor

Kinetic Energy and Potential Energy by Professor Dave Explains

Gravitational Potential Energy

<u>Anderson Video - Potential Energy and Gravity</u> <u>by Professor Anderson</u>

<u>Anderson Video - Gravitational Potential Energy</u> by Professor Anderson

<u>Anderson Video - Mt Whitney Potential Energy</u> <u>by Professor Anderson</u>

<u>Gravitational Potential Energy</u> <u>by lasseviren1</u>

What is Gravitational Potential Energy - a deeper understanding by PhysicsHigh

<u>Physics - Mechanics:Gravity (16 of 20) Gravitational Potential Energy</u> <u>by Michel van Biezen</u>

<u>Universal Gravitational Potential Energy Derivation</u> by Flipping Physics

<u>Gravitational Potential and Gravitational Potential Energy</u> by Cowen Physics

<u>Universal Gravitational Potential Energy Introduction</u> <u>by Flipping Physics</u>

What is gravitational potential energy?? by Study Animated

<u>Gravitational Potential Energy, Example Problems</u> <u>by Step by Step Science</u>

Gravitational potential energy and the work done by gravity. by Zak's Lab

Potential Energy of Gravity by Jennifer Cash

Intro to Conservation of Energy

Anderson Video - Energy in Free Fall

by Professor Anderson

<u>Anderson Video - Energy- Skier on Incline</u> <u>by Professor Anderson</u>

<u>Anderson Video - Energy- Roller Coaster</u> by Professor Anderson

<u>Anderson Video - Energy- Projectile</u> <u>by Professor Anderson</u>

Quick proof of conservation of energy. by Zak's Lab

<u>Kinetic Energy and Work Physics Lesson Conservation Part 1</u> <u>by Physicshelp Canada</u>

Conservation of Energy: Free Fall, Springs, and Pendulums by Professor Dave Explains

Mechanical Energy Conservation Equation by Jennifer Cash

<u>Conservation of Energy: Concept</u> <u>by Jennifer Cash</u>

Energy with Non-Conservative Forces

<u>Conservation of energy with a friction term, sliding down the hill problem.</u> <u>by Zak's Lab</u>

Block projected by a spring, rough surface. Rough surface work done by friction sliding to a stop. by Zak's Lab

Energy Conservation Slide Problem by Physicshelp Canada

Non-Conservative Work Equation by Jennifer Cash

Non-conservative forces by Jennifer Cash

Springs & Elastic Potential Energy

Anderson Video - Energy- Springs by Professor Anderson

<u>Anderson Video - Spring Mechanics</u> <u>by Professor Anderson</u>

<u>Anderson Video - Energy- Spring Launcher</u> by Professor Anderson

<u>Anderson Video - Horizontal vs Vertical Springs</u> <u>by Professor Anderson</u>

<u>Anderson Video - Stretched Spring and Energy</u> <u>by Professor Anderson</u>

Max speed of a block shot by a spring conservation of energy. Spring-block maximum speed. by Zak's Lab

Spring potential energy and work done by a spring. Negative work done by spring during compression. by Zak's Lab

Simple Harmonic Motion: Hooke's Law by Professor Dave Explains

Potential Energy of a Spring by Jennifer Cash

Solving Projectile Motion Using Energy

<u>Anderson Video - Ball Toss Example</u> <u>by Professor Anderson</u>

AP Physics 1: Work and Energy 10: Conservation of Energy: Projectile Problem by Yau-Jong Twu

<u>Ch 5 - Work and Energy - Conservation Of Energy With Projectile Motion.mov by Mike Spalding</u>

Rollercoaster Problems

<u>Anderson Video - Bicycle Down and Up Hill Example</u> <u>by Professor Anderson</u>

Normal force at bottom of a bowl, cart rolls into a bowl energy and circular motion physics problem. by Zak's Lab

<u>Speed and normal force through a roller coaster loop. 9G acceleration!</u> <u>by Zak's Lab</u>

Conservation of energy, minimum height for the roller coaster loop, minimum speed for the loop. by Zak's Lab

Calculate the height to go around a loop of a roller coaster by Physicshelp Canada

Physics Roller Coaster Problem Conservation of Energy by Physicshelp Canada

Pendulum Problems

<u>Anderson Video - Pendulum Example</u> <u>by Professor Anderson</u>

Simple Harmonic Motion (6 of 16): Pendulum Velocity from Angle of Displacement by Step by Step Science

<u>Simple Harmonic Motion (5 of 16): Pendulum Velocity from Height of Displacement</u> by Step Science

Simple pendulum maximum starting height for maximum tension in the string before it breaks. by Zak's Lab

Simple pendulum: find the pendulum speed at the bottom and tension in the string at the bottom. by Zak's Lab

<u>Pendulum speed at the bottom using energy and tension at the bottom using circular motion.</u> <u>by Zak's Lab</u>

Energy concept question: compare the impact speed of three projectiles. by Zak's Lab

Energy in Connected Objects (Systems)

Atwood machine with a spring: maximum stretch, maximum speed, and acceleration. by Zak's Lab

<u>Use conservation of energy to find the final speed of the mass/pulley system.</u> by Zak's Lab

Computing speed and maximum height for a block shot vertically by a spring. Max height of the mass. by Zak's Lab

Elastic Energy Springs Part 2 Physics Tutorial by Physicshelp Canada

Elastic Energy Springs Part 1 Physics Lesson by Physicshelp Canada

Force & Potential Energy

<u>Anderson Video - Force and Potential Energy Example</u> by Professor Anderson

<u>Calculating Force From Potential Energy</u> <u>by Scott Secrest</u>

25.1 Force is the Derivative of Potential by MIT OpenCourseWare

Potential energy function and equilibria starting from a force function. by Zak's Lab

Computing force from a potential energy function (calculus based physics) by Zak's Lab

11. Momentum & Impulse

Intro to Momentum

<u>Anderson Video - Momentum and Force</u> <u>by Professor Anderson</u> <u>Anderson Video - Momentum and Rocket Propulsion</u> by Professor Anderson

Physics introduction: momentum and impulse for an accelerating cart using final and initial momentum by Zak's Lab

Momentum (2 of 16) Momentum and Force by Step by Step Science

Momentum (1 of 16) An Explanation by Step by Step Science

<u>Impulse and Momentum</u> <u>by Professor Dave Explains</u>

Momentum by Bozeman Science

Momentum as a Vector by Jennifer Cash

Momentum Introduction by Jennifer Cash

Intro to Impulse

<u>Anderson Video - Impulse Problem</u> <u>by Professor Anderson</u>

<u>Anderson Video - Breaking a Window Rock or Clay</u> by Professor Anderson

<u>Calculating the average force during a bounce. Force, impulse and time relationship: F=dp/dt.</u> <u>by Zak's Lab</u>

Momentum (5 of 16) Impulse, Example 1 by Step by Step Science

Momentum (3 of 16) Impulse, An Explanation by Step by Step Science

Impulse by Bozeman Science Impulse: Introduction by Jennifer Cash

Impulse with Variable Forces

<u>Anderson Video - Impulse of a Tennis Ball</u> <u>by Professor Anderson</u>

Physics 10 Momentum and Impulse (14 of 30) Ball Hitting Wall: Ex. 4 by Michel van Biezen

Physics 10 Momentum and Impulse (3 of 30) Impulse: Graphical Representation by Michel van Biezen

Force-time graph used to calculate impulse and work. by Zak's Lab

Momentum (4 of 16) Force vs Time Graph by Step by Step Science

Intro to Conservation of Momentum

<u>Anderson Video - Is Momentum Conserved for a Tossed Object</u> by Professor Anderson

Momentum Part 2 High School College Physics Tutorial by Physicshelp Canada

Collisions: 2 Body in 1D by Jennifer Cash

<u>Isolated Systems: Momentum</u> <u>by Jennifer Cash</u>

Push-Away Problems

<u>Anderson Video - Momentum in Explosions</u> <u>by Professor Anderson</u>

More Push Away Problems Example 1

by Clutch Prep

Push Away Problems by Clutch Prep

<u>Conservation of Momentum Physics Problems - Basic Introduction</u> <u>by The Organic Chemistry Tutor</u>

Types of Collisions

Momentum (10 of 16) Elastic Collisions, An Explanation by Step by Step Science

Momentum (6 of 16) Inelastic Collisions, An Explanation by Step by Step Science

Elastic and Inelastic Collisions by Professor Dave Explains

Elastic and Inelastic collisions : Conceptual Introduction by Jennifer Cash

Completely Inelastic Collisions

<u>Anderson Video - Momentum in 1D Car Collision</u> <u>by Professor Anderson</u>

<u>Anderson Video - Change in Momentum</u> <u>by Professor Anderson</u>

Physics 10 Momentum and Impulse (29 of 30) 2-D Inelastic Collision Ex.3 by Michel van Biezen

<u>Clay ball stops a block: minimum speed to stop the block, find the initial speed and energy lost.</u> by Zak's Lab

<u>Combined masses collide, speed after each collision, energy lost in each collision.</u> <u>by Zak's Lab</u> Momentum, energy, speed, impulse and average force in a perfectly inelastic collision. by Zak's Lab

<u>Energy lost in inelastic collision. Conservation of momentum inelastic collision missing energy.</u> <u>by Zak's Lab</u>

Momentum (9 of 16) Inelastic Collisions, Example 3 by Step by Step Science

Momentum (8 of 16) Inelastic Collisions, Example 2 by Step by Step Science

Momentum (7 of 16) Inelastic Collisions, Example 1 by Step by Step Science

Momentum Part 1 Physics Lesson by Physicshelp Canada

Perfectly Inelastic Collisions by Jennifer Cash

Adding Mass to a Moving System

<u>Anderson Video - Momentum: Bird vs Bug</u> <u>by Professor Anderson</u>

<u>Conservation of Momentum Physics Problems - Basic Introduction</u> <u>by The Organic Chemistry Tutor</u>

Object dropped into a cart final speed: momentum conservation hay bail dropped into cart physics. by Zak's Lab

Momentum conservation: shooting clay balls at a cart. Multiple inelastic collisions. by Zak's Lab

Collisions & Motion (Momentum & Energy)

<u>Anderson Video - Momentum- Collisions in 2D</u> <u>by Professor Anderson</u>

<u>Anderson Video - Collision of Box Sliding Down Hill</u> <u>by Professor Anderson</u> <u>Anderson Video - Weighing Lunch</u> <u>by Professor Anderson</u>

Spring gun momentum problem: spring with known compression launches a ball to accelerate a cart. by Zak's Lab

Physics momentum explosion with three objects: find the speeds given directions and total energy, by Zak's Lab

<u>1D perfectly inelastic collision with a slide to a stop. Conservation of momentum then work-energy. by Zak's Lab</u>

Momentum and energy explosion problem: find the percent energy in each mass explosion problem. by Zak's Lab

Ballistic Pendulum

<u>Anderson Video - Ballistic Pendulum</u> by Professor Anderson

<u>Inelastic pendulum collision with conservation of energy and momentum for collision followed by rise by Zak's Lab</u>

Ballistic pendulum with spring gun: inelastic pendulum collision followed by energy conservation. by Zak's Lab

Momentum, Impulse & Collisions: Ballistic Pendulum, Example Problems by Step by Step Science

Momentum, Impulse & Collisions: Ballistic Pendulum, An Explanation by Step by Step Science

Collisions with Springs

<u>Anderson Video - Spring Problem</u> <u>by Professor Anderson</u>

Maximum compression of the spring in elastic collision: perfectly symmetric collision problem. by Zak's Lab

Coiled spring launches two masses, momentum and energy with two masses and compressed spring. by Zak's Lab

Elastic Collisions

Perfectly elastic collision in one dimension algebra trick, elastic collision algebra one dimension. by Zak's Lab

Momentum (16 of 16) Elastic Collisions, Example 6 by Step by Step Science

Momentum (15 of 16) Elastic Collisions, Example 5 by Step by Step Science

Momentum (14 of 16) Elastic Collisions, Example 4 by Step by Step Science

Momentum (13 of 16) Elastic Collisions, Example 3 by Step by Step Science

Momentum (12 of 16) Elastic Collisions, Example 2 by Step by Step Science

Momentum (11 of 16) Elastic Collisions, Example 1 by Step by Step Science

Momentum (10 of 16) Elastic Collisions, An Explanation by Step by Step Science

Intro to Center of Mass

<u>Anderson Video - Center of Mass</u> <u>by Professor Anderson</u>

Perfectly elastic collision in center of mass reference frame, one dimensional collision. by Zak's Lab

Center of mass velocity and the center of mass reference frame. by Zak's Lab

<u>Center of mass vector in 2D and center of mass components + 2 dimensional center of mass example. by Zak's Lab</u>

12. Rotational Kinematics

Rotational Position & Displacement

Rotational Motion: Kinematic Equations, Example Problems by Step by Step Science

Rotational Motion: An Explanation, Angular Displacement, Velocity and Acceleration by Step by Step Science

Rotational Motion
by Bozeman Science

Angular Motion and Torque by Professor Dave Explains

Angular Position and Displacement by Jennifer Cash

Angle Units by Jennifer Cash

More Connect Wheels (Bicycles)

<u>Anderson Video - Non-Uniform Circular Motion</u> <u>by Professor Anderson</u>

Rotational Motion: Kinematic Equations, Example Problems by Step by Step Science

Rotational Motion: An Explanation, Angular Displacement, Velocity and Acceleration by Step by Step Science

Rotational Motion by Bozeman Science

Angular Motion and Torque by Professor Dave Explains

Angular Velocity and Acceleration by Jennifer Cash

Equations of Rotational Motion

<u>Anderson Video - Rotational Kinematic Equations</u> <u>by Professor Anderson</u>

<u>Anderson Video - Rotational Motion for Merry Go Round</u> <u>by Professor Anderson</u>

Rotational Motion: Kinematic Equations, Example Problems by Step by Step Science

Angular Motion and Torque by Professor Dave Explains

Constant Angular Acceleration by Jennifer Cash

Converting Between Linear & Rotational

<u>Anderson Video - Spinning Ice Skater</u> <u>by Professor Anderson</u>

Relating angular and regular motion variables | Physics | Khan Academy by Khan Academy Physics

Rotational Motion: An Explanation, Angular Displacement, Velocity and Acceleration by Step by Step Science

Rotational Motion
by Bozeman Science

Angular & Translational Quantities by Jennifer Cash

Types of Acceleration in Rotation

Types of Acceleration in Rotation by Clutch Prep

Rotational Motion: An Explanation, Angular Displacement, Velocity and Acceleration

by Step by Step Science

Rolling Motion (Free Wheels)

Rotational Motion: Kinematic Equations, Example Problems by Step by Step Science

Intro to Connected Wheels

AP Physics 1: Rotation 8: Constant Angular Acceleration: 2 Wheels Linked by Belt or 2 Meshing Gears by Yau-Jong Twu

13. Rotational Inertia & Energy

More Conservation of Energy Problems

Angular dynamics and energy conservation, spin rate in a kinetic energy recovery system (KERS). by Zak's Lab

Conservation of Energy in Rolling Motion

Rolling without slipping problems | Physics | Khan Academy by Khan Academy Physics

Parallel Axis Theorem

<u>Physics - Mechanics: Moment of Inertia (1 of 7) Parallel Axis Theorem: Example 1 by Michel van Biezen</u>

29.4 Parallel Axis Theorem by MIT OpenCourseWare

<u>Parallel Axis Theorem & Moment of Inertia - Physics Practice Problems</u> <u>by The Organic Chemistry Tutor</u>

Intro to Moment of Inertia

<u>Anderson Video - Moment of Inertia</u> <u>by Professor Anderson</u> Moment of Inertia
by Jennifer Cash

Moment of Inertia via Integration

29.5 Deep Dive - Moment of Inertia of a Sphere by MIT OpenCourseWare

29.3 Moment of Inertia of a Disc by MIT OpenCourseWare

Rotational Inertia of a Slender Rod of NON-UNIFORM Mass Density (See Note in Description.) by lasseviren1

29.2 Moment of Inertia of a Rod by MIT OpenCourseWare

Moment of Inertia of Systems

Moment of Inertia of a system of masses by Rod

Moment of Inertia by Jennifer Cash

Moment of Inertia & Mass Distribution

More on moment of inertia | Moments, torque, and angular momentum | Physics | Khan Academy by Khan Academy Physics

Intro to Rotational Kinetic Energy

<u>Anderson Video - Race Down Incline</u> <u>by Professor Anderson</u>

Rotational Kinetic Energy by lasseviren1

Rotational Kinetic Energy by Jennifer Cash

Energy of Rolling Motion

<u>Anderson Video - Pure Rolling Motion</u> <u>by Professor Anderson</u>

Rotational Kinetic Energy by wuphysics

Types of Motion & Energy

<u>Total Kinetic Energy (Translational and Rotational)</u> by Andrey K

Conservation of Energy with Rotation

Conservation of Energy with Rotation by Clutch Prep

<u>Potential energy of a rigid body formula, and quick example of rigid body potential.</u> by Zak's Lab

Torque with Kinematic Equations

Rotational Kinematics & Torque by Matt Becker

Rotational Kinematics & Torque by Matt Becker

<u>Kinematic rotations and torque equations</u> by Physics screencasts

Torque with Kinematic Equations by Clutch Prep

Rotational Dynamics with Two Motions

<u>Pulley Physics Problem - Finding Acceleration and Tension Force</u> <u>by The Organic Chemistry Tutor</u>

Rotational motion: Finding the velocity of the hanging mass and angular momentum of the sphere. by John Mwenya

Rotational Dynamics: The Simple Yo-Yo Problem by Physics Ninja

Physics - Application of the Moment of Inertia (6 of 11) Acceleration=? When Pulley Has Mass (mu=0) by Michel van Biezen

Rotational Dynamics (part II) by lasseviren1

Rotational Dynamics with Two Motions by Clutch Prep

Angular Momentum and a Pulley Mass System by Flipping Physics

Rotational Dynamics of Rolling Motion

AP Physics C - Rotational Dynamics by Dan Fullerton

ROLLING MOTION | Rolling Without Slipping | Engineering Dynamics by LearnWithKristin

Rolling Without Slipping Introduction and Demonstrations by Flipping Physics

Rolling Without Slipping - A sticky adventure in rotation and translation | Doc Physics by Doc Schuster

Rotational Dynamics of Rolling Motion by Clutch Prep

Rotational Kinetic Energy and Moment of Inertia Examples & Physics Problems by The Organic Chemistry Tutor

14. Torque & Rotational Dynamics

Torque & Acceleration (Rotational Dynamics)

Rotational Dynamics Intro With Formula & Examples (AP Physics) by Math And Physics Tutor

Rotational Dynamics
by Matt Becker

30.1 Introduction to Torque and Rotational Dynamics by MIT OpenCourseWare

<u>Rotational Dynamics - A-level Physics (Engineering)</u> <u>by Science Shorts</u>

AP Physics 1: Rotational Dynamics Review by Flipping Physics

Rotational Dynamics - Basic Introduction by The Organic Chemistry Tutor

<u>Physics - Mechanics: Application of Moment of Inertia and Angular Acceleration (2 of 2)</u> by Michel van Biezen

How to Solve: Energy vs Torque

Chap 12. 7 - Torque and energy (b): Example 12.8 (energy increase of cylinder rolling down ramp) by Bevan Smith

<u>Torque Does Work!!! Awesome!!! | Doc Physics</u> <u>by Doc Schuster</u>

CCCC

Physics - Application of the Moment of Inertia (3 of 11) Solid Cylinder Rolling Down an Incline by Michel van Biezen 25 views 06:59

How to Solve:Energy vs Torque by Patrick Ford 1 commentsIcon 45 views 10:21

Rotational Kinetic Energy (part II) by lasseviren1 13 views 08:32

Rotational Power, Work, Energy, Torque & Moment of Inertia - Physics Problems by The Organic Chemistry Tutor 37 views 12:17

How to Solve: Energy vs Torque by Clutch Prep 10 views 10:22

Rotational Kinetic Energy by lasseviren1 16 views 09:04 Torque Due to Weight 8 videos | 3 questions VIDEOS

Torque Due to Gravity by Bennett Science 35 views 06:56

Hewitt-Drew-it! PHYSICS 41. Torques on a Plank

by Marshall Ellenstein 14 views 05:26

MCAT video: Torque Forces Applied to the Forearm in Equilibrium by MCAT Prep 21 views 09:26

Torque Due to Weight by Patrick Ford 3 commentsIcon 67 views 10:19

30.5 Torque from Gravity by MIT OpenCourseWare 23 views 04:44

Physics - Mechanics: Ch 15 Torque (17 of 25) Body Mechanics: Ex. 5, F=? Leg Lifting Weights by Michel van Biezen 19 views 08:51

Physics - Mechanics: Torque (5 of 7) The Bicep by Michel van Biezen 17 views 06:46

 Two kids play on a seesaw that has mass 20 kg, length 3 m, and its fulcrum at its mid-point. The seesaw is originally horizontal, when the kids sit at the edge of opposite ends (m,LEFT = 25 kg, m,RIGHT = 30 kg). Calculate the Net Torque from the 3 weights acting on the seesaw, immediately after the kids sit (simultaneously) on their respective places.

A guy standing straight up stretches out his arm horizontally while holding a 60 lb (27.2 kg) barbell. His arm is 64 cm long and weighs 45 N. Calculate the Net Torque that the barbell and the weight of his arm produce about his shoulder. You may assume that his arm has uniform mass distribution.

2

commentsIcon

27 views

30 views

Consider the diagram below of a typical human arm lifting a weight in a motion known as a "curl." Peak human training of such an arm can result in record lifts of 110 kg. Increasing a lift by a single kilogram in competition can make all the difference. Now, suppose a particular human had a bicep tendon that attached just 5.0 mm farther from the elbow joint than usual. Given the same bicep strength as other peak-condition athletes, what weight could this person curl (lift in this way)?

6 views Intro to Torque 10 videos | 4 questions VIDEOS

What is Torque? | Physics | Extraclass.com by Extraclass Official 36 views 05:21

Physics, Torque (2 of 13) Force at Right Angle to Object by Step by Step Science 31 views 08:48

Physics, Torque (1 of 13) An Explanation by Step by Step Science 41 views 08:23 Intro to Torque by Patrick Ford 7 commentsIcon 101 views 15:04

Torque by Bozeman Science 17 views 07:03

Torque Physics: Lever Arm and Force by PremedHQ Science Academy 38 views 03:27

What is Torque? - Torque basics explained by The Engineering Mindset 13 views 02:10

Torque, Basic Introduction, Lever Arm, Moment of Force, Simple Machines & Mechanical Advantage by The Organic Chemistry Tutor 39 views 21:17

Torque of fish pulling on pole by Patrick Ford 2 commentsIcon 67 views 04:26

Maximum torque on wrench

by Patrick Ford 40 views 02:58

PRACTICE

Multiple Choice XXXXXXXXXXXXXXXXXXXXXX

A 4 m-long ladder rests horizontally on a flat surface. You try to lift it up by pulling on the left end of the ladder with a force of 50 N that makes an angle of 37° with the vertical axis. Calculate the torque that your force produces, about an axis through the other (right) end of the ladder.

1

commentsIcon

33 views

You pull with a 100 N at the edge of a 25 cm long wrench, to tighten a bolt (gold), as shown. The angle shown is 53°. Calculate the torque your force produces on the wrench, about an axis perpendicular to it and through the bolt.

2

commentsIcon

40 views

Some trainyards have very large horizontal disks that engines can drive onto, which then rotate to turn the engine around to face the opposite direction. Suppose the train engine is 12 m long and centered at the disk's axis. A 500 N force is applied 5.0 m from the center of the engine, with a rope that makes a angle with the side of the engine. What magnitude torque is being applied to the train engine?

12 views

Model the propeller of an airplane as a single thin rod, 2.2 m long, with a mass of 80 kg. How much torque is required to bring this propeller from rest to 600 rpm in 2.9 s?

8 views

Net Torque & Sign of Torque 14 videos | 1 question VIDEOS

Anderson Video - Torque Force Times Lever Arm by Professor Anderson 26 views 07:25

Anderson Video - Torque Catapult by Professor Anderson

12 views 11:33

Anderson Video - Torque Cross Product by Professor Anderson 12 views 14:05

Net Torque & Sign of Torque by Patrick Ford 6 commentsIcon 78 views 09:04

Anderson Video - Torque of Bullet Into Door by Professor Anderson 11 views 10:57

Anderson Video - Torque on a Bolt by Professor Anderson 20 views 03:00

Anderson Video - Torque is a Vector by Professor Anderson 12 views 03:35

Net Torque Problems by Frank McCulley 29 views 02:43

Torque and Net Torque Problem Solving by PhysicsOMG

22 views 10:01

Physics - Mechanics: Ch 15 Torque Fundamentals (10 of 13) How to Calculate the Net Torque?

Ex. 1

by Michel van Biezen

23 views

03:24

torque: sign and net torque by Rachel Pollock 17 views 06:07

Net Torque On An Object (AP Physics 1) by Math And Physics Tutor 33 views 12:43

Net Torque & Sign of Torque by Clutch Prep 14 views 09:05

Angular Motion and Torque by Professor Dave Explains 31 views 07:39 PRACTICE

A 2-m long bar is free to rotate about an axis located 0.7 m from one of its ends. Two forces act on the bar, F1 = 100 N and F2 = 200 N, and both make 30° with the bar. Find the Net Torque on the bar. Use +/- to indicate direction.

4

commentsIcon

53 views

Torque on Discs & Pulleys 10 videos | 4 questions VIDEOS Physics - Application of the Moment of Inertia (6 of 11) Acceleration=? When Pulley Has Mass (mu=0) by Michel van Biezen 32 views

07:33

31.5 Massive Pulley Problems by MIT OpenCourseWare 65 views 03:44

Calculating Net Torque Example Problem - disk rotating by Hopped Up on Physics 58 views 08:03

Torque on Discs & Pulleys by Patrick Ford 6 commentsIcon 93 views 08:28

2 Masses on a Pulley - Torque Demonstration by Flipping Physics 29 views 13:48

Torque On a Pulley Example by wuphysics 42 views 08:32

Physics - Application of the Moment of Inertia (5 of 11) Object Hanging From a Rotating Disk

by Michel van Biezen 32 views 04:34

Torque on Discs & Pulleys by Clutch Prep 22 views 08:29

Example Net Torque on a disc by Clutch Prep 19 views 08:32

Net Torque on a disc by Patrick Ford 2 commentsIcon 31 views 08:31 PRACTICE

The composite disc below is free to rotate about a fixed axis, perpendicular to it and through its center. All forces are 100 N, and all angles are 37°. The dotted lines are either exactly parallel or exactly perpendicular to each other. The inner (darker) and outer (lighter) discs have radii 3 m and 5 m, respectively. Calculate the Net Torque produced on the composite disc, about an axis perpendicular to it and through its center. Use +/– to indicate direction.

1

commentsIcon

32 views

Multiple Choice XXXXXXXXXXXXXXXXXXXXXX

A square with sides 4 m long is free to rotate around an axis perpendicular to its face and through its center. All forces shown are 100 N and act simultaneously on the square. The angle shown is 30°. Calculate the Net Torque that the forces produce on the square, about its axis of rotation.

24 views

A rope is wrapped around a pulley and two blocks (A and B) are attached to the two ends of the rope, and and . The pulley itself can be modeled as a solid cylinder with radius 4.5 cm, and mass . What is the magnitude of the acceleration of block A?

14 views

Suppose a force is applied tangentially to the edge of a solid cylinder of radius and mass . causing an angular acceleration . If the same force is applied tangentially to a solid sphere also of radius and mass . what will be the angular acceleration? 6 views

15. Rotational EquilibriumEquilibrium with Multiple Objects9 videos | 2 questionsVIDEOS

Physics, Torque (13 of 13) Static Equilibrium, Mobile Calculations by Step by Step Science 67 views 09:13

The Saffold by Rory Korzan 26 views 03:35

The system in the figure is in equilibrium with the string by WNY Tutor 30 views 09:19

Position of second kid on seesaw by Patrick Ford 1 commentsIcon 1 rankIcon 56 views 04:37 Physics, Torque (3 of 13) Balance Beam by Step by Step Science 42 views 05:02

Equilibrium with Multiple Objects: Example: Multiple objects hanging by Clutch Prep 24 views 11:20

Equilibrium with Multiple Objects: Example: Position of second kid on seesaw by Clutch Prep 47 views 04:38

Practice Problem: Torque on a Mobile by Professor Dave Explains 57 views 04:57

Multiple objects hanging by Patrick Ford 2 commentsIcon 1 rankIcon 31 views 11:19 PRACTICE

A 20 kg, 5 m-long bar of uniform mass distribution is attached to the ceiling by a light string, as shown. Because the string is off-center (2 m from the right edge), the bar does not hang horizontally. To fix this, you place a small object on the right edge of the bar. What mass should this object have, to cause the bar to balance horizontally?

1

commentsIcon

34 views

Multiple Choice XXXXXXXXXXXXXXXXXXXXXX

Two kids (m,LEFT = 50 kg, m,RIGHT = 40 kg) sit on the very ends of a 5 m-long, 30 kg seesaw. How far from the left end of the seesaw should the fulcrum be placed so the system is at equilibrium? (Remember the weight of the seesaw!)

7

commentsIcon 28 views Equilibrium with Multiple Supports 10 videos | 1 question VIDEOS

Anderson Video - Torque and Tipping Point by Professor Anderson 29 views 09:45

Anderson Video - Leaning Ladder Problem by Professor Anderson 28 views 07:23

Static Equilibrium part 2 by Mr. Woodward 39 views 08:52

Equilibrium with Multiple Supports by Patrick Ford 5 commentsIcon 1 rankIcon 46 views 14:31

Statics Example: 2D Rigid Body Equilibrium by UWMC Engineering 94 views

Tension Force Physics Problems by The Organic Chemistry Tutor 61 views 17:17

Equilibrium of a Particle (2D x-y plane forces) | Mechanics Statics | (Learn to solve any question) by Question Solutions 90 views 10:21

Mechanical Engineering: Particle Equilibrium (7 of 19) Tension of Cables Attached to Hanging Object by Michel van Biezen

54 views

10:22

AP Physics 1: Equilibrium 5: Static Equilibrium Problem 4: Object Hung by 3 Cables by Yau-Jong Twu
88 views
05:35

Equilibrium of Rigid Bodies (2D - Coplanar Forces) | Mechanics Statics | (Solved examples) by Question Solutions

99 views

11:32

PRACTICE

Multiple Choice XXXXXXXXXXXXXXXXXXXXXX

A board 8 m in length, 20 kg in mass, and of uniform mass distribution, is supported by two scales placed underneath it. The left scale is placed 2 m from the left end of the board, and the right scale is placed on the board's right end. A small object 10 kg in mass is placed on the left end of the board. Calculate the reading on the left scale. (Use g=10 m/s2.)BONUS:Calculate the reading on the right scale.

4

commentsIcon

29 views

Center of Mass & Simple Balance

9 videos | 1 question VIDEOS

Centre/Center of Mass and Balance by Re: cOg Mission 31 views 04:37

Centre of Mass and Stability - Different Objects - GCSE Physics by GCSE Physics Ninja 44 views 08:33

Center of Mass and Stability by North Carolina School of Science and Mathematics 65 views 05:44

Center of Mass & Simple Balance by Patrick Ford 3 commentsIcon 1 rankIcon 53 views 10:22

Balance and the Center of Mass by Paul Nord 34 views 02:09

Center of Mass and Balance by Zahi Haddad 36 views 20:02 Biomechanics - Centre of Mass and Stability by Rich 61 views 12:43

Center of Mass & Simple Balance by Clutch Prep 33 views 10:23

Non-Uniform Mass Distributions (Find Center of Mass) by Patrick Ford 1 commentsIcon 54 views 09:42 PRACTICE

A 70 kg, 1.90 m man doing push-ups holds himself in place making 20° with the floor, as shown. His feet and arms are, respectively, 1.15 m below and 0.4 m above from his center of mass. You may model him as a thin, long board, and assume his arms and feet are perpendicular to the floor. How much force does the floor apply to each of his hands? (Use g=10 m/s2.) BONUS:How much force does the floor apply to each of his feet?

1

commentsIcon 41 views Equilibrium in 2D - Ladder Problems 9 videos | 1 question VIDEOS

Static Equilibrium: Ladder against Wall by xmtutor 52 views 04:01

Physics: Basic Statics w/ Ladders

by Stephan Pichardo 28 views 12:44

Physics, Torque (12 of 13) Static Equilibrium, Ladder Problem by Step by Step Science 116 views 10:09

Equilibrium in 2D - Ladder Problems by Patrick Ford 7 commentsIcon 1 rankIcon 60 views 13:43

Ladder Equilibrium Problem by Mrs. Smith Physics 40 views 11:23

Ladder Example for Static Equilibrium by C. Stephen Murray 44 views 11:40

Leaning Ladder Equilibrium Problem: Find Minimum Angle by Physics Ninja 70 views 23:53

Equilibrium in 2D Ladder Problems by Clutch Prep 30 views 13:44 Minimum angle and friction for ladder by Patrick Ford 2 commentsIcon 53 views 16:02 PRACTICE

A ladder of mass 20 kg (uniformly distributed) and length 6 m rests against a vertical wall while making an angle of $\Theta = 60^{\circ}$ with the horizontal, as shown. A 50 kg girl climbs 2 m up the ladder. Calculate the magnitude of the total contact force at the bottom of the ladder (Remember:You will need to first calculate the magnitude of N,BOT and f,S).

5

commentsIcon
21 views
Beam / Shelf Against a Wall
9 videos | 3 questions
VIDEOS

Torque Example #2: Hanging Sign Problem by Denise Labieniec 89 views 09:44

CH9 Problem7 Static Equilibrium by Pulkit Singhal 66 views 15:02

AP Physics 1: Equilibrium 6: Problem 5: Beam Supported by Wall and Slanted Cable by Yau-Jong Twu
61 views
10:30

Beam / Shelf Against a Wall by Patrick Ford 5 commentsIcon 1 rankIcon 36 views 17:09

12) Static Equilibrium - beam on wall 1 - numerical by Anthony Buonaquisti55 views08:43

Physics, Torque (11 of 13) Static Equilibrium, Hanging Sign No. 5 by Step by Step Science 55 views 11:56

Physics - Mechanics: Torque (1 of 7) Mass on Rod and Cable by Michel van Biezen 20 views 08:25

Beam Shelf Against a Wall by Clutch Prep 27 views 17:10

Beam supporting an object by Patrick Ford 6 commentsIcon 32 views 13:40 PRACTICE

Multiple Choice XXXXXXXXXXXXXXXXXXXXXX

A beam 200 kg in mass and 6 m in length is held horizontally against a wall by a hinge on the wall and a light rod underneath it, as shown. The rod makes an angle of 30° with the wall and connects with the beam 1 m from its right edge. Calculate the angle that the Net Force of the hinge makes with the horizontal (use +/– for above/below +x axis, and use g=10 m/s2.)

2

commentsIcon

18 views

Multiple Choice XXXXXXXXXXXXXXXXXXXXXX

A beam 200 kg in mass and 4 m in length is held against a vertical wall by a hinge on the wall and a light horizontal cable, as shown. The beam makes 53° with the wall. At the end of the beam, a second light cable holds a 100 kg object. Calculate the angle that the Net Force of the hinge makes with the horizontal (use +/– for above/below +x axis, and use g=10 m/s2.)

commentsIcon

25 views

The figure shows a 75 kg construction worker sitting on a massless beam with a length of 3.0 m. If the tension in the cable is 1100 N, how far from the left end of the beam is the construction worker sitting?

16 views More 2D Equilibrium Problems 8 videos | 3 questions VIDEOS

Statics: Problem 5-32: Equilibrium of a Rigid body 2D by Mechanical Engineering with Dr. Sanei 69 views 08:09

Statics Example: 2D Rigid Body Equilibrium 2 by UWMC Engineering 91 views 03:18

[Statics] Equilibrium of Rigid Bodies 2D Problems by Math Engine 59 views 14:54

Inclined beam against the floor by Patrick Ford 1 commentsIcon 15:

Statics Lecture 19: Rigid Body Equilibrium -- 2D supports by Yiheng Wang 46 views 08:59

2d Cable Equilibrium Problem by John Tingerthal 20 views 18:31

2D Equilibrium Problems by Clutch Prep 36 views 12:58

How to Solve a 2D Equilibrium Problem - Step by Step Solution by AF Math & Engineering 58 views 11:09
PRACTICE

A 200 kg, 10 m-long beam is held at equilibrium by a hinge on the floor and a force you apply on it via a light rope connected to its edge, as shown. The beam is held at 53° above the horizontal, and your rope makes an angle of 30° with it. Calculate the angle that the Net Force of the hinge makes with the horizontal (use +/– for above/below +x, and use g=10 m/s2.)

•

commentsIcon

26 views

Multiple Choice XXXXXXXXXXXXXXXXXXXXXX

A 3.0 m wood plank is supported by two scales. One scale is at the right end of the plank. The other scale is positioned such that it reads 620 N. If the mass of the plank is 85 kg, how far is the second scale from the right end of the plank?

5 views

Multiple Choice XXXXXXXXXXXXXXXXXXXXXX

Suppose a certain car has a track width of 1.6 m and a center of gravity located 0.40 m above the center of the track. What is the critical angle for this car? 5 views

Review: Center of Mass 7 videos | 2 questions

VIDEOS

Center of Mass of an Irregular Object by Flipping Physics 38 views 07:42

AP Physics 1 - Center of Mass by Mr. Marek 28 views 08:07

Intro to Center of Mass by Patrick Ford 3 commentsIcon 92 views 14:02

Physics C Review 15: Center of Mass of a Non-Uniform Rod by Science of Schist 46 views 08:02

Center of Mass by Bozeman Science 42 views 08:27

AP Physics C - Center of Mass by Dan Fullerton 51 views 18:18 Center of Mass Physics Problems - Basic Introduction

by The Organic Chemistry Tutor

54 views

13:14

PRACTICE

A hammer can be modeled as a point mass on the end of a long, uniform rod. How far from the head of the hammer is the center of mass?

13 views

A mass is at (0, 0), a mass is at (, 0), and a mass is at (,). What are the coordinates of the center of mass?

8 views

Torque & Equilibrium 11 videos | 1 question VIDEOS

Anderson Video - Balanced Beam by Professor Anderson 34 views 05:16

Physics, Torque (10 of 13) Static Equilibrium, Hanging Sign at an Angle No. 4 by Step by Step Science 49 views 09:10

Rotational Equilibrium Introduction (and Static Equilibrium too!!) by Flipping Physics
33 views
05:44

Torque & Equilibrium by Patrick Ford 3 commentsIcon 79 views

Rathkeale Physics - Torque Equilibrium 2 by MRMANNRATHKEALE 33 views 09:13

Torque and Equilibrium – Physics | Lecturio by Lecturio Medical 31 views 06:50

Solving Torque Problems.wmv by Fizzgig98 28 views 15:44

Physics - Mechanics: Torque (1 of 7) Mass on Rod and Cable by Michel van Biezen 27 views 08:25

Physics, Torque (3 of 13) Balance Beam by Step by Step Science 27 views 05:02

Balancing a bar with a force by Patrick Ford 2 commentsIcon 52 views 06:05

Pin holding a horizontal bar by Patrick Ford 3 commentsIcon 42 views 02:33 PRACTICE Open Question

A composite disc is made out of two concentric cylinders, as shown. The inner cylinder has radius 30 cm. The outer cylinder has radius 50 cm. If you pull on a light rope attached to the edge of the outer cylinder (shown left) with 100 N, how hard must you pull on a light rope attached to the edge of the inner cylinder (shown right) so the disc does not spin?

4

commentsIcon

12 views

16. Angular MomentumOpening/Closing Arms on Rotating Stool8 videos | 1 questionVIDEOS

A man is sitting on a rotating stool with his arms outstretched. If suddenly by Doubtnut 26 views 05:29

Spinning Chair by PhysicsandAstronomy UKY 27 views 02:50

Rotating Chair & Weights - What happens next? by MonashPhysicsAndAstronomy 32 views 00:16

Holding weights on a spinning stool by Patrick Ford 39 views 09:39 Angular momentum: rotating stool and wheel by Steuard Jensen 38 views 13:45

Opening/ Closing Arms on Rotating Stool: Example: Holding weights on a spinning stool by Clutch Prep 23 views 09:40

Conservation of Angular Momentum: Controlling Angular Velocity on a Rotating Stool by North Carolina School of Science and Mathematics 31 views 02:27

You stand on a stool that is free to rotate about an axis perpendicular to itself and through its center. The stool's moment of inertia around its central axis is 1.50 kg m2. Suppose you can model your body as a vertical solid cylinder (height = 1.80 m, radius = 20 cm, mass = 80 kg) with two horizontal thin rods as your arms (each:length = 80 cm, mass = 3 kg) that rotate at their ends, about the same axis, as shown. Suppose that your arms' contribution to the total moment of inertia is negligible if you have them pressed against your body, but significant if you have them wide open. If you initially spin at 5 rad/s with your arms against your body, how fast will you spin once you stretch them wide open? (Note:The system has 4 objects (stool + body + 2 arms), but initially only stool + body contribute to its moment of inertia)

31 views
Conservation of Angular Momentum
12 videos | 2 questions
VIDEOS

Anderson Video - Conservation of Angular Momentum by Professor Anderson

31 views 05:33

Anderson Video - Rotational Energy by Professor Anderson 15 views 08:25

Angular Momentum - Clay Puck and Stick Collision by Physics Ninja 40 views 17:39

Conservation of Angular Momentum by Patrick Ford 2 commentsIcon 73 views 12:12

Angular Momentum Demo: Spinning Bottle by Physics Demos 17 views 03:25

Wheel Conservation of Angular Momentum Demonstration and Solution by Flipping Physics 27 views 05:20

8 AWESOME EXAMPLES Conservation of angular momentum!!! by Physics experiments 41 views 05:18

Conservation of Angular Momentum Introduction and Demonstrations by Flipping Physics

28 views 09:22

Conservation of Angular Momentum by Bozeman Science 20 views 05:38

Ice skater closes her arms by Patrick Ford 2 commentsIcon 34 views 06:58

Star collapses by Patrick Ford 2 commentsIcon 34 views 06:36

Landing and moving on a disc by Patrick Ford 5 commentsIcon 32 views 13:39 PRACTICE

Suppose a diver spins at 8 rad/s while falling with a moment of inertia about an axis through himself of 3 kg•m2. What moment of inertia would the diver need to have to spin at 4 rad/s? BONUS:How could he accomplish this?

1

commentsIcon

25 views

Two astronauts, both 80 kg, are connected in space by a light cable. When they are 10 m apart, they spin about their center of mass with 6 rad/s. Calculate the new angular speed they'll have if

they pull on the rope to reduce their distance to 5 m. You may treat them as point masses, and assume they continue to spin around their center of mass.

36 views
Angular Momentum & Newton's Second Law
8 videos | 1 question
VIDEOS

Inertia - Basic Introduction, Torque, Angular Acceleration, Newton's Second Law, Rotational Motion

by The Organic Chemistry Tutor

15 views

11:58

Particle Dynamics Screencast 26.2: Newton's 2nd Law and Total Angular Momentum about Q by DrDynamics

18 views

06:54

Particle Dynamics 14.2 - Generalized Angular Momentum Form of Newton's 2nd Law by DrDynamics 23 views

06:38

Angular Momentum & Newton's Second Law by Patrick Ford 3 commentsIcon 51 views 05:18

Torque, Angular Momentum, and Newton's Second Law for Rotations | Doc Physics by Doc Schuster
16 views
02:52

Particle Dynamics Screencast 13.2 - Angular Momentum Form of Newton's 2nd Law

by DrDynamics 35 views 06:51

Ch12 N7 Angular Momentum and Newton's 2nd Law by Doc D 20 views 08:17

A solid disc of mass M = 40 kg and radius R = 2 m is free to rotate about a fixed, frictionless, perpendicular axis through its center. You apply a constant, tangential force on the disc's surface (as shown), to get it to spin. Calculate the magnitude of the force needed to get the disc to 100 rad/s in just one minute.

1
commentsIcon
30 views
Intro to Angular Collisions
8 videos
VIDEOS

Rotational Collisions by Anyone Can Physics 23 views 11:35

Collisions with Rotation Lecture Video by Aaron Shoolroy 21 views 10:14

Angular Collision Example

by Erik Rosolowsky 34 views 03:26

Intro to Angular Collisions (Two discs) by Patrick Ford 1 commentsIcon 36 views 15:21

PHYS 101 | Rough Angular Momentum 7 - Disk and Bar Collision II by Physierge 24 views 13:29

Dart with Thin Rod Collision - Conservation of Angular Momentum Demonstration and Problem by Flipping Physics
22 views
12:29

Physics - Mechanics: Angular Momentum (7 of 11) Ex. 6: Bullet Striking Beam by Michel van Biezen 23 views 06:22

Conservation of Angular Momentum: Bullet and Door Collision Problem by Physics Ninja 31 views 19:47
Jumping Into/Out of Moving Disc 8 videos | 1 question VIDEOS

Merry-Go-Round Physics by Chad Orzel

61 views 01:03

Jumping onto a merry go round (PhysCasts) by Swinburne Commons 22 views 10:18

Conservation of angular momentum a child jumping on a merry go round by Linda Grabill 26 views 05:32

Jumping into a moving disc by Patrick Ford 39 views 14:28

Merry-Go-Round - Conservation of Angular Momentum Problem by Flipping Physics 40 views 10:31

Physics - Mechanics: Angular Momentum (2 of 11) Ex. 1: Sand Bag on Rotating Disk by Michel van Biezen 40 views 05:05

Physics - Mechanics: Angular Momentum (3 of 11) Ex. 2: Child Jumping on Rotating Disk by Michel van Biezen 33 views 07:23

Jumping Into/Out of Moving Disc: Example: Jumping into a moving disc by Clutch Prep 18 views 14:29

PRACTICE

A 200 kg disc 2 m in radius spins around a perpendicular axis through its center, with a person on it, at 3 rad/s counter-clockwise. The person has mass 70 kg, is at rest (relative to the disc, that is, spins with it) at the disc's edge, and can be treated as a point mass. If the person jumps tangentially out of the disc with 10 m/s (relative to the floor), as shown by the red arrow, what new angular speed will the disc have as a result? If the person steps out into ice with negligible speed of his/her own, what speed would it have upon exiting?

1

commentsIcon
22 views
Spinning on String of Variable Length
7 videos | 1 question
VIDEOS

CIRCULAR MOTION: QUARANTINE LAB DATA TAKING

by DocKobryn 22 views 06:08

an air puck of mass 0.25kg is tied to a string by WNY Tutor 47 views 02:18

Circular Motion Lab by Rebecca Thompson 38 views 06:51

Spinning on a string of variable length by Patrick Ford 1 commentsIcon 23 views 10:54 Spinning Mass with Variable Radius by Wolfram Demonstrations Project 22 views 00:17

Spinning on String of Variable Length: Example: Spinning on a string of variable length by Clutch Prep
18 views
10:55

A small object (red, m) is on a smooth table top and attached to a light string that runs through a hole in the table. The other end of the spring attaches to a hanging weight (green, M). When the small object is given some speed, it spins in a circular path around the hole, with the tension from the hanging weight providing the centripetal force that keeps it spinning. If the object spins with angular speed ω when it is a distance R from the central role, what new angular speed (in terms of ω) does it have when this distance is halved? What new mass does the hanging weight need, in terms of M, to support a circular path at the new speed?

1
commentsIcon
24 views
Angular Collisions with Linear Motion
7 videos | 1 question
VIDEOS

Ball hits rod in space: Physics Solution by physicsfrac 52 views 15:34

Advanced Collisions With Rotation TN by Patricia Noblett 26 views

40:27

OLD R.9 Collisions with Conservation of Angular Momentum by Thrysics 32 views 10:22

Point Particle & Rigid Object Collision - Conservation of Angular Momentum Demonstration & Problem by Flipping Physics 36 views 07:57

Angular Momentum & Rotational Collisions | Live Review Session 7 | AP Physics C: Mechanics by Advanced Placement 28 views

Intro to Angular Collisions (Two discs) by Clutch Prep 23 views 15:22

Are Linear and Angular Momentum Conserved during this Collision? by Flipping Physics
23 views
09:52
PRACTICE

Two rotating doors, each 4 kg in mass and 6 m long, are fixed to the same central axis of rotation, as shown above (top view). Suppose a 4 kg bird flying with 30 m/s horizontal collides against the door and stays stuck to it, at a point 50 cm from one end. Calculate the angular speed with which the system (doors + bird) spin together.

1 commentsIcon
22 views
Intro to Angular Momentum
12 videos | 2 questions
VIDEOS

Anderson Video - Angular Momentum and Cross Product by Professor Anderson 23 views 07:42

Anderson Video - Spinning Wheel Angular Momentum by Professor Anderson 25 views 07:27

Anderson Video - Angular Momentum Vector by Professor Anderson 3 views 04:33

Intro to Angular Momentum by Patrick Ford 7 commentsIcon 66 views 06:18

Anderson Video - Angular Momentum by Professor Anderson 18 views 02:54

Intro to Angular Momentum by Clutch Prep 34 views 06:19

Physics - Mechanics: Angular Momentum (1 of 11) What is angular momentum? Basics by Michel van Biezen

43 views 12:56

What Is Angular Momentum? by The Organic Chemistry Tutor 27 views 13:25

Angular Momentum of a Rigid Object with Shape Introduction by Flipping Physics 25 views 05:59

Angular Momentum by Bozeman Science 35 views 07:28

Angular Momentum - Basic Introduction, Torque, Inertia, Conservation of Angular Momentum by The Organic Chemistry Tutor 20 views 06:20

AP Physics 1 Review of Torque and Angular momentum by We Are Showboat 29 views 19:39 PRACTICE

When solid sphere 4 m in diameter spins around its central axis at 120 RPM, it has 1,000 kg m2 / s in angular momentum. Calculate the sphere's mass.

37 views

A composite disc is built from a solid disc and a concentric, thick-walled hoop, as shown below. The inner disc has mass 4 kg and radius 2 m. The outer disc (thick-walled) has mass 5 kg, inner radius 2 m, and outer radius 3 m. The two discs spin together and complete one revolution every 3 s. Calculate the system's angular momentum about its central axis.

3

commentsIcon

31 views Angular Momentum of a Point Mass 8 videos | 2 questions VIDEOS

Angular Momentum and Kinetic Energy for Point Mass and Rigid Objects by Physics Explained 26 views 06:14

AP Physics 1: Rotation 29: Angular Momentum and Angular Momentum of Point Mass by Yau-Jong Twu 38 views 05:44

Angular Momentum of a Point Mass by Professor Brei 26 views 08:22

Angular Momentum of a Point Mass by Patrick Ford 1 commentsIcon 59 views 08:35

Common Point Particle Angular Momentum Triangle by Flipping Physics 33 views 04:24

Angular momentum of a point mass, Schwartz, Cal Poly Physics by Peter Schwartz 36 views 03:37 32.1 Angular Momentum for a Point Particle by MIT OpenCourseWare 20 views 02:39

Angular Momentum of a Point Mass by Clutch Prep 36 views 08:36 PRACTICE

Multiple Choice XXXXXXXXXXXXXXXXXXXXXX

The Earth has mass 5.97×1024 kg, radius 6.37×106 m. The Earth-Sun distance is 1.5×1011 m. Calculate its angular momentum as it spins around itself. Treat the Earth as a solid sphere of uniform mass distribution. BONUS 1:Treating the Earth as a point mass, calculate its angular momentum as it spins around the Sun. BONUS 2:Does the Earth have linear momentum as it spins around (i) itself; (ii) the Sun?

1

commentsIcon

77 views

Multiple Choice XXXXXXXXXXXXXXXXXXXXXX

A system is made of two small, 3 kg masses attached to the ends of a 5 kg, 4 m long, thin rod. The system rotates with 180 RPM about an axis perpendicular to the rod and through one of its ends, as shown. Calculate the system's angular momentum about its axis.

1

commentsIcon

31 views

Angular Momentum of Objects in Linear Motion

8 videos

VIDEOS

Angular Momentum of Linear Motion part 2 by Justin VonMoss 25 views 09:09

APC N05B05 Angular momentum and linear motion by Bernard Lockhart-Gilroy

21 views 05:24

Plane Motion of Rigid Bodies:Linear and Angular Momentum Example by Jamie Turner 20 views 08:14

Angular Momentum of Objects in Linear Motion by Patrick Ford 48 views 07:06

Angular Momentum of Linear Motion by Joe Vaughan 29 views 11:21

Angular Momentum of Linear Motion by Justin VonMoss 18 views 15:43

Linearly Moving Objects can have Angular Momentum by C. Stephen Murray 34 views 07:55

Angular Momentum of Objects in Linear Motion by Clutch Prep 25 views 07:07

17. Periodic Motion

Spring Force (Hooke's Law)

Calculus Work Required to Stretch a Spring - Hooke's Law

by Steve Crow

Spring Force

by Jennifer Cash

How to find spring force, spring constant or distance stretched (Hooke's Law)

by How To Physics

Hooke's Law Introduction - Force of a Spring

by Flipping Physics

GCSE Physics - Elasticity, spring constant, and Hooke's Law #44

by Cognito

Simple Harmonic Motion: Hooke's Law

by Professor Dave Explains

Intro to Simple Harmonic Motion (Horizontal Springs)

<u>Anderson Video - Simple Harmonic Motion</u>

by Professor Anderson

Anderson Video - Cosine Solution to Simple Harmonic Motion

by Professor Anderson

Anderson Video - Period of an Oscillating Spring

by Professor Anderson

Anderson Video - Graphing Simple Harmonic Motion and Determining Phi

by Professor Anderson

Anderson Video - Spring Example- Max Speed and Acceleration

by Professor Anderson

Anderson Video - Speed of a Block on a Spring

by Professor Anderson

Energy in Horizontal Springs Example

by Clutch Prep

Physics - Mechanics: Ch 16.5 Simple Harmonic Motion-2 Springs (1 of 5) 2 Equal Springs, 1 Mass

by Michel van Biezen

<u>Simple Harmonic Motion Derivations using Calculus (Mass-Spring System)</u>

by Flipping Physics

How To Solve Simple Harmonic Motion Problems In Physics

by The Organic Chemistry Tutor

Simple Harmonic Motion: Crash Course Physics #16

by CrashCourse

Simple Harmonic Motion 2 - Mass on a horizontal spring

by KeysToMaths1

Simple Harmonic Motion Introduction(SHM) via a Horizontal Mass-Spring System

by Flipping Physics

Energy in Simple Harmonic Motion

Anderson Video - Energy in Simple Harmonic Motion

by Professor Anderson

Total Mechanical Energy in Simple Harmonic Motion

by Flipping Physics

Energy in simple harmonic motion

by Cowen Physics

Energy of Simple Harmonic Oscillators | Doc Physics

by Doc Schuster

Energy and Simple Harmonic Motion

by Andrey K

Simple Harmonic Motion (13 of 16): Kinetic & Potential Energy, An Explanation

by Step by Step Science

Energy In a Simple Harmonic Oscillator - Maximum Velocity & Acceleration Calculations

by The Organic Chemistry Tutor

Simple Harmonic Motion of Vertical Springs

Physics - Mechanics: Ch 16.5 Simple Harmonic Motion-2 Springs (5 of 5) 2 Springs in Series, 2 Mass

by Michel van Biezen

Vertical Springs | Simple Harmonic Motion | AP Physics C

by Physics Burns

Oscillations Demo: Mass Spring System

by Physics Demos

Physics - Mechanics: Simple Harmonic Motion (3 of 5) Mass on Spring

by Michel van Biezen

Solution to Problem #78, Vertical Spring

by Lectures by Walter Lewin. They will make you ♥ Physics.

Simple harmonic motion - vertical spring

by Michael Hazeltine

Simple Harmonic Motion 3 - Mass on a vertical spring

by KeysToMaths1

Simple Harmonic Motion of Pendulums

<u>Anderson Video - Pendulum Mechanics</u>

by Professor Anderson

Anderson Video - The Mysterious Wave Pendulum

by Professor Anderson

Simple Pendulum - Simple Harmonic Motion Derivation using Calculus

by Flipping Physics

<u>Simple Harmonic Motion (2 of 16): Pendulum, Calculating Period, Frequency, Length and</u> Gravity

by Step by Step Science

simple harmonic motion - the pendulum

by Pose Problem

8.01x - Module 15.09 - Simple harmonic motion of pendulum.

by Lectures by Walter Lewin. They will make you ♥ Physics.

Simple Harmonic Motion (1 of 16): Period of a Pendulum

by Step by Step Science

When is a Pendulum in Simple Harmonic Motion?(SHM)

by Flipping Physics

Simple Pendulum in Harmonic Motion

by Andrey K

Energy in Pendulums

GCSE Science Revision Physics "Energy Transfers: Pendulum"

by Freesciencelessons

APPLICATION OF THE LAW OF CONSERVATION OF ENERGY TO A SIMPLE PENDULUM

by 7activestudio

Mechanical Energy of Swinging Pendulum

by Andrey K

Kinetic and Potential Energy in a pendulum

by Kevin Swabb

Kinetic and Potential Energy for Pendulum

by OpenStax

18. Waves & Sound

Intro to Waves

Intro to Waves

by Jen Solomon

Wave Motion | Waves | Physics | FuseSchool

by FuseSchool - Global Education

Intro to Waves

by Cool4Physics

Wave Basics

by MooMooMath and Science

Physics - Waves - Introduction

by expertmathstutor

Introduction to Waves

by Flipping Physics

Wave Functions & Equations of Waves

Physics - Mechanics: Mechanical Waves (9 of 21) The Wave Equation

by Michel van Biezen

Introduction to Wave Function

by Andrey K

The Wave Function

by DrPhysicsA

Physics - Mechanics: Mechanical Waves (10 of 21) The Wave Equation in 1-Dimension

by Michel van Biezen

Periodic Traveling Wave Motion as a Function of x AND t | Doc Physics

by Doc Schuster

Wave Equation

by Jennifer Cash

Wave Equation

by Bozeman Science

Velocity of Transverse Waves (Strings)

Physics - Mechanics: Mechanical Waves (2 of 21) Velocity on a String (Deriving Equation)

by Michel van Biezen

16-71 Speed of a transverse wave on a string

by Richard Wong Physics

Wave motion | derivation for velocity of transverse wave on sting | useful for JEE and NEET

by My physics Teacher

AP Physics 2: Waves 3: Speed of Transverse Waves in a String

by Yau-Jong Twu

Transverse Velocity And Acceleration Of A String Element

by DMACC PHYSICS

16.3 The Speed of a Wave on a String

by Physics Demos

Velocity of Transverse Wave in Cord

by Andrey K

Wave Interference

Hewitt-Drew-it! PHYSICS 86. Wave Interference

by Marshall Ellenstein

The Double-Slit Experiment

by Professor Dave Explains

Wave Superposition Introduction

by Flipping Physics

Wave Interference | Arbor Scientific

by Arbor Scientific

Interference, Reflection, and Diffraction

by Professor Dave Explains

Wave Interference

by Bozeman Science

Waves - Interference Phase Angle

by omorganlabs

Standing Waves

Standing wave harmonics on guitar strings (and pianos, banjos, and harps, I guess) | Doc Physics **

by Doc Schuster

Standing Waves - IB Physics

by Andy Masley's IB Physics Lectures

Standing Wave Harmonics -- xmdemo 139

by xmdemo

Standing Waves

by Bozeman Science

Standing Waves Introduction

by Flipping Physics

Standing Waves and Harmonics

by Professor Dave Explains

Standing Wave Demo: Slinky

by Physics Demos

Standing Sound Waves

16.4 Standing Sound Waves and Modes

by Ken Schenck

Standing Sound Waves by Geoff Olson 17 views 14:29

Standing wave harmonics in a tube with one closed end (Organ, Saxophone, Tuba) | Doc Physics by Doc Schuster 34 views 08:45

Standing Sound Waves by Patrick Ford 5 commentsIcon 62 views 08:13

Sound: Standing Waves and Resonance | Physics in Motion

by GPB Education 24 views 14:37

Physics - Mechanics: Sound and Sound Waves (40 of 47) Standing Waves in an Air Column by Michel van Biezen 25 views 04:23

Standing Waves In Organ Pipes - Closed & Open Tubes - Physics Problems by The Organic Chemistry Tutor
31 views
12:07

Sound as a Standing Wave - IB Physics by Andy Masley's IB Physics Lectures ** 39 views 09:55

Fundamental Frequency of Ear Canal by Patrick Ford 3 commentsIcon 25 views 01:53

Third Harmonic for Waves in a Tube by Patrick Ford 1 commentsIcon 39 views 02:24 Sound Intensity 2 videos | 4 questions VIDEOS

Sound Intensity by Patrick Ford

5

commentsIcon

45 views

07:13

Volume And Intensity Level by Patrick Ford

3

commentsIcon

27 views

10:07

PRACTICE

Multiple Choice XXXXXXXXXXXXXXXXXXXXXX

A source emits a sound in the shape of a cone, as shown in the figure below. If you measure the intensity to be 100 W/m2 at a distance of 0.5 m, what is the power of the source?

2

commentsIcon

30 views

Multiple Choice XXXXXXXXXXXXXXXXXXXXXX

A source emits sound spherically with a power of 2.2×104 W. What is the minimum distance away from this sound that would be considered safe (a volume of 150 dB or less)?

3

commentsIcon

21 views

Multiple Choice XXXXXXXXXXXXXXXXXXXXXX

Suppose an explosion can just be heard over normal conversation with an intensity of from 10 km away. At what distance from the explosion will the sound have an intensity that causes pain ()? Note that this calculation ignores absorption of sound energy by air and objects.

17 views

A speaker at a rock concert is causing you pain, so you reason the sound level must be 130 dB. The speaker is 11 m away from you. To what final distance from the speaker should you move for the sound level to reach a less-painful 105 dB? Keep in mind that we are ignoring absorption of sound energy by air and objects.

2 views

The Doppler Effect 8 videos | 3 questions VIDEOS by Doc Schuster 24 views 14:07

Doppler Effect by Bozeman Science 30 views 04:02

<u>Doppler Effect Demonstrations and Animations</u> <u>by Flipping Physics</u> **

31 views 07:24

The Doppler Effect by Patrick Ford 2 commentsIcon 1 rankIcon 46 views 07:01

Doppler Effect by Matt Becker 23 views 09:31

What Is the Doppler Effect? | Physics in Motion by GPB Education 33 views 11:53

How the Doppler effect works by Interesting Engineering 25 views 04:04 Two Submarines Approaching One Another by Patrick Ford

5

commentsIcon

29 views

05:58

PRACTICE

Multiple Choice XXXXXXXXXXXXXXXXXXXXXX

A police siren emits a sound somewhere around 700 Hz. If you are waiting at a red light, and a police car approaches you from behind and passes you, moving at a constant 30 m/s, what is the frequency you hear from the siren as it approaches you from behind? What about once it's passed you? Assume the air temperature to be 20°C.

1

commentsIcon

72 views

Multiple Choice XXXXXXXXXXXXXXXXXXXXXX

A police radar gun used to measure the speed of cars emits an electromagnetic wave (a radio wave) with a frequency of In an area where the speed limit is what should be the shift in the frequency of the wave after reflecting off traffic that is exactly following the speed limit, driving toward the police officer?

10 views

Multiple Choice XXXXXXXXXXXXXXXXXXXXXX

As you stand beside the road singing a lovely note, your friend, Lisa, drives toward you at . What frequency does Lisa hear as she listens to you croon?

5 views

Beats

8 videos | 1 question

VIDEOS

Physics - Mechanics: Sound and Sound Waves (30 of 47) Beat Frequency by Michel van Biezen 40 views 03:01

Sound beats explained by PhysicsHigh **
19 views

06:16

AP Physics 1 - Beats by Dan Fullerton 34 views 04:51

Beats by Patrick Ford 2 commentsIcon 32 views 06:56

Beats in Sound Waves by 7activestudio 24 views 06:35

Demonstrating Beat Frequency - A Video Project by Bo by Flipping Physics 31 views 04:11

Beats Physics by James Lincoln 18 views 02:27

Beats by Bozeman Science 13 views 04:50 PRACTICE

A string emits an unknown sound. You strike a tuning fork which emits a sound at EXACTLY 300 Hz, and you hear a beat frequency of 20 Hz. You then tighten the

19. Fluid Mechanics

Density 8 videos | 6 questions VIDEOS

Density Practice Problems by Tyler DeWitt 57 views 08:56

How To Calculate Density - With Examples by cleanairfilms 62 views 03:36

What is density? by The Science Classroom 45 views 05:43

Intro to Density by Patrick Ford 4 commentsIcon 2 rankIcon 58 views 09:52

What is Density? - Density Explained by The Engineering Mindset 36 views 04:28

Density Practice Problems by The Organic Chemistry Tutor 48 views Density by Bozeman Science 30 views 06:04

What is Density? | Gravitation | Physics | Don't Memorise by Don't Memorise 24 views 02:30 PRACTICE

A wooden door is 1 m wide, 2.5 m tall, 6 cm thick, and weighs 400 N. What is the density of the wood in g/cm3? (use g = 10 m/s2)

1

commentsIcon

26 views

Multiple Choice XXXXXXXXXXXXXXXXXXXXXX

Suppose an 80 kg (176 lb) person has 5.5 L of blood (1,060 kg/m3) in their body. How much of this person's total mass consists of blood? What percentage of the person's total mass is blood? 23 views

Multiple Choice XXXXXXXXXXXXXXXXXXXXXX

You want to verify if a 70-g crown is in fact made of pure gold (19.32 g/cm³), so you lower it by a string into a deep bucket of water that is filled to the top. When the crown is completely submerged, you measure that 3.62 mL of water has overflown. Is the crown made of pure gold? 22 views

Multiple Choice XXXXXXXXXXXXXXXXXXXXXX

You have three objects in front of you. Object A has a volume of . object B has a volume of . and object C has a volume of . They all have the same mass. What is the correct ranking of the objects from most dense to least dense?

2 views

Multiple Choice XXXXXXXXXXXXXXXXXXXXXX

Suppose a cubic box contains so much air at °C that the mass of the air inside is equal to the mass of of water. What would be the side length of such a box?

10 views

Different materials in the body have different densities, and therefore will tend to make a person float or sink to different extents. Which bodily material is most buoyant (helps you stay afloat the most)?

3 views Intro to Pressure 15 videos | 7 questions VIDEOS

Anderson Video - Pressure Under Water by Professor Anderson 39 views 06:59

Anderson Video - Diving to a Pressure of Two Atmospheres by Professor Anderson 31 views 03:01

Anderson Video - Longest Straw Superman can Drink Through by Professor Anderson 54 views 06:55

Pressure and Atmospheric Pressure by Patrick Ford 1 commentsIcon 2 rankIcon 76 views 17:04

Anderson Video - Bernoulli's Equation by Professor Anderson 37 views 07:12

Anderson Video - Bernoulli's Equation and the Water Tower by Professor Anderson

52 views 08:06

Pressure - Intro to Physics by Udacity 25 views 00:52

GCSE Physics - What is Pressure? #48 by Cognito 68 views 04:22

Gas Pressure: The Basics by Tyler DeWitt 49 views 12:25

What is PRESSURE? Simple Physics tutorial by NinetyEast 29 views 01:49

What is Pressure? | Physics | Don't Memorise by Don't Memorise 63 views 05:55

Introduction to Pressure by LearnChemE 20 views 04:26

Introduction to Pressure & Fluids - Physics Practice Problems by The Organic Chemistry Tutor 117 views 11:00 Pressure In Air and In Liquids by Patrick Ford 5 commentsIcon 1 rankIcon 72 views 15:27

Calculating Pressure in Liquids by Patrick Ford 4 commentsIcon 61 views 15:50 PRACTICE

A large warehouse is 100 m wide, 100 m deep, 10 m high:

- a) What is the total weight of the air inside the warehouse?
- b) How much pressure does the weight of the air apply on the floor?

1

commentsIcon

30 views

Multiple Choice XXXXXXXXXXXXXXXXXXXXXX

The deepest known point on Earth is called the Mariana Trench, at \sim 11,000 m (\sim 36,000 ft). If the surface area of the average human ear is 20 cm2, how much average force would be exerted on your ear at that depth?

36 views

Multiple Choice XXXXXXXXXXXXXXXXXXXXXXX

A tall cylindrical beaker 10 cm in radius is placed on a picnic table outside. You pour 5 L of an 8,000 kg/m3 liquid and 10 L of a 6,000 kg/m3 liquid into. Calculate the total pressure at the bottom of the beaker. (Use g=10 m/s2.)

1

commentsIcon

33 views

A wooden cube, 1 m on all sides and having density 800 kg/m3, is held under water in a large container by a string, as shown below. The top of the cube is exactly 2 m below the water line.

Calculate the difference between the force applied by water to the top and to the bottom faces of the cube (Hint:calculate the two forces, then subtract. Use g=10 m/s2.)

3

commentsIcon

23 views

At point A, a hose ejects water at a speed of . Point B is upstream from, and 30.0 cm above, the outlet. If the water is moving at at point B, what is the internal pressure of the water at B? Use for atmospheric pressure and for the density of water.

5 views

Multiple Choice XXXXXXXXXXXXXXXXXXXXXX

The pressure gradient in a pipe carrying water is What pressure gradient would be required to maintain the same flow rate in the same pipe if it were carrying olive oil? Treat the flow as the flow of a viscous fluid. The viscosity of water is and the viscosity of olive oil is.

8 views

Multiple Choice XXXXXXXXXXXXXXXXXXXXXX

Suppose the average speed of blood in the aorta is , and the diameter is 2.0 cm. What is the pressure gradient in this aorta due to the viscosity of blood (assume a human body temperature)?

2 views Pascal's Law & Hydraulic Lift 10 videos VIDEOS

Anderson Video - Hydraulic Lift by Professor Anderson 24 views 09:27

Pascal's Law and Hydraulic Lift by Clutch Prep 50 views 04:35

Pascal's Law and Hydraulic Lift by Patrick Ford 1 commentsIcon ranklcon 88 views 17:15

PHYSICS MADE EASY - Pascal's Law and a Hydraulic Jack by physics concepts in 3D | Prepare yourself NOW 44 views 01:13

Hydraulic Lift Physics Explained by PremedHQ Science Academy 41 views 03:45

Pascal's Principle and Hydraulic Lift by Andrey K 31 views 05:24

The Hydraulic Lift Theory [Physics of Fluid Mechanics #22] by Simmy Sigma 43 views 13:25

Pascal's Law by Physics Videos by Eugene Khutoryansky 57 views 05:20

Hydraulic Lift / Proportional Reasoning by Patrick Ford 1 ranklcon 37 views 05:13

Force to Lift a Car

by Patrick Ford

3

commentsIcon

1

ranklcon

61 views

05:13

Pressure Gauge: Barometer

8 videos | 1 question

VIDEOS

How to solve barometer problems by Engineer4Free 138 views 03:46

How Does a Barometer Work? by The Science Classroom 38 views 01:26

Manometer Pressure Problems, Introduction to Barometers - Measuring Gas & Atmospheric Pressure by The Organic Chemistry Tutor 87 views 13:24

How Barometers Work by Patrick Ford 47 views 09:42

Physics 33 - Fluid Statics (6 of 10) The Barometer by Michel van Biezen 33 views 04:47 Barometers to Predict Weather by ClockParts 24 views 03:39

Pressure Gauge: How Barometers Work by Clutch Prep 57 views 09:43

Mercury Barometer Problems, Physics - Air Pressure, Height & Density Calculations - Fluid Statics

by The Organic Chemistry Tutor 177 views

17:53

PRACTICE

A classic barometer (shown below) is built with a 1.0-m tall glass tube and filled with mercury (13,600 kg/m3). Calculate the atmospheric pressure, in ATM, surrounding the barometer if the column of liquid is 76 cm high. (Use g=9.8 m/s2.)

20 views

Pressure Gauge: Manometer

8 videos | 1 question

VIDEOS

Open Tube Manometer, Basic Introduction, Pressure, Height & Density of Fluids - Physics Problems by The Organic Chemistry Tutor 84 views 12:21

A simple manometer demo by MrGrodskiChemistry 32 views 05:23 Absolute and Gauge Pressure of Air and Water with Manometer by LearnChemE
23 views
04:16

How Manometers Work by Patrick Ford 46 views 10:49

GCSE Physics - Using Liquid in a U-Tube to Measure Pressure Difference by GCSE Physics Ninja 55 views 05:16

Chap 18.6 - Working with pressure (b): pressure gauge, manometer by Bevan Smith 20 views 02:57

Pressure Gauge: How Manometers Work by Clutch Prep 63 views 10:50

Measuring Absolute and Gauge Pressure of Fluids Using U Tube Manometers by Engineers Academy
61 views
10:37
PRACTICE

A classic manometer (as shown below) has one of its ends open, and a 2 atm gas on the other. When mercury (13,600 kg/m 3) is added to the manometer, you measure the top of the mercury column on the left to be 40 cm higher than the mercury column on the right. Calculate the atmospheric pressure that the manometer is exposed to, in units of atm. (Use g=9.8 m/s2.)

24 views

Pressure Gauge: U-shaped Tube

8 videos | 2 questions

VIDEOS

Anderson Video - Pressure with a U Tube by Professor Anderson 41 views 03:57

Anderson Video - Pressure Variation with Depth by Professor Anderson 22 views 03:57

Asymmetrical U-tubes by Rory Korzan 53 views 03:47

How U-Shaped Tubes Work by Patrick Ford 4 commentsIcon 134 views 19:07

U-Tube Manometer on YouTube by Simon Poliakoff 42 views 01:24

U-tube Manometer Explained by Fluids Explained 73 views 12:59

Hydrostatics: Two Fluids in U-Shaped Tube by Physics Ninja

12:21

U Tube Manometers - Pressure, Density & Height of Oil & Water - Fluid Mechanics by The Organic Chemistry Tutor 92 views

06:50

PRACTICE

Water and oil are poured into a u-shape tube, as shown below. The column of oil, on the right side, is 25 cm tall, and the distance between the top of the two columns is 9 cm. Calculate the density of the oil.

27 views

A U-shaped tube open at both ends is initially partly filled with oil. Then a different liquid is poured into the left side. The height of the column of mystery fluid is If the fluid level on the left is lower than on the right by a distance of what fluid was poured into the left side?

2 views

Buoyancy & Buoyant Force 15 videos | 5 questions VIDEOS

Anderson Video - Archimedes' Principle by Professor Anderson 67 views 07:26

Anderson Video - Melting Ice and Water Level by Professor Anderson 34 views 05:17

Anderson Video - What Fraction of Iceberg is Underwater by Professor Anderson 27 views 05:07 Intro to Buoyancy & Buoyant Force by Patrick Ford 3 commentsIcon 60 views 11:06

Anderson Video - Density of an Object Underwater by Professor Anderson 21 views 03:41

Derivation of the Buoyancy Force (Archimedes' Principle) by James Charbonneau 90 views 06:37

Physics - Mechanics: Fluid Statics: What is Buoyance Force? (1 of 9) Fraction Submerged by Michel van Biezen 49 views 06:39

Physics | What is Buoyancy? | Buoyant force | Home Revise by Home Revise 64 views 03:58

Fluids, Buoyancy, and Archimedes' Principle by Professor Dave Explains 62 views 04:16

Archimedes Principle, Buoyant Force, Basic Introduction - Buoyancy & Density - Fluid Statics by The Organic Chemistry Tutor
45 views
15:19

What is Buoyancy? | Physics | Don't Memorise by Don't Memorise 46 views 02:49

Comparing Buoyant Forces by Patrick Ford 55 views 03:14

Buoyancy / Three Common Cases by Patrick Ford 2 commentsIcon 50 views 16:56

Is Crown Made of Gold? (Buoyancy) by Patrick Ford 8 commentsIcon 50 views 08:41

Maximum Load on Floating Board by Patrick Ford 37 views 06:55 PRACTICE

Multiple Choice XXXXXXXXXXXXXXXXXXXXXX

When an object of unknown mass and volume is fully immersed in large oil (800 kg/m3) container and released from rest, it stays at rest. Calculate the density of this object. 34 views

A block floats with 40% of its volume above water. When you place it on an unknown liquid, it floats with 30% of its volume above. What is the density of the unknown liquid? 31 views

An 8,000 cm3 block of wood is fully immersed in a deep water tank, then tied to the bottom. When the block is released and reaches equilibrium, you measure the tension on the string to be 12 N. What is the density of the wood?

1

commentsIcon

26 views

Multiple Choice XXXXXXXXXXXXXXXXXXXXXX

You want to build a large storage container, with outer walls and an open top, as shown, so that you can load things into it, while it floats on fresh water, without any water getting inside. If the bottom face of the container measures 3.0 m by 8.0 m, how high should the side walls be, such that the combined mass of container and inside load is 100,000 kg?

26 views

Multiple Choice XXXXXXXXXXXXXXXXXXXXXX

Suppose a certain type of wood has a density of . If a block of wood long, wide, and high were placed into a pool of water, how high would be the portion of the block above water?

9 views

Ideal vs Real Fluids

8 videos

VIDEOS

Ideal Versus Real Gases by Ben's Chem Videos 27 views 02:44

Real Fluid Flow by Frank McCulley 33 views 01:33

Ideal Fluid by Daniel Marble 52 views 14:46

Fluid Flow / Ideal vs Real Fluids by Patrick Ford

commentsIcon 57 views 04:41

Real fluids Vs Ideal fluids |2 min Quick Differences and Comparison| by Seal School 48 views 02:57

Difference between Ideal fluid & Real fluid by Savin C P Chem Square 108 views 05:50

The Ideal Fluid Model [Physics of Fluid Mechanics #39] by Simmy Sigma 34 views 10:13

Fluid Flow / Ideal vs Real Fluids by Clutch Prep 107 views 04:42 Fluid Flow & Continuity Equation 9 videos | 3 questions VIDEOS

Anderson Video - Continuity Equation- Moving Fluids and Traffic by Professor Anderson 36 views 07:49

Fluids - Lecture 2.1 - Continuity and Bernoulli's Equation by Benjamin Drew 54 views 14:32 Flow & Continuity Equation by Patrick Ford 2 commentsIcon 64 views 14:28

Fluid Flow Rate and the Continuity Equation by Mark Pecaut 39 views 06:50

Understanding Continuity Equation by BYJU'S 43 views 03:51

Continuity Equation by Bozeman Science 41 views 04:05

How Stuff Flows: Continuity Equation Explained for Beginners - Physics + Fluid Mechanics Made Easy by Parth G 34 views 08:44

Continuity Equation, Volume Flow Rate & Mass Flow Rate Physics Problems by The Organic Chemistry Tutor 68 views 14:01

Continuity / Proportional Reasoning by Patrick Ford 2

commentsIcon

50 views

04:06

PRACTICE

Multiple Choice XXXXXXXXXXXXXXXXXXXXXX

A cylindrical pipe with inner diameter of 4 cm is used to fill up a 10,000 L tank with a 700 kg/m3 oil. If it takes one hour to fill up the tank, calculate the speed, in m/s, with which the oil travels inside of the pipe.

35 views

Multiple Choice XXXXXXXXXXXXXXXXXXXXXX

Two hoses have been connected together. The first hose has a diameter of 4 cm, and the second has a diameter of If the water exits the narrower hose at a speed of , how quickly is the water moving inside the wider hose?

4 views

A blood vessel has a radius of This blood vessel divides into two, each having a radius of . If the speed of the blood just before the split is , what is the speed of blood just after the split? 12 views

20. Heat and TemperatureTemperature10 videos | 1 questionVIDEOS

Physics - Energy - Heat Transfer - Heat and Temperature by expertmathstutor 54 views 01:54

Lesson 16 - The Ideas of Heat and Temperature - Demonstrations in Physics by Professor Julius Sumner Miller 44 views 14:38

What is Temperature? (1 minute of physics) by Physics Made Easy 50 views 01:22

Introduction To Temperature Scales by Patrick Ford 47 views 04:54

What EXACTLY is Temperature?! by The Science Asylum 39 views 03:28

Temperature by Teacher's Pet 9 views 02:57

Temperature by Bozeman Science 17 views 04:30

Heat and Temperature by Professor Dave Explains 36 views 04:43

How To Convert Between Temperature Units by Patrick Ford 37 views 05:01

 The tungsten filaments inside of most incandescent lightbulbs reach temperatures of about 4580°F when the lightbulbs are lit. What is this temperature in a) Celsius and b) Kelvin? 28 views
Linear Thermal Expansion
9 videos | 2 questions
VIDEOS

Physics - Thermodynamics: Temperature (4 of 4) Thermal Linear Expansion: Example 3 by Michel van Biezen 25 views 06:39

Linear Thermal Expansion Calculation by Greg Clements 36 views 04:42

12.4 Linear Thermal Expansionby Physics Demos47 views16:39

Linear Thermal Expansion by Patrick Ford 53 views 07:31

Physics - Thermodynamics: Temperature (1 of 4) Thermal Linear Expansion: Definition by Michel van Biezen 20 views 05:18

Thermal Linear Expansion by Andrey K 40 views 08:37 Physics - Thermodynamics: Temperature (2 of 4) Thermal Linear Expansion: Example 1 by Michel van Biezen 20 views 03:51

Thermal Expansion Equations by Jennifer Cash 28 views 04:16

Expanding Steel Measuring Tape by Patrick Ford 34 views 03:47 PRACTICE

On a very cold day at a temperature of -12° C, a power line made of aluminum between two support towers measures exactly 150.56m. You go out on a hot day and measure the power line to be exactly 150.71m. What is the temperature (in $^{\circ}$ C) outside? The linear expansion coefficient of aluminum is 2.4×10 -5.

19 views

An aluminum rod is exactly long on a day when the temperature was . How long is the rod on a day when it is only? Use for the coefficient of linear expansion for aluminum.

6 views

Volume Thermal Expansion 10 videos | 1 question VIDEOS

Thermal Expansion (Linear, Area, and Volume!) | Doc Physics by Doc Schuster 28 views 13:23

Physics - Thermodynamics: Temperature (2 of 4) Thermal Volume Expansion: Example 1 by Michel van Biezen

28 views 06:08

Thermal Volume Expansion Example by Andrey K 38 views 04:45

Volume Thermal Expansion by Patrick Ford 62 views 05:21

AP Physics 2: Thermal 3: Thermal Volume Expansion and Its Coefficient by Yau-Jong Twu 28 views 05:11

Physics - Thermodynamics: Temperature (1 of 4) Thermal Volume Expansion by Michel van Biezen 13 views 06:02

12.5 Volume Thermal Expansionby Physics Demos20 views08:04

Thermal Volume Expansion by Andrey K 21 views 08:07

Expansion of a Hemispherical Dome by Patrick Ford 27 views 04:22 Overflowing Mercury by Patrick Ford 53 views 04:45 PRACTICE

Multiple Choice XXXXXXXXXXXXXXXXXXXXXXX

If a block of aluminum has a volume of exactly at , what is its volume at ? The coefficient of linear expansion for aluminum ismsup.

16 views

Moles and Avogadro's Number 9 videos | 4 questions VIDEOS

An Actually Good Explanation of Moles by Steve Mould 40 views 13:37

Introduction to Moles by Tyler DeWitt 31 views 10:50

Avogadro's Number - Converting between atoms and moles by Siebert Science 34 views 05:07

Moles & Avogadro's Number by Patrick Ford 48 views 07:19

Using Avogadro's Number | How to Pass Chemistry by Melissa Maribel

27 views

02:47

Concept of Mole | Avogadro's Number | Atoms and Molecules | Don't Memorise by Don't Memorise

49 views

06:00

The Mole: Avogadro's Number and Stoichiometry

by Professor Dave Explains

44 views

06:06

Avogadro's Number, The Mole, Grams, Atoms, Molar Mass Calculations - Introduction

by The Organic Chemistry Tutor

66 views

17:59

Calculating number of water molecules in a bottle

by Patrick Ford

48 views

03:56

PRACTICE

If the molar mass of hydrogen is 1.008 g/mol, what is the mass (in grams) of 2 hydrogen atoms? 43 views

How many moles are in a block of lead?

7 views

A rigid container has a volume of . It contains a ideal gas at . How many moles are in the container?

8 views

0.0076 moles of an ideal gas is at . If it is a sealed container with a volume of 86 cm3, what is the pressure of the gas?

10 views

Specific Heat & Temperature Changes

9 videos | 2 questions

VIDEOS

9.1 - Specific Heat and Phase Changesby K. Pluchino63 views21:08

Calorimetry Examples: How to Find Heat and Specific Heat Capacity by Melissa Maribel 48 views 04:13

How to calculation specific heat, heat, mass, or temperature change using Q=mCdeltaT by Jamie Camp 64 views 08:09

Specific Heat & Temperature Changes by Patrick Ford 69 views 06:50

Specific Heat, Heat, and Temperature | q=mc∆T by PremedHQ Science Academy 89 views 05:07

How to calculate temperature changes with specific heat capcity - Real Chemistry by Real Chemistry 36 views 12:06

Heat Capacity, Specific Heat, and Calorimetry by Professor Dave Explains 30 views 04:14 12.7 Heat and Temperature Change: Specific Heat Capacity by Physics Demos35 views10:28

Heating Cup of Water by Patrick Ford 37 views 03:36 PRACTICE

You are given a sample of an unknown metal. You weigh the sample and find that its weight is 29.4N. You add 1.25×104 J of heat energy to the sample and find that its temperature increases from 52°C to 70°C. What is the specific heat of this unknown metal?

19 views

Multiple Choice XXXXXXXXXXXXXXXXXXXXXX

of heat energy are added to a block of copper that is initially at . What is the final temperature of the copper? The specific heat capacity of copper is .

4 views

06:46

Latent Heat & Phase Changes 9 videos | 2 questions VIDEOS

Thermodynamics: Calculating Latent and Specific Heat, Example Problem by Step by Step Science

1 ranklcon
63 views

Lecture: States of Matter, Phase Change, Latent Heat, Heating Curves by Maxwell Ross 87 views 14:00

Phase Change Latent Heat

by Thomas Chorman 30 views 09:52

Latent Heat & Phase Changes by Patrick Ford 1 commentsIcon 48 views 10:40

Latent Heat, Phase Change, and Heat Capacity - Worked Example | Doc Physics by Doc Schuster 28 views 12:52

12.8 Heat and Phase Change: Latent Heatby Physics Demos41 views16:42

Physics - Thermodynamics: Intro to Heat & Temp (6 of 6) Change of Phase & Latent Heat by Michel van Biezen 30 views 05:56

Phase changes and latent heat by SciencePrimer 35 views 04:51

 How much heat must be removed from 0.7 kg of water at 23°C to cool it to 0°C and completely freeze it?

22 views

How much heat is needed to change of liquid water at into steam at?

3 views

Intro to Calorimetry

11 videos

VIDEOS

Calorimetry by Bozeman Science 40 views 06:01

Calorimetry by GenChem Concepts 35 views 07:40

Calorimetry by The Science Classroom 25 views 08:22

Solving Calorimetry Problems by Patrick Ford 78 views 06:53

Intro to Calorimetry by BoylanChemistry 17 views 04:09

How To Solve Basic Calorimetry Problems in Chemistry

by The Organic Chemistry Tutor 79 views 10:25

Calorimetry Concept, Examples and Thermochemistry | How to Pass Chemistry by Melissa Maribel 43 views 05:03

Calorimetry: Crash Course Chemistry #19 by CrashCourse 31 views 11:57

Equilibrium Temperature Equation in Calorimetry Problems by Patrick Ford 37 views 06:20

Pouring Hot Water in an Aluminum Cup by Patrick Ford 29 views 04:06

Mixing Hot & Cold Water by Patrick Ford 32 views 04:27 Calorimetry with Temperature and Phase Changes 9 videos VIDEOS

5.5 and 5.6 - Calorimetry and Phase Changesby Katie Dunn24 views12:44

Changes of States of Matter by Teacher's Pet 35 views 04:56

20) Phase Change Calorimetry 1by Anthony Buonaquisti29 views12:21

Calorimetry Problems with Temperature AND Phase Changes by Patrick Ford 52 views 08:49

17.6 Calorimetry and Phase Changesby Ken Schenck15 views07:20

Phase Changes, Heats of Fusion and Vaporization, and Phase Diagrams by Professor Dave Explains 16 views 04:51

Ch 12 - Heat - Calorimetry Problem Involving A Phase Change by Mike Spalding 25 views 17:10

Calorimetry with phase change by PGHS Physics 21 views 07:19 Cooling a Chunk of Iron by Patrick Ford 22 views 06:46

Advanced Calorimetry: Equilibrium Temperature with Phase Changes

8 videos VIDEOS

Equilibrium temperature of a mixture of two substances at different temperatures by Solving Physics Problems
49 views
08:56

Sample Problem on Thermal Equilibrium Involving Phase Change by Jesse Ceniza 54 views 17:15

Calculating final temperature through heat exchange in thermal equilibrium by Anthony Tedaldi
48 views
10:54

Calculating Equilibrium Temperature in Calorimetry Problems with Phase Changes by Patrick Ford 63 views 09:58

Calculating equilibrium temperature that includes a phase change: Chemistry sample problem by dcaulf 31 views 11:28

Equilibrium with Phase Change by Alex Barr 32 views Heat and phase changes by Tanya Katovich 20 views 19:19

1-85 Thermal equilibrium with phase change by Richard Wong Physics 41 views 04:28 Phase Diagrams, Triple Points and Critical Points 7 videos VIDEOS

Chemistry - Liquids and Solids (59 of 59) Phase Change: Phase Diagram for H2O and CO2 by Michel van Biezen 23 views 07:15

Phase Diagrams: Triple Points, Critical Points and Supercritical Fluids by Glenroy Martin 34 views 13:44

Phase Diagrams by Patrick Ford 30 views 06:59

Phase diagrams. II. Triple point and critical point by Diego Troya 59 views 08:56 Phase Diagrams of Water & CO2 Explained - Chemistry - Melting, Boiling & Critical Point by The Organic Chemistry Tutor 29 views 10:28

Phase Diagram Explained, Examples, Practice Problems (Triple Point, Critical Point, Phase Changes)
by Conquer Chemistry
84 views
06:54

Phase Diagrams: Triple Points, Critical Points and Supercritical Fluids by SciToons 17 views 04:51 Heat Transfer 10 videos | 5 questions VIDEOS

Physics - Heat Transfer - Thermal Radiation by expertmathstutor 34 views 03:56

Physics - Energy - Heat Transfer - Conduction by expertmathstutor 36 views 02:51

Physics - Energy - Heat Transfer - Convection by expertmathstutor 32 views 02:08

Introduction to Heat Transfer by Patrick Ford

1 comments con 50 views 07:17

Heat Exchange by Bozeman Science 32 views 05:04

Heat Transfer L1 p4 - Conduction Rate Equation - Fourier's Law by Ron Hugo 4 views 04:58

Conduction -Convection- Radiation-Heat Transfer by MooMooMath and Science 75 views 03:16

Heat Transfer [Conduction, Convection, and Radiation] by Mike Sammartano 65 views 04:27

Conduction by Patrick Ford 33 views 10:01

Radiation by Patrick Ford 1 commentsIcon 48 views 13:08 PRACTICE

A cubic Styrofoam cooler containing ice on a hot day is shown in the following figure. The thickness of each wall of the cooler is 15 mm, with a side length of 1 m. If it is 40°C outside, how long will 2 kg of ice last in the cooler? Assume that during the melting process, the temperature inside the cooler remains at 0°C and that no heat enters from the bottom of the cooler. Note that the latent heat of fusion for water is 334 kJ/kg and the thermal conductivity of Styrofoam is 0.033 W/mK.

2

commentsIcon

38 views

If the intensity of sunlight measured at the Earth's surface is 1400 W/m2, what is the surface temperature of the Sun? Treat the Sun like a true blackbody. Note that the distance from the Earth to the Sun is $1.5 \times 1011 \text{ m}$ and the radius of the Sun is 696 million meters.

1

commentsIcon

21 views

Multiple Choice XXXXXXXXXXXXXXXXXXXXXX

of work are done on a gas in a process which decreases the thermal energy by . How much heat energy is transferred to or from the system?

6 views

300 g of water at is in an insulated cup. What mass of copper at must be added to heat the water to?

10 views

21. Kinetic Theory of Ideal GasesThe Ideal Gas Law10 videos | 6 questionsVIDEOS

Ideal Gas Law by Brightstorm 26 views 08:45

Ideal Gas Law Practice Problems with Molar Mass by Tyler DeWitt

57 views 09:02

Ideal Gas Law Practice Problems & Examples by Conquer Chemistry 68 views 07:08

Ideal Gases and the Ideal Gas Law by Patrick Ford 54 views 07:21

Ideal Gas Law Explained by Chem Academy 31 views 16:58

5 Ideal Gas Law Experiments - PV=nRT or PV=NkT by YouCanScienceIt 114 views 11:21

Gases: The Ideal Gas Law by Guillotined Chemistry 25 views 05:40

Ideal Gas Problems: Crash Course Chemistry #13 by CrashCourse 41 views 11:45

Solving Ideal Gas Problems With Changing States by Patrick Ford 31 views 06:27 Doubling Pressure & Temperature by Patrick Ford 30 views 08:10 PRACTICE

3 moles of an ideal gas fill a cubical box with a side length of 30cm. If the temperature of the gas is 20°C, what is the pressure inside the container?

18 views

Multiple Choice XXXXXXXXXXXXXXXXXXXXXX

Hydrogen gas behaves very much like an ideal gas. If you have a sample of Hydrogen gas with a volume of 1000 cm3 at 30°C with a pressure of 1 × 105 Pa, calculate how many hydrogen atoms (particles) there are in the sample.

35 views

A balloon contains 3900cm3 of a gas at a pressure of 101 kPa and a temperature of -9° C. If the balloon is warmed such that the temperature rises to 28°C, what volume will the gas occupy? Assume the pressure remains constant.

21 views

A sample of gas is heated in a closed container with a volume of from an initial temperature and pressure of and to a final temperature of . What is the final pressure? 8 views

An ideal gas is in a sealed container. It has a temperature T when it has volume V at pressure P. What is the temperature of the gas when its volume is quadrupled, and the pressure is halved? 5 views

Multiple Choice XXXXXXXXXXXXXXXXXXXXXX

0.00086 moles of an ideal gas undergoes the process shown in the figure. If the initial temperature was $\,$ and the final pressure is , what is the final temperature?

6 views

Kinetic-Molecular Theory of Gases

8 videos

VIDEOS

Gases | The Kinetic Molecular Theory of Gases. by Ali Hayek

24 views 05:08

Kinetic Molecular Theory by The Science Classroom 24 views 07:40

Kinetic Molecular Theory of Gases by SCIENCE by Kyle Vasquez 17 views 15:09

Introduction to Kinetic-Molecular Theory by Patrick Ford 31 views 01:50

Kinetic Molecular Theory of Gases by Sean McMahon 35 views 07:55

Kinetic Molecular Theory and Properties of Gases by Flippin' Science Videos 18 views 06:14

Kinetic Molecular Theory of Gases by SCIENCE by Kyle Vasquez 25 views 15:09

Kinetic Molecular Theory and its Postulates by Professor Dave Explains 39 views 07:00 Average Kinetic Energy of Gases 9 videos | 1 question VIDEOS

Chemical Kinetics 1.1 - Average Kinetic Energy by TMP Chem 37 views 10:20

Average Translational Kinetic Energy with Derivation by Andrey K 47 views 14:43

12-average kinetic energy of gas particles and temperature by Reed Jeffrey 43 views 08:25

Introduction to Kinetic Theory of Gasses by Patrick Ford 1 commentsIcon 51 views 03:27

The Average Kinetic Energy per Molecule Equation for an Ideal Gas - IB Physics by Andy Masley's IB Physics Lectures 70 views 06:45

The Average Kinetic Energy per Molecule Equation for an Ideal Gas - IB Physics by Andy Masley's IB Physics Lectures
71 views
05:38

How To Calculate The Average Translational Kinetic Energy of Molecules Using Boltzmann's Constant by The Organic Chemistry Tutor 87 views 06:47

Chemistry of Gases (32 of 40) Kinetic Energy of a Gas Molecule by Michel van Biezen 32 views 06:45

Gas in a Balloon by Patrick Ford commentsIcon 38 views 03:40 PRACTICE

Multiple Choice XXXXXXXXXXXXXXXXXXXXXX

In a sample of gas, you pick a particle at random. The mass of the particle is 1.67 × 10-27 kg and you measure its speed to be 1600 m/s. If that particle's kinetic energy is equal to the average kinetic energy of the gas particles, what is the temperature of the sample of gas? 20 views Internal Energy of Gases 9 videos | 1 question

Derivation of Internal Energy Formula for Ideal Monatomic Gas by xmtutor 74 views 04:10

internal energy by Alice Deckert 17 views 03:35

VIDEOS

Calculation of the change in internal energy of a gas. by Benjamin Hurt 43 views 05:58

Internal Energy of Ideal Monoatomic Gases by Patrick Ford 48 views 06:12

7 18 What is the internal energy of an ideal gas? by Ark Physics 38 views 06:54

Kinetic Theory of Gases and Internal Energy by mrwaynesclass 34 views 05:41

Internal Energy of Gas - Thermodynamic Systems by tick Links 38 views 02:43

Internal energy of gases | Mechanical Engineering Thermodynamics by Adriaan Van Niekerk 34 views 10:04

 A container filled with 2 mol of an ideal, monoatomic gas is has a total internal energy equal to the kinetic energy of a 0.008kg bullet travelling at 700 m/s. What is the temperature of the gas in Kelvin?

26 views

Root-Mean-Square Velocity of Gases

9 videos | 1 question

VIDEOS

Gas Concepts and Practice: Root Mean Square Velocity Introduction by C. Sorensen-Unruh 46 views 15:08

Root Mean Square Velocity by Physical Chemistry 44 views 13:09

Root Mean Square Speed by Old School Chemistry 34 views 09:13

Root-Mean-Square Speed of Ideal Gases by Patrick Ford 1 commentsIcon 61 views 05:21

What is Root Mean Square Velocity (RMS Speed)? #6 by The Science Cube 89 views 13:13

Physics 32 Kinetic Theory of a Gas (6 of 10) Average, Mean, and Root Mean Square Velocity

by Michel van Biezen 34 views 05:53

Average Kinetic Energy of a Gas and Root Mean Square Velocity Practice Problems - Chemistry Gas Laws
by The Organic Chemistry Tutor
44 views
12:51

Average Kinetic Energy and Root Mean Square Velocity by Andrey K 46 views 04:28

Finding Pressure from RMS Speed by Patrick Ford 48 views 06:08 PRACTICE

What is the temperature of a sample of CO2 molecules whose rms speed is 300 m/s? The molecular mass for Carbon and Oxygen is 12.01 g/mol and 16 g/mol, respectively.

21 views

Mean Free Path of Gases 9 videos | 1 question VIDEOS

Mean Free Path, Mean Free Time, & Root Mean Square Velocity Formula Chemistry & Physics Problems by The Organic Chemistry Tutor 40 views 12:10

Chemical Kinetics 1.4 - Mean Free Path by TMP Chem 36 views 6.9 Mean Free Path, Diffusion, & Effusion of Gasesby Chemistry with Mrs. K38 views13:26

Mean Free Path by Patrick Ford 25 views 08:20

Example: Calculating the mean free path through air by Sean O'Neill 35 views 04:12

Mean Free Path by myEdu Learn 39 views 03:39

Chemistry of Gases (34 of 40) Mean Free Path: Basics by Michel van Biezen 16 views 05:07

Mean Free Path, Diffusion, and Effusion of Gases by Ben's Chem Videos 40 views 12:47

Calculating Radius of Nitrogen by Patrick Ford 46 views 06:18 PRACTICE

Laboratory environments can achieve pressures of 3.5×10-13 atm and temperatures of 300K. Calculate the mean free path (in km) of air molecules, which you can assume are diatomic. 11 views

Speed Distribution of Ideal Gases
9 videos | 1 question

VIDEOS

10.4 Maxwell Distribution of Speeds by Chad's Prep 23 views 05:12

Maxwell-Boltzmann speed distribution by tec-science 44 views 18:01

Speed Distribution Calculation Example by Jacob Stewart 28 views 08:23

Speed Distribution & Special Speeds of Ideal Gases by Patrick Ford 41 views 07:59

Physics 32 Kinetic Theory of a Gas (7 of 10) The Maxwell Boltzmann Distribution by Michel van Biezen 27 views 10:46

Maxwell Distribution of Speed in a Gas by Mike Richardson 54 views AP Physics 2: Thermal 13.2: Maxwell Speed Distribution for Molecules in an Ideal Gas by Yau-Jong Twu
29 views
03:19

Ideal Gas, Ideal Gas Law, Distribution of Speeds by Greg Clements 27 views 09:20

Probability Distribution Graph by Patrick Ford 31 views 04:03 PRACTICE

The escape velocity from the Earth is approximately 11.2 km/s. If the mass of helium atoms is $6.64 \times 10\text{-}27 \text{ kg}$, at what temperature would the average speed of helium atoms be equal to the escape velocity?

29 views

22. The First Law of Thermodynamics
Heat Equations for Special Processes & Molar Specific Heats
9 videos | 1 question
VIDEOS

19.7 Heat Capacities of an Ideal Gasby Ken Schenck48 views14:29

Specific Heat...at Constant Volume? or at Constant Pressure? | Doc Physics by Doc Schuster 35 views 13:13

Molar specific heats (Cp & Cv) #9 by The Science Cube 37 views 08:43

Heat Equations for Isobaric & Isovolumetric Processes by Patrick Ford 44 views 06:44

Physics - Thermodynamics: (3 of 22) Molar Heat Capacity Of A Gas by Michel van Biezen 29 views 09:41

Molar Specific Heat for Constant Volume and Constant Pressure by Andrey K 76 views 11:18

Molar Heat Capacities of Gases, Equipartition of Energy & Degrees of Freedom by The Organic Chemistry Tutor 33 views 11:13

Thermodynamics: Specific Heat Capacity Calculations by Step by Step Science 57 views 04:38

 How much heat energy is needed to increase the temperature of 5 mol of an ideal diatomic gas by from 273K to 300K if the a) pressure is held constant; b) the volume is held constant? 24 views

First Law of Thermodynamics

9 videos | 3 questions

VIDEOS

First Law of Thermodynamics by Andrey K 38 views 04:53

The First Law Thermodynamics - Physics Tutor by Math and Science 35 views 08:49

The First Law of Thermodynamics by Patrick Ford 1 commentsIcon 49 views 08:04

Simplifying the First Law of Thermodynamics | Physics by Parth G by Parth G 57 views 07:39

First Law of Thermodynamics by Conceptual Academy 17 views 03:14

FIRST LAW OF THERMODYNAMICS | Easy and Short by EarthPen

35 views 02:09

The First Law of Thermodynamics: Internal Energy, Heat, and Work by Professor Dave Explains
31 views
05:44

Alternate Equation of the First Law of Thermodynamics by Patrick Ford 45 views 05:37

Calculating Work Done on Monoatomic Gas by Patrick Ford 70 views 03:47 PRACTICE

A gas in a cylinder expands from a volume of 0.10 m3 to 0.320 m3. Heat flows into the gas just rapidly enough to keep the pressure constant at 1.65×105 Pa during the expansion. The total heat added is 1.15×105J. What is the change in internal energy of the gas? 32 views

A gas in a cylinder held at a constant pressure 1.80×105 Pa expands from a volume of 1.2 m3 to 1.6 m3. The internal energy of the gas decreases from 4.40×105 J to 3×105 J. How much heat was transferred to the gas?

27 views

Multiple Choice XXXXXXXXXXXXXXXXXXXXXX

The internal energy of a system decreases by 500 J, and 230 J of work is done on the system. What is the heat transfer into or out of this system?

24 views

Work Done Through Multiple Processes 8 videos | 3 questions VIDEOS

Thermodynamics: Example of finding work done during an isobaric process by Melvin Vaughn

56 views 13:04

Physics - Thermodynamics: (4 of 22) P-V Diagram And Work Done By a Gas by Michel van Biezen 57 views 08:17

Calculate Work for Reversible and Irreversible Expansion/Compression by LearnChemE 38 views 04:39

Calculating Works For Multiple Thermodynamic Processes by Patrick Ford 60 views 07:44

Work in Thermodynamics by Jennifer Cash 23 views 04:55

PV Diagrams, How To Calculate The Work Done By a Gas, Thermodynamics & Physics by The Organic Chemistry Tutor 57 views 20:17

Thermodynamics - Work Done By a Piston (Quasiequilibrium Processes) by Homework Solver3000 26 views 08:23

JEE Main Physics Thermodynamics #1 Work Done in a Cyclic Process by Michel van Biezen 44 views 07:19

PRACTICE

How much work is done on a gas that expands from A to B along the path shown below?

1

commentsIcon

19 views

Multiple Choice XXXXXXXXXXXXXXXXXXXXXX

A gas with an initial volume of 0.2 m3 is heated at constant volume, and the pressure increases from 2×105 Pa to 5×105. Then, it compresses at constant pressure until it reaches a final volume of 0.12 m3. Draw the two processes in the PV diagram below and find the total work done by the gas.

17 views

How much work is done on the gas in the process shown in the figure? Let , , , and .

11 views

Cyclic Thermodynamic Processes

3 videos | 1 question

VIDEOS

Properties of Cyclic Thermodynamic Processes by Patrick Ford 45 views 08:45

Signs in a Three-Step Cyclic Process by Patrick Ford 34 views 05:31

Heat Added Over Complete Cycle by Patrick Ford 14 views 03:26 PRACTICE

An ideal gas is taken through the four processes shown below. The changes in internal energy for three of these processes are as follows: $\Delta EAB = +82 \text{ J}$; $\Delta EBC = +15 \text{ J}$; $\Delta EDA = -56 \text{ J}$. Find the change in internal energy for the process from C to D.

44 views

PV Diagrams & Work

9 videos

VIDEOS

PV Graph and First Law of Thermodynamics by Mike Richardson 26 views 08:13

Work and PV Diagrams by Daniel Marble 28 views 09:23

PV diagrams and work by Joanna MacDonald 21 views 16:10

Work and PV Diagrams by Patrick Ford 55 views 08:07

16 - Thermodynamics - PV diagramby Cogverse Academy42 views05:45

PV Diagrams by ProfKeester 23 views 06:23

Lesson 6 - Work Heat And PV Diagrams (Physics Tutor) by Math and Science 15 views

Thermodynamics and P-V Diagrams by Bozeman Science 15 views 07:53

Finding Value of V on Axis by Patrick Ford 19 views 04:07

23. The Second Law of Thermodynamics
Heat Engines and the Second Law of Thermodynamics
11 videos | 7 questions
VIDEOS

phys2A ch15.7-8 The Second Law of Thermodynamics and Heat Engines by Leila Jewell 37 views 11:01

Heat engines and the 2nd law by mrwaynesclass 32 views 04:02

Heat Engines and the Second Law of Thermodynamics by Robert Browne 23 views 05:56 Introduction to Heat Engines by Patrick Ford 66 views 07:35

Second Law Thermodynamics, Heat Engines, Efficiency, Carnot Heat Engine by Greg Clements
41 views
17:46

First and Second Law of Thermodynamics and the Heat Engine by Andrey K 35 views 08:46

Lesson 8 - Heat Engines And 2nd Law of Thermodynamics (Physics Tutor) by Math and Science 50 views 05:01

Heat Engines And Second Law Of Thermodynamics by TutorVista 30 views 04:37

Power Output of a Gasoline Engine by Patrick Ford 29 views 06:58

Thermal Efficiency & The Second Law of Thermodynamics by Patrick Ford 51 views 06:01

Efficiency of a Nuclear Power Plant by Patrick Ford

32 views 03:55 PRACTICE

An aircraft engine takes in 9 kJ of heat and expels 6.4 kJ of heat each cycle. How much mechanical work does the engine do each cycle?

30 views

A heat engine uses a tank of ice water as a cold reservoir. The engine takes in 8 kJ of heat from the hot reservoir, and the heat expelled melts 18g of ice in the tank. How much work does this engine do?

35 views

A steam turbine takes in 75g of water and boils it as heat energy to run a 40% efficient engine.

How much work does this engine do per cycle?

23 views

A heat engine exhausts per cycle while doing of work. What is the efficiency of this engine? 13 views

In each cycle, a heat engine absorbs from a 400°C hot reservoir, emits to 80°C cold reservoir, while doing of work. Is it physically possible for this engine to exist?

In each cycle, a heat engine absorbs from a 400°C hot reservoir, emits to 80°C cold reservoir, while doing of work. Is it physically possible for this engine to exist?

Your car's engine can be modeled as a heat engine. How many joules must be extracted from your gas tank to get your car to 26 m/s? Assume the thermal efficiency of your car is 16%. Ignore air resistance and other frictional effects on your car.

2 views

Heat Engines & PV Diagrams 9 videos | 2 questions VIDEOS

PHYS 40B: Heat Engines and Refrigerators by UC Riverside SI 27 views 09:33 Heat Engines & Efficiency by Michael Flood 28 views 12:54

Physics. Thermodynamics. Efficiency of the heat engine by Yuri Kovalenok 25 views 13:43

Calculating Work in Heat Engines Using PV Diagrams by Patrick Ford 1 commentsIcon 43 views 07:28

Efficiency of Heat Engine p-V Graph by Daniel M 45 views 14:32

Video 3.5: PV diagrams and heat engines by Grant Volle 21 views 12:16

Thermodynamics - PV Diagrams and Heat Engines by Matt Trask 35 views 10:00

PV diagrams and heat engines by Rod 25 views 15:53 Efficiency of a Four-Step Engine by Patrick Ford
1

commentsIcon

24 views

10:33

PRACTICE

The cycle in the figure shows four processes. Process a is an isobaric expansion at . Process b is a constant volume reduction in pressure to . Process c returns the gas to its original state where the volume is . If the gas does of work each cycle, what is the maximum volume of the gas?

3 views

The figure shows the cycle of a heat engine that uses a diatomic gas. The temperature at point 1 is . What is the thermal efficiency of the engine?

3 views

The Otto Cycle

9 videos

VIDEOS

Air-standard analysis of Otto cycle by Randall Manteufel 31 views 13:08

The Internal Combustion Engine - stop motion animations and the PV cycle (Otto cycle) by Ben Ryder 25 views 06:35

Example: solving an ideal Otto cycle by Jeff Harris 31 views 04:58

The Otto Cycle

by Patrick Ford 2 commentsIcon 46 views 10:59

The Otto Cycle by Andrey K 25 views 06:41

Introduction to Otto cycles by Sean O'Neill 38 views 04:30

Mechanical Engineering Thermodynamics - Lec 16, pt 1 of 6: Ideal Otto Cycle by Ron Hugo 19 views 14:22

OTTO CYCLE | Easy Animation by EarthPen 34 views 03:11

Finding the Compression Ratio by Patrick Ford 1 commentsIcon 41 views 17:42 The Carnot Cycle 9 videos | 5 questions VIDEOS Carnot cycle by Lyman Briggs 31 views 18:11

Mechanical Engineering Thermodynamics - Lec 7, pt 2 of 3: Carnot Heat Engine by Ron Hugo 39 views 09:10

The Carnot Cycle | Physical Chemistry I | 036 by Professor Derricotte 28 views 10:04

The Carnot Cycle and Maximum Theoretical Efficiency by Patrick Ford 60 views 06:28

A Carnot cycle by Nils Berglund 16 views 02:25

Carnot Cycle by Physical Chemistry 30 views 18:01

Physics - Thermodynamics: (13 of 14) The Carnot Cycle by Michel van Biezen 35 views 08:41

CARNOT CYCLE | Easy and Basic by EarthPen

9 views 04:13

Lifting Mass with a Heat Engine by Patrick Ford 30 views 06:25 PRACTICE

Multiple Choice XXXXXXXXXXXXXXXXXXXXXX

A theoretical heat engine in space could operate between the Sun's 5500°C surface and the –270.3°C temperature of intergalactic space. What would be its maximum theoretical efficiency? 36 views

Multiple Choice XXXXXXXXXXXXXXXXXXXXXXX

A Carnot engine with an efficiency of 70% is cooled by water at 10°C. What temperature must the hot reservoir be maintained at?

43 views

Your friend claims they have a design for a reversible heat engine that can operate between the freezing and boiling temperatures of water that has an efficiency of 30%. Is this possible?

27 views

Multiple Choice XXXXXXXXXXXXXXXXXXXXXX

What is the Carnot efficiency of a heat engine operating between a hot reservoir at 300°C and a cold reservoir at 10°C?

2 views

What is the hot reservoir temperature of a Carnot heat engine that does work each cycle while expelling to a cold reservoir?

Refrigerators

10 videos | 3 questions

VIDEOS

Thermodynamics - 6-4 Refrigerators and Heat Pumps - another example by Engineering Deciphered 25 views 10:42

Thermodynamics - 6-4 Refrigerators and Heat Pumps - notes

by Engineering Deciphered 40 views 10:43

Mechanical Engineering Thermodynamics - Lec 6, pt 4 of 4: Refrigerators and Heat Pumps by Ron Hugo 25 views 12:30

Refrigerators by Patrick Ford 30 views 06:47

Anti-Heat Engines: Refrigerators, Air Conditioners, and Heat Pumps | Doc Physics by Doc Schuster 25 views 15:54

How Do Refrigerators Work? | An Intro to Gas Laws and Thermodynamics by Everyday Elements
41 views
03:10

2nd Law of thermodynamics - Principles of Refrigeration by SeeTheChangeUSA 41 views 07:41

Physics - Thermodynamics: (11 of 14) The Refrigerator: How It Works by Michel van Biezen 28 views 03:26

How long to freeze water? by Patrick Ford 26 views Heat Pumps by Patrick Ford 23 views 06:15 PRACTICE

Multiple Choice XXXXXXXXXXXXXXXXXXXXXX

A refrigerator has a coefficient of performance of 2.4. Each cycle, it takes in 3×104 J of heat from the cold reservoir. How much is expelled to the hot reservoir?

21 views

Freezing a kilogram of water, initially at 20°C, requires your refrigerator to remove about of thermal energy from the water. If the coefficient of performance of your refrigerator is 5.0, how much heat is exhausted into your kitchen when you freeze a kilogram of water?

2 views

What is the maximum possible coefficient of performance for a refrigerator operating between 2.0°C (a typical refrigerator temperature) and 20°C (a typical kitchen temperature)? 1 views

Entropy and the Second Law of Thermodynamics 11 videos | 3 questions VIDEOS

17.2 - Entropy & The Second Law of Thermodynamicsby Tressa Sharma38 views03:37

Second Law of Thermodynamics by Bozeman Science 50 views 04:47

Thermodynamics 4e - Entropy and the Second Law V by ViaScience 23 views 14:04

Intro to Entropy by Patrick Ford 48 views 07:50

Physics - Thermodynamics: (4 of 14) Second Law of Thermodynamics (Entropy) by Michel van Biezen 38 views 04:29

Understanding Second Law of Thermodynamics! by Lesics 32 views 06:56

The Second Law of Thermodynamics: Heat Flow, Entropy, and Microstates by Professor Dave Explains
19 views
07:44

Entropy and the 2nd Law of Thermodynamics | Physical Chemistry I 039 by Professor Derricotte 28 views 08:13

Entropy Increase When Braking by Patrick Ford 42 views 03:40

Calculating Entropy Changes for Systems of Objects by Patrick Ford 30 views 06:20 Entropy of Carnot Engine by Patrick Ford 28 views 03:56 PRACTICE

3 moles of an ideal gas are compressed isothermally at 20°C. During this compression, 1850 J of work is done on the gas. What is the change of entropy of the gas? 30 views

You have a block of ice at 0°C. Heat is added to the ice, causing an increase in entropy of 120J/K. How much ice melts into water in this process?

30 views

A non-Carnot heat engine operates between a hot reservoir at 610K and a cold reservoir at 320K. In a cycle, it takes in 6400 J of heat and does 2200 J of work. What is the total change in entropy of the universe over the cycle?

17 views

Entropy Equations for Special Processes 10 videos | 1 question VIDEOS

Entropy formulas for everyday processes by Tonya Coffey 17 views 12:28

Chapter 20: Entropy Change for an Isothermal Expansion | CHM 307 | 040 by Jacob Stewart 56 views 03:47

Entropy of Expansion | Physical Chemistry I | 043 by Professor Derricotte 9 views 07:50

Entropy Equations for Special Thermodynamic Processes

by Patrick Ford 33 views 08:39

Intro to Entropy- derivation from irrerversible/reversible processes by Professor Thermo 26 views 05:28

How to Predict Sign of Delta S (Entropy Change) Practice Problems, Examples, Rules, Summary by Conquer Chemistry 42 views 05:44

Change in Entropy of an Isothermal Process by Scott Lawson 29 views 03:03

Entropy Changes for Reversible Processes and The TdS equations by Christi Patton Luks 48 views 06:04

Entropy & Calorimetry by Patrick Ford 37 views 06:12

Entropy & Ideal Gas Processes by Patrick Ford 31 views 06:13 PRACTICE

Multiple Choice XXXXXXXXXXXXXXXXXXXXXX

3 moles of an ideal gas are in the left side of an hourglass-shaped container, separated by a thin barrier. The right side is completely empty, but the volume of the left and right sides are

equal. The barrier is suddenly removed, and the gas freely expands into the vacuum. What is the change in entropy?

commentsIcon 27 views Statistical Interpretation of Entropy 1 video | 1 question **VIDEOS**

Microstates and Macrostates of a System by Patrick Ford 29 views 06:41 **PRACTICE**

The macrostate of a set of coins is given by the number of coins that are heads-up. If you have 100 coins, initially with 20 heads-up, what is Δ ? when the system is changed to have 50 heads-up? Note that the multiplicity of k coins which are heads-up, out of N total coins, is Ω = ?!/?!(?-?)! . Does this change in macrostate satisfy the second law of thermodynamics? 17 views

24. Electric Force & Field; Gauss' Law Electric Charge 12 videos | 4 questions **VIDEOS**

Anderson Video - Fundamental Forces and Charge by Professor Anderson 58 views 08:22

Anderson Video - Static Electricity by Professor Anderson 39 views 05:46

Positive and Negative Charge

by Bozeman Science 42 views 05:24

Electric Charge by Patrick Ford 1 commentsIcon 4 rankIcon 104 views 05:37

Introduction to Electric Charge (Friction, Conduction, Induction) | Doc Physics by Doc Schuster 51 views 15:53

Electric charge - an introduction by PhysicsHigh 33 views 07:39

Introduction To Electric Charge by Up and Atom 19 views 07:38

What is Electric Charge? (Physics - Electricity) by Physics Made Easy 37 views 04:10

What is Electric Charge? (Electrodynamics) by The Science Asylum 26 views 06:50

Electric Charge by Bozeman Science 25 views 04:19

Charge of Atom by Patrick Ford 3 ranklcon 54 views

Electrons In Water (Using Density)

by Patrick Ford

8

01:06

commentsIcon

3

ranklcon

44 views

04:32

PRACTICE

How many electrons make up $-1.5 \times 10-5$ C?

6

commentsIcon

59 views

How many electrons do you have to add to decrease the charge of an object by 16 μ C?

2

commentsIcon

45 views

A glass rod is rubbed with silk, and a plastic rod is rubbed with wool. Afterward, to which object or objects will the glass rod be attracted?

9 views

Multiple Choice XXXXXXXXXXXXXXXXXXXXXX

A ring of charge lies in the xy-plane with its center at the origin. The ring has a radius of 87 cm and a total charge of μ . What is the linear charge density on the ring?

9 views

Charging Objects

8 videos | 1 question

VIDEOS

Charging Objects by Dr. Caine 14 views 03:50

Charging Objects and Conservation of Electric Charge 8 by z physics 26 views 01:36

Static Electricity and Charging Objects by M. Kreamer 31 views 12:35

Charging Objects by Patrick Ford 4 commentsIcon 6 rankIcon 86 views 06:36

CHARGING PROCESS | STATIC ELECTRICITY | FRICTION CONDUCTION INDUCTION by Science is Fun 88 views 07:55

Charging by Conduction and Induction by Flipping Physics 36 views 13:15 Methods of Charging by NunezPhysics 23 views 06:40

Three Ways to Charge Objects by Aaron Fay 18 views 08:33 PRACTICE

A certain electroscope is charged until it holds of negative charge. Have electrons been added to the electroscope, or removed from it, and how many?

9 views

Charging By Induction 7 videos | 1 question VIDEOS

Minute Physics- Charging by Induction and Conduction by Dalia Nevarez 11 views 02:41

CHARGING BY INDUCTION by 7activestudio 21 views

01:52

Charging By Induction by Patrick Ford 4 commentsIcon 6 rankIcon

74 views

03:59

Electrostatic Induction by Bozeman Science 13 views 08:37

Charging By Induction by The Physics Classroom 35 views 10:00

Charging by Induction by TutorVista 19 views 05:38

DEMO: Charging by Induction by Physierge 20 views 02:10 PRACTICE

Two metal spheres (A and B) are connected by a conducting wire. A positively charged rod is brought close to sphere A but is not touching sphere A. Sphere B is farther away. With the rod still close, the wire between spheres is disconnected, and the rod is then removed. The rod never touched either sphere. What is true about the charge on the two spheres? 8 views

Conservation of Charge 8 videos VIDEOS

Electrostatics 1 - Conservation of Charge 1 by Jack Replinger 26 views 13:52

Conservation of Charge - showmethephysics.com

by Mr. Mangiacapre 25 views 02:46

Electric Charge and Law of Conservation of Charge by Andrey K 27 views 08:09

Conservation of Charge by Patrick Ford 2 commentsIcon 6 rankIcon 73 views 05:43

Conservation of Electric Charge by Bozeman Science 28 views 06:07

Conservation of Charge Example Problems by Flipping Physics 38 views 13:24

Charge is Conserved by OpenStax 17 views 03:12

Conservation of Charge and Charge Sharing by Simple Science 23 views 04:46 Coulomb's Law (Electric Force)

17 videos | 7 questions VIDEOS

Anderson Video - Atoms and Coulomb's Law by Professor Anderson 1 ranklcon 24 views 12:19

Anderson Video - Coulomb's Law Example with Two Charges by Professor Anderson 50 views 08:55

Anderson Video - Coulomb's Law Example with Three Charges by Professor Anderson 30 views 08:11

Coulomb's Law by Patrick Ford 4 commentsIcon 4 rankIcon 106 views 09:52

Anderson Video - Hydrogen Atom by Professor Anderson 12 views 10:57

Coulomb's Law (with example) by Up and Atom

29 views 09:51

Electric Charge and Electric Fields by Professor Dave Explains 26 views 06:41

Coulomb's Law (2 of 7) Calculate the Force Between Two Charges by Step by Step Science 16 views 07:02

Coulomb's Law (1 of 7) An Explanation by Step by Step Science 19 views 09:23

Coulomb's Law Problems by Physics Ninja 30 views 19:19

Coulomb's law by Zach Wissner-Gross 22 views 03:55

Introduction to Coulomb's Law or the Electric Force by Flipping Physics 35 views 12:10

Charges In A Line (Find Zero Force) by Patrick Ford 6 commentsIcon 3 ranklcon 66 views 07:03

Charges In A Triangle (Rank Force Pairs) by Patrick Ford 2 ranklcon 57 views 01:53

Charges in a Plane by Patrick Ford 10 commentsIcon 2 rankIcon 55 views 07:58

Exploiting Symmetry by Patrick Ford 1 commentsIcon 2 rankIcon 39 views 03:49

Electroscope (Find Charge) by Patrick Ford 3 commentsIcon 1 rankIcon 80 views 07:09 PRACTICE

Multiple Choice XXXXXXXXXXXXXXXXXXXXXX

If the force between two charges is F when the distance is d, what will the force between the two charges be if they were moved to a distance of 2d?

3

commentsIcon

66 views

In which direction will the -1 C charge move? If it has a mass of 10 g, what will its initial acceleration be?

5

commentsIcon

59 views

What is the direction of the net force on the charge at the center of the square in the following figure?

4

commentsIcon

91 views

What is the distance between a charge and a charge if the magnitude of the force between them is ?

7 views

There is a charge at the origin. A charge is on the x-axis at . A charge is on the y-axis at . What is the total force on the charge at the origin? Give your answer as a magnitude and an angle counterclockwise from the positive x-axis.

7 views

What is the relationship between the gravitational force between two electrons, . and the electric force between two electrons, ?

7 views

A charge is at the origin, a charge is at . Where, on the x-axis, could you place a charge so that it would experience no net force?

8 views

Electric Field

17 videos | 5 questions

VIDEOS

by Professor Anderson 33 views 09:35

Anderson Video - Electric Field Vectors by Professor Anderson 32 views 05:06

Anderson Video - Electric Fields on the Atomic Scale by Professor Anderson 28 views 03:04

Intro to Electric Fields by Patrick Ford 2 commentsIcon 103 views 03:16

Anderson Video - Electric Field Example with Four Charges by Professor Anderson 14 views 08:09

Anderson Video - Electric Field from Two Charges by Professor Anderson 23 views 09:10

Electric Field by Simple Science 25 views 05:55

Electric Field (2 of 3) Calculating the Magnitude and Direction of the Electric Field

by Step by Step Science 34 views 10:24

Introduction to Electric Fields by Up and Atom 33 views 07:33

Electric Field Strength by Bozeman Science 32 views 04:07

Candle Flame in an Electric Field by Animated Science 30 views 02:52

What is an Electric Field? (Physics - Electricity) by Physics Made Easy 28 views 07:49

Physics 36 The Electric Field (4 of 18) by Michel van Biezen 27 views 18:50

Electric Field due to a Point Charge by Patrick Ford 3 commentsIcon 2 rankIcon 70 views 06:28 Zero Electric Field due to Two Charges by Patrick Ford 5 commentsIcon 1 rankIcon 117 views 06:55

Electric Field Above Two Charges (Triangle) by Patrick Ford 4 commentsIcon 1 rankIcon 66 views 04:49

Balancing a Pendulum in Electric Field by Patrick Ford 2 commentsIcon 2 rankIcon 49 views 05:23 PRACTICE

Multiple Choice XXXXXXXXXXXXXXXXXXXXXXX

A $1.5\mu C$ charge, with a mass of 50g, is in the presence of an electric field that perfectly balances its gravity. What magnitude does the electric field need to be, and in what direction does it need to point?

5

commentsIcon

56 views

If two equal charges are separated by some distance, they form an electric dipole. Find the electric field at the center of an electric dipole, given by the point P in the following figure, formed by a 1C and a -1C charge separated by 1 cm.

5

commentsIcon

64 views

Multiple Choice XXXXXXXXXXXXXXXXXXXXXX

4 charges are arranged as shown in the following figure. Find the magnitude of the electric field at the center of the arrangement, indicated by the point P.

8

commentsIcon

74 views

In the following figure, a mass m is balanced such that its tether is perfectly horizontal. If the mass is m and the angle of the electric field is ?, what is the magnitude of the electric field, E?

commentsIcon

31 views

A plastic bead is given a charge of by rubbing. What magnitude and direction of electric field is necessary to levitate the bead?

9 views

Electric Fields in Capacitors 8 videos | 3 questions

VIDEOS

Electrical Engineering: Ch 6: Capacitors (2 of 26) Capacitor with Dielectric by Michel van Biezen 34 views 05:43

Energy Stored on a Capacitor and Energy Density in an Electric Field by Electric and Magnetic Fields 44 views 08:03

Electric Field Between the Plates of a Capacitor by Greg Clements 27 views 07:10

Intro to Capacitors

by Patrick Ford 3 commentsIcon 56 views 06:13

Finding the Electric Field in a Parallel Plate Capacitor by Melvin Vaughn 26 views 15:46

Parallel plate capacitor (3d animation), Physics, Class 12 by The Visual Learning 56 views 03:31

Dielectrics & Capacitors - Capacitance, Voltage & Electric Field - Physics Problems by The Organic Chemistry Tutor 27 views 14:19

Electric Field of Parallel Plates by Bozeman Science 24 views 08:30 PRACTICE

An electron moves into a capacitor at an initial speed of 150 m/s. If the electron enters exactly halfway between the plates, how far will the electron move horizontally before it strikes one of the plates? Which plate will it strike?

8

commentsIcon

51 views

Each plate in a parallel-plate capacitor has an area of . and the separation between plates is . The magnitude of the charge on each plate is . What is the magnitude of the electric field between the plates and inside the metal of the plates?

15 views

Multiple Choice XXXXXXXXXXXXXXXXXXXXXX

A water molecule is a dipole. If water were placed in the uniform field between capacitor plates, which of the following would best describe the force and torque experienced by the water molecules?

9 views Electric Field Lines 10 videos | 1 question VIDEOS

Anderson Video - Electric Field Lines by Professor Anderson 14 views 06:14

How to Draw Electric Field Lines and What They Mean | Doc Physics by Doc Schuster 23 views 08:04

Electric Fields and Electric Field Lines by Animations for Physics and Astronomy 18 views 04:39

Electric Field Lines by Patrick Ford 2 commentsIcon 2 rankIcon 45 views 08:20

Physics 12.3.4b - Electric Field Lines by Derek Owens 20 views 10:11 Electric Fields and Electric Field Lines by Animations for Physics and Astronomy 28 views 04:39

Electric Field Lines by Andrey K 33 views 05:59

Electric Field Lines by The Physics Classroom 21 views 06:41

Physics 12.3.4a - Electric Field Lines by Derek Owens 16 views 06:12

Field Lines of Electric Quadrupole by Patrick Ford 2 commentsIcon

1

ranklcon

77 views

03:37

PRACTICE

Open Question

Draw the field lines for a pair of identical, positive charges.

1

commentsIcon

18 views

Dipole Moment

9 videos

VIDEOS

Electric Dipole Moment Example # 1 by Andrey K 37 views 04:11

A dipole in an electric field by UNSW Physics 29 views 11:59

ELECTRIC DIPOLE by 7activestudio 10 views 04:45

Intro To Dipole Moment by Patrick Ford 5 commentsIcon 60 views 03:08

Physics 36 Electric Field (15 of 18) The Electric Dipole by Michel van Biezen 24 views 13:20

What is electric dipole and dipole moment? by The Science Cube 52 views 16:22

Simple Lesson on Electric Dipole Moment and Torque of Dipole Moment in Electric Field by Author Jonathan David 33 views 08:52 Electric Dipole and Electric Dipole Moment by Andrey K 19 views 13:29

Energy & Torque of Dipole Moments by Patrick Ford 3 commentsIcon 37 views 05:19 Electric Fields in Conductors 10 videos VIDEOS

Anderson Video - Electric Fields in Metals by Professor Anderson 28 views 09:41

Anderson Video - Metals in Electrostatic Equilibrium by Professor Anderson 11 views 07:03

Electric Fields - Conductors by Unstable Seagull 23 views 05:12

Electric Fields in Conductors by Patrick Ford 3 commentsIcon 72 views Conductors and Electric Fields by RamseyPhysics 24 views 08:11

Why is the Electric Field Inside a conductor Zero? by PhysicsOH 46 views 03:59

Gauss Law Problems, Hollow Charged Spherical Conductor With Cavity, Electric Field, Physics by The Organic Chemistry Tutor
39 views
10:37

Conductors in Electrostatic Equilibrium | Rules for Electric Fields | Doc Physics by Doc Schuster 22 views 13:46

Electric Fields and Conductors by z physics 51 views 06:21

PHYS102 | Conductors 1- Field Inside a Conductor by Physierge 21 views 08:39 Electric Flux 10 videos | 7 questions VIDEOS Magnetic and Electric Flux by tick Links 28 views 03:43

Electric flux closed surface part 1 by UNSW Physics 26 views 01:32

Electric Flux (part 1) by lasseviren1 29 views 10:02

Electric Flux by Patrick Ford 3 commentsIcon 83 views 05:43

Physics - E&M: Ch 36.1 The Electric Field Understood (2 of 17) What is Electric Flux? by Michel van Biezen 30 views 06:46

Electric flux by NEB Physics 18 views 04:42

Electric Flux, Gauss's Law & Electric Fields, Through a Cube, Sphere, & Disk, Physics Problems by The Organic Chemistry Tutor 55 views 12:52

```
Flux Through Angled Surface
by Patrick Ford
3
commentsIcon
56 views
02:01
```

Flux Through Cube by Patrick Ford 4 commentsIcon 1 rankIcon 53 views 03:46

Flux Through Spherical Shell due to Point Charge by Patrick Ford 2 commentsIcon 1 rankIcon 74 views 03:01 PRACTICE

Multiple Choice XXXXXXXXXXXXXXXXXXXXXX

The electric flux through each surface of a cube is given below. Which surfaces of the cube does the electric field run parallel to? $\Phi 1 = 100 \text{ Nm} 2 \text{ /C}$ $\Phi 4 = 0 \text{ Nm} 2 \text{ /C}$

 Φ 2 = 20 Nm2 /C Φ 5 = -40 Nm2 /? Φ 3 = 0 Nm2 /C Φ 6 = -80 Nm2 /?

3

commentsIcon

70 views

Multiple Choice XXXXXXXXXXXXXXXXXXXXXX

Where does the normal vector point for a spherical shell?

1

commentsIcon

48 views

What is the total flux through the two surfaces depicted in the following figure? Note that surface 1 has an area of 50 cm2 and surface 2 has an area of 100 cm2, and E = 500 N/C.

2

commentsIcon

38 views

A uniform electric field points in the positive x direction and has a magnitude of . What is the total flux through a rectangle with height and width? The rectangle lies in the y-z plane.

6 views

Multiple Choice XXXXXXXXXXXXXXXXXXXXXX

A uniform electric field points in the positive x direction and has a magnitude of . What is the net flux through a cube with sides? The cube has one corner on the origin and the positive x, y, and z axes form three of its edges.

5 views

Multiple Choice XXXXXXXXXXXXXXXXXXXXXXX

A cube has sides of . Inside the cube is a and a charge. What is the net flux through the cube? 7 views

A rectangle lies in the x-y plane; let the normal vector point in the z direction. What is the flux through the rectangle of a uniform electric field

10 views

Gauss' Law 13 videos | 7 questions

VIDEOS

Anderson Video - Gauss's Law Intro by Professor Anderson 70 views 06:53

Anderson Video - Gauss's Law Example by Professor Anderson 52 views 09:32

Deriving Gauss's Law for Electric Flux via the Divergence Theorem from Vector Calculus by Dr. Trefor Bazett 45 views

45 views

10:10

Gauss' Law by Patrick Ford 3 ranklcon 61 views 10:20

Using Gauss's Law to Calculate the Electric Flux and Charge in a Rectangular Prism by Physics Ninja 57 views 16:51

Gauss's Law Problems - Conducting Sphere, Spherical Conductor, Electric Flux & Field, Physics by The Organic Chemistry Tutor 47 views 10:27

Physics 37.1 Gauss's Law Understood (2 of 29) What is Electric Flux? by Michel van Biezen 29 views 03:48

Gauss Law Cylinder, Infinite Line of Charge, Electric Flux & Field, Physics Problems by The Organic Chemistry Tutor 53 views 12:10

Flux and Gauss Law by Robert Cruikshank 22 views 16:23

Electric Flux and Gauss's Law | Electronics Basics #6 by How To Mechatronics 27 views

2

by Patrick Ford

commentsIcon

Electric Field Within Spherical Conductor

```
ranklcon
64 views
02:44
Electric Field due to Hollow Shell
by Patrick Ford
5
commentsIcon
ranklcon
58 views
07:56
Surface Charge Density
by Patrick Ford
commentsIcon
ranklcon
112 views
04:03
PRACTICE
Multiple Choice XXXXXXXXXXXXXXXXXXXXXX
Rank the flux through surfaces A, B and C in the figure below from greatest to smallest.
commentsIcon
37 views
A spherical, conducting shell has a charge of -6C. If a 4C charge were placed at the center of
the shell, what is the electric field at 4 cm? At 12 cm?
commentsIcon
```

47 views

A cube has sides equal to . The net flux through the cube is outward. Is the net charge in the cube positive, negative or zero?

7 views

An electric field with strength exists just

25. Electric Potential Electric Potential Energy 4 videos | 4 questions VIDEOS

Potential Energy due to Point Charges by lasseviren1 42 views 10:08

Electric Potential Energy by The Organic Chemistry Tutor 1 ranklcon 34 views 30:18

Physics 12.4.1a - Electric Potential and Potential Difference by Derek Owens 40 views 08:09

Electric Potential Energy by Patrick Ford 2 commentsIcon 5 rankIcon 154 views 07:51 PRACTICE What is the electric potential energy of the charges shown in the figure?

12 views

An electron is in between charged capacitor plates. It is moved from a position near the positive plate to a position near the negative plate. What is true about the change in the potential and the change in the potential energy?

2 views

At one location in space the potential energy of a 10 nC charge is . If the 10 nC charge was replaced with 20 nC charge at the same location, what would be the electrical potential energy of the 20 nC charge?

3 views

What is the electrical potential energy of the charges shown in the figure? 3 views
Electric Potential
10 videos | 7 questions
VIDEOS

Anderson Video - Electric Potential Intro by Professor Anderson 34 views 10:13

Anderson Video - Electric Potential Units by Professor Anderson 19 views 03:00

Physics - E&M: Ch 38.1 Voltage Potential Understood (9 of 24) Potential Due to Multiple Charges%%% by Michel van Biezen 28 views 04:10

Electric Potential

by Patrick Ford 3 commentsIcon 2 rankIcon 99 views 07:33

Finding the Electric Potential due to Two Point Charges by Physics Explained 30 views 04:55

Electric Potential by The Organic Chemistry Tutor 27 views 33:16

What is an Electric Potential? by Physics Made Easy 35 views 08:35

Movement of Charges in Potential Fields by Patrick Ford 4 commentsIcon 2 rankIcon 73 views 02:54

Potential Due To Point Charges by Patrick Ford 3 commentsIcon 84 views 07:31 Potential Difference Between Two Charges

by Patrick Ford

6

commentslcon

4

ranklcon

62 views

07:04

PRACTICE

How far from a 5µC charge will the potential be 100 V?

38 views

Multiple Choice XXXXXXXXXXXXXXXXXXXXXX

A -1μ C and a 5μ C charge lie on a line, separated by 5cm. What is the electric potential halfway between the two charges?

6

commentsIcon

42 views

Multiple Choice XXXXXXXXXXXXXXXXXXXXXX

What is the electric potential 3.0 cm away from a point charge?

4 views

A charge sits at the origin, and a charge is at . At what location(s) is the potential zero?

A uniform electric field with strength points from point A to point B, which are on the x-axis: and . What is the potential difference ?

Multiple Choice XXXXXXXXXXXXXXXXXXXXXX

A spherical balloon is charged so that the potential on its surface is . The balloon is now deflated to half its original radius (with no loss of charge). What is the new potential on its surface?

14 views

Metal sphere A is charged until it has a potential of . Metal sphere B is initially uncharged, and has a radius twice the radius of sphere A. A small wire is used to connect spheres A and B, so that they form one continuous equipotential surface. What is the final potential on the surface of sphere B?

3 views

Work From Electric Force

6 videos | 4 questions

VIDEOS

Work by the Electric Field by Daniel M 1 ranklcon 35 views 05:43

Electric Potential Energy and Potential Difference

by Daniel M ** 24 views 04:31

8.02x - Lect 4 - Electrostatic Potential, Electric Energy, Equipotential Surfaces by Lectures by Walter Lewin. They will make you ♥ Physics.
35 views
49:02

Work due to Electric Force by Patrick Ford 8 commentsIcon 2 rankIcon 74 views 13:39

Work to Bring Two Charges From Infinity by Patrick Ford 3 commentsIcon 1 rankIcon 69 views 04:39 Speed of Electron in Electric Field

by Patrick Ford

1

commentsIcon

2

ranklcon

50 views

05:32

PRACTICE

Multiple Choice XXXXXXXXXXXXXXXXXXXXXXX

An electron moves from point A to point B. The potential difference between these two points is 100 V. What is a. the point of higher potential?

b. the work done on the electron?

c. the final speed of the electron if its initial speed is zero?

5

commentsIcon

64 views

What work is needed to assemble an equilateral triangle of side length 5 cm, with a 5µC charge at each vertex?

2

commentsIcon

41 views

What is the speed of a proton that has been accelerated through?

4 views

Multiple Choice XXXXXXXXXXXXXXXXXXXXXX

How much work does a battery do when it moves from the negative terminal to the positive terminal?

4 views

Relationships Between Force, Field, Energy, Potential

10 videos | 7 questions

VIDEOS

Anderson Video - Motion of Charge Between Plates by Professor Anderson 14 views 06:51

Anderson Video - Electric Potential with Four Charges

by Professor Anderson 13 views 09:11

Anderson Video - Spark Plug by Professor Anderson 12 views 09:45

Relationships Between Force, Field, Energy, Potential by Patrick Ford 1 ranklcon 83 views 03:43

2.4.1 The Work Done in Moving a Charge by Real Physics43 views02:57

Electric Potential Energy by The Organic Chemistry Tutor 40 views 08:58

Electric Force by Bozeman Science 20 views 05:50

Potential at Center of Charges in a Square by Patrick Ford 2 ranklcon 35 views 03:56 Potential Difference Between Two Charges by Patrick Ford 2 commentsIcon 2 rankIcon

49 views 05:45

07:12

PRACTICE

Distance to Stop a Point Charge by Patrick Ford 1 commentsIcon 2 rankIcon 40 views

A -2C charge lies at rest. (a) What is the potential difference between point A, which is 1.5m from the charge, and point B, which is 4m from the charge? (b) What would the work on a 4C charge be to move it from A to B?

4

commentsIcon

37 views

4 identical charges are arranged so that they are evenly spaced in a circle. If the radius of the circle is 10 cm, and the potential at the center of the circle is −100 V, what is the magnitude of each charge?

2

commentsIcon

30 views

The x component of a uniform electric field is . What is the potential difference between and ? 3 views

The electric potential in a region of uniform electric field is at and at. What is?

3 views

Multiple Choice XXXXXXXXXXXXXXXXXXXXXX

What is the speed of a proton that has been accelerated through?

3 views

Multiple Choice XXXXXXXXXXXXXXXXXXXXXX

Point A is at and point B is at . A proton moves past point A at , what is its speed when it reaches point B?

8 views

Multiple Choice XXXXXXXXXXXXXXXXXXXXXX

The water molecule is a permanent electric dipole with a dipole moment of . A water molecule is aligned with an electric field of magnitude . How much energy is required to rotate the molecule 180°?

12 views

The ElectronVolt

5 videos

VIDEOS

What is an Electron Volt? by Step by Step Science 35 views 05:33

What Exactly is The Electronvolt? | A Level Physics by VT Physics 42 views 02:23

Electron Volt Explained, Conversion to Joules, Basic Introduction by The Organic Chemistry Tutor 32 views 01:48

The ElectronVolt by Patrick Ford 2 rankIcon 39 views 05:37

What is an electron volt (eV) and how does it relate to the joule?

by PhysicsHigh 26 views 07:08 Equipotential Surfaces 8 videos | 1 question VIDEOS

Anderson Video - Equipotential Surface due to a Point Charge by Professor Anderson 23 views 06:34

Anderson Video - Equipotential Surface due to a Dipole by Professor Anderson 23 views 03:05

Anderson Video - Work to Move Charge Across Equipotential Surfaces by Professor Anderson 15 views 05:44

Equipotential Surfaces by Patrick Ford 1 ranklcon 54 views 08:07

Equipotential Lines by Bozeman Science 21 views 06:11

Equipotential Lines & Surfaces, Electric Field, Work & Voltage - Physics by The Organic Chemistry Tutor

39 views 10:26

EQUIPOTENTIAL SURFACES

by 7activestudio 40 views 01:31

Field due to Equipotential Surfaces by Patrick Ford

3

commentsIcon

1

ranklcon

54 views

02:43

PRACTICE

Open Question

Draw the electric field that corresponds to the equipotential surfaces shown in the following figure. Note that the potential is decreasing in the upward direction.

12 views

26. Capacitors & Dielectrics Capacitors & Capacitance 6 videos | 2 questions VIDEOS

Capacitors and Capacitance by Andrey K 45 views 07:37

Parallel Plate Capacitor Physics Problems by The Organic Chemistry Tutor 66 views 04:21 Capacitors Explained - The basics how capacitors work working principle by The Engineering Mindset 110 views 03:08

Capacitors & Capacitance (Intro) by Patrick Ford 6 commentsIcon 3 rankIcon 102 views 08:02

Capacitors - Basic Introduction - Physics by The Organic Chemistry Tutor 34 views 28:18

Capacitors and capacitance | Circuits | Physics | Khan Academy by khanacademymedicine 32 views 05:43 PRACTICE

What is the potential across a Math output error capacitor that is storing Math output error of charge?

14 views

Multiple Choice XXXXXXXXXXXXXXXXXXXXXX

Two pieces of metal are connected to one another by a plastic rod. A student finds that when one has a charge of 12 nC, and the other has a charge of -12 nC, the potential difference between them is . What is the capacitance of the arrangement?

3 views

Parallel Plate Capacitors 6 videos | 7 questions VIDEOS

Anderson Video - Electric Field Energy Density

by Professor Anderson 22 views 09:56

The Parallel Plate Capacitor Equation by Jennifer Cash 26 views 03:54

Parallel Plate Capacitor Physics Problems by The Organic Chemistry Tutor 24 views 03:21

Parallel Plate Capacitors by Patrick Ford 3 commentsIcon 3 rankIcon 85 views 08:53

Parallel Plate Capacitors by Andrey K 22 views 11:18

Point Charge Inside Capacitor by Patrick Ford 4 commentsIcon 1 rankIcon 64 views 06:07 PRACTICE

Two circular plates of radius 2cm are brought together so their separation is 5mm. What is the capacitance of these plates?

76 views

Multiple Choice XXXXXXXXXXXXXXXXXXXXXX

A 3 F capacitor is given a potential difference across its plates of 10 V. What is the charge built up on its plates? If the source of the potential difference across the plates is removed, but the plates maintain their charge, what is the new potential difference across the capacitor if the distance between the plates is doubled?

1

commentsIcon

51 views

What is the smallest possible capacitance of a parallel-plate capacitor with plate area separated by a distance, if you can fill it with any of the materials listed in Table 21.3? 2 views

Multiple Choice XXXXXXXXXXXXXXXXXXXXXX

One gallon of typical gasoline has 132 MJ of energy. You wish to store that much energy in a parallel-plate capacitor for an electric car. Assume you charge the capacitor using a power source. You can fill the capacitor with any of the materials listed in Table 21.3, but the spacing between plates has to be 0.080 mm. What is the minimum surface area required for the capacitor? This may help to understand challenges in engineering electric cars.

6 views

A parallel plate capacitor consists of two circular plates of radius 12 cm separated by . What is the electric field strength inside the capacitor when the plates carry a charge of μ ?

What is the capacitance of a parallel plate capacitor with plate area separated by a distance?

14 views

A parallel plate capacitor is charged up using a battery. The battery is then removed, and the plate separation is increased by somebody wearing insulating gloves. What happens to the potential difference between the plates?

1 views

Energy Stored by Capacitor 6 videos | 1 question VIDEOS

Energy stored in capacitor derivation (why it's not QV) | Electrostatic potential | Khan Academy by Khan Academy India - English

23 views 13:24

Capacitors (7 of 9) Energy Stored in a Capacitor, An Explanation by Step by Step Science 30 views 09:12

How To Calculate The Energy Stored In a Capacitor by The Organic Chemistry Tutor 40 views 10:46

Energy Stored by Capacitor by Patrick Ford 3 commentsIcon 1 rankIcon 62 views 09:26

Energy of a capacitor | Circuits | Physics | Khan Academy by khanacademymedicine 32 views 06:23

Energy Released by Flashbulb by Patrick Ford 3 commentsIcon 1 rankIcon 42 views 03:55 PRACTICE

A cardiac defibrillator can be modeled as a parallel plate capacitor. When it is charged to a voltage of 2 kV, it has a stored energy of 1 kJ. What is the capacitance of the defibrillator?

2
commentsIcon
42 views
Capacitance Using Calculus
5 videos | 1 question
VIDEOS

Capacitance of a Co-axial Cable by Jimmy Newland 36 views 12:32

Derivation of Capacitance for a Cylindrical Capacitor by Patrick Kaplo 46 views 06:56

Physics 39 Capacitors (1 of 37) The Spherical Capacitor by Michel van Biezen 20 views 07:25

Capacitance of Spherical Capacitor by Patrick Ford 2 commentsIcon 52 views 03:11

Capacitance of Cylindrical Capacitor by Patrick Ford 3 commentsIcon 1 rankIcon 53 views 04:21

PRACTICE

In the figure, . The switch has been in position a for a long time. At the switch is moved to position b. At what time will the voltmeter read 9 views

Combining Capacitors in Series & Parallel 7 videos | 3 questions

VIDEOS

Anderson Video - Capacitors in Parallel by Professor Anderson 21 views 08:06

Anderson Video - Capacitors in Series by Professor Anderson 19 views 04:55

Capacitors (3 of 11) Parallel Capacitors, Voltage, Charge & Capacitance by Step by Step Science 20 views 08:10

Combining Capacitors in Series & Parallel by Patrick Ford 3 commentsIcon 1 rankIcon 62 views 09:51

Capacitors (2 of 11) Series Capacitors, Voltage, Charge & Capacitance by Step by Step Science

23 views 08:37

Capacitors in Series and Parallel Explained! by The Organic Chemistry Tutor 58 views 03:34

Find Equivalent Capacitance #1 by Patrick Ford

1

commentsIcon

1

ranklcon

51 views

03:44

PRACTICE

Multiple Choice XXXXXXXXXXXXXXXXXXXXXXX

What is the equivalent capacitance of the following capacitors?

43 views

What is the equivalent capacitance of a Math output error capacitor and Math output error capacitor connected in series?

What is the equivalent capacitance of a Math output error capacitor and Math output error capacitor connected in parallel?

1 views

Solving Capacitor Circuits 7 videos | 3 questions VIDEOS

Anderson Video - RC Circuits by Professor Anderson 26 views 12:32

Finding Charge and Voltage Across A Capacitor In Circuit by NPTutoring

37 views 09:06

How To Solve Any Circuit Problem With Capacitors In Series and Parallel Combinations - Physics
by The Organic Chemistry Tutor
56 views
33:43

Solving Capacitor Circuits by Patrick Ford 2 commentsIcon 88 views 11:02

Capacitors (5 of 11) in Combination, Parallel and Series Capacitors by Step by Step Science 20 views 11:12

Capacitors (4 of 11) in Combination, Series and Parallel Capacitors by Step by Step Science 24 views 12:06

What is the voltage of the battery below?

4

commentsIcon

37 views

What is the charge on the 5 F capacitor? (hint:be careful with series vs parallel)

2

commentsIcon

31 views

Intro To Dielectrics

6 videos | 3 questions

VIDEOS

8.02x - Lect 8 - Polarization, Dielectrics, Van de Graaff Generator, Capacitors by Lectures by Walter Lewin. They will make you ♥ Physics. 23 views 07:28

Capacitors (6 of 9) Factors Affecting the Capacitance of a Capacitor by Step by Step Science 24 views 07:01

Dielectrics and Dielectric Constant by Andrey K 49 views 05:25

Intro To Dielectrics by Patrick Ford 2 commentsIcon 3 rankIcon 56 views 06:25 An introduction to dielectrics by Tonya Coffey 21 views 10:32

Partial Dielectrics by Patrick Ford 7 commentsIcon 42 views 04:59 PRACTICE

A capacitor in a vacuum is charged to 64V between its plates, then disconnected. Initially, each plate has 32μ C. An insulating slab of dielectric glass with k = 3 is placed between the plates. a) What is the capacitor's new capacitance? b) What is the new voltage across the capacitor? 44 views

Multiple Choice XXXXXXXXXXXXXXXXXXXXXX

A parallel plate capacitor is formed by bringing two circular plates, of radius 0.5 cm, to a distance of 2 mm apart. The capacitor is made so that it has a dielectric of constant κ between the plates. When the charge on the capacitor is 3 nC, the voltage of the capacitor is 5000 V. What is the dielectric constant?

2

commentsIcon

56 views

Multiple Choice XXXXXXXXXXXXXXXXXXXXXXX

A parallel plate capacitor with air separating the plates is fully charged by a battery. The battery is disconnected and an insulator with dielectric constant of 1.5 is inserted between the plates by somebody wearing insulating gloves. What happens to the potential difference between the plates?

1 views

How Dielectrics Work

3 videos

VIDEOS

Dielectrics & Capacitors - Capacitance, Voltage & Electric Field - Physics Problems by The Organic Chemistry Tutor 29 views 14:19

Dielectrics in capacitors | Circuits | Physics | Khan Academy

by khanacademymedicine 16 views 06:27

How Dielectrics Work by Patrick Ford 1 commentsIcon 48 views 02:42 Dielectric Breakdown 5 videos VIDEOS

5 Insulator Breakdown & Dielectric Strength by HVdesc 34 views 04:59

Leyden jar & dielectric breakdown by Electric and Magnetic Fields 20 views 04:58

Demos: Dielectric breakdown by Caltech's Feynman Lecture Hall 13 views 01:51

Dielectric Breakdown by Patrick Ford 6 commentsIcon 51 views 04:32 Physics - E&M: Ch 39.1 Capacitors & Capacitance Understood (22 of 27) What is Dielectric Breakdown? by Michel van Biezen 23 views 06:04

27. Resistors & DC Circuits Intro to Current 9 videos | 3 questions VIDEOS

Anderson Video - Electric Circuits Intro by Professor Anderson 33 views 05:55

Anderson Video - Electric Current by Professor Anderson 28 views 02:52

Anderson Video - Charge in a AA Battery by Professor Anderson 25 views 05:11

Intro to Current by Patrick Ford 1 commentsIcon 1 rankIcon 92 views 05:38 Anderson Video - Current in Everyday Devices by Professor Anderson 16 views 07:29

Anderson Video - DC vs. AC by Professor Anderson 25 views 04:13

The Electric Battery and Conventional Current - Introduction to Basic Electricity by The Organic Chemistry Tutor 34 views 01:59

Electric Current, An Explanation by Step by Step Science 44 views 02:59

Intro to current (& Amperes)
by Khan Academy India - English
22 views
08:45
PRACTICE

A lightning bolt hits the ground carrying a current of 3×104 A. If the strike lasts 50 ms, how much charge enters the ground?

1

commentsIcon

51 views

Which of the following is always true about capacitors and batteries?

9 views

A wire is connected to the positive and negative plates of a capacitor. Electrons in the wire feel an attraction toward the positive plate of a capacitor, and a repulsion from the negative plate.

What is true about the motion of these electrons?

12 views

Resistors and Ohm's Law

11 videos | 7 questions VIDEOS

Anderson Video - Ohm's Law by Professor Anderson 41 views 08:59

Anderson Video - Resistance Example by Professor Anderson 19 views 05:01

Anderson Video - Resistance and Resistivity by Professor Anderson 25 views 06:13

Resistance and Ohm's Law by Patrick Ford 2 ranklcon 121 views 03:07

Anderson Video - Measuring Current and Voltage by Professor Anderson 24 views 06:19

Ohm's Law, Example Problems by Step by Step Science 53 views 07:35 Ohm's law - derivation (using drift velocity)| Electricity | Physics | Khan Academy by Khan Academy India - English 46 views 09:59

Resistance & Resistivity, An Explanation by Step by Step Science 31 views 09:30

Ohm's Law by SparkFun Electronics 50 views 06:16

Resistivity & Resistors in Circuits by Patrick Ford 2 commentsIcon 2 rankIcon 77 views 05:26

Current Through Unknown Resistor by Patrick Ford 1 ranklcon 53 views 02:33 PRACTICE

A resistor has a current through it of 5 A. If the EMF across the resistor is 10 V, what is the resistance of this resistor?

51 views

Two resistors are made of the same material, one twice as long as the other. If the current through the shorter resistor is 5 A, what is the current through the longer resistor if they both have the same potential difference?

43 views

A wire runs from the positive plate of a capacitor, into lightbulb 1, then out from lightbulb 1 directly into lightbulb 2. When lightbulb 2 is connected to the negative plate of the capacitor, what is true about the charge moving through the two lightbulbs?

11 views

A copper wire with a radius of and a length of is connected across the terminals of a battery. How much current flows in the wire?

18 views

A certain wire has length L and radius r, and a resistance of R. That wire is melted down and the same volume of the same metal is used to produce a wire with length 2L. What is the resistance of the resulting wire?

5 views

Multiple Choice XXXXXXXXXXXXXXXXXXXXXX

A copper wire and an aluminum wire have the same diameter. If the copper wire is long, how long is the aluminum wire if they have the same resistance?

11 views

Which of the following is true about the change in potential across a resistor in a circuit? 4 views

Power in Circuits 5 videos | 4 questions VIDEOS

Electric Power (2 of 3) Example Problems by Step by Step Science 23 views 07:27

Electric Power (1 of 3) and Watts, An Explanation by Step by Step Science 42 views 07:28 Basic Electricity - Power and watts by Afrotechmods 44 views 05:21

Power in Circuits by Patrick Ford 1 commentsIcon 1 rankIcon 64 views

Electric power | Circuits | Physics | Khan Academy by Khan Academy Physics 30 views 10:43

10.43

06:18

PRACTICE

A hair dryer operates at 120 V (the voltage produced by a household outlet), and outputs 1200 W of energy. For this problem, treat the hair dryer as a single resistor. (a) At what current does the hair dryer operate?

(b) What is the resistance of the hair dryer?

1

commentsIcon

48 views

Multiple Choice XXXXXXXXXXXXXXXXXXXXXXX

An incandescent lightbulb produces 100 W of light. If this lightbulb operates at 25% efficiency (meaning that out of all the power it generates, only 25% is released as light), what resistance must the lightbulb have if it operates at 120 V?

4

commentslcon

36 views

A toaster is connected to a wall outlet, which provides a potential difference of . What is the effective resistance of the toaster?

5 views

Multiple Choice XXXXXXXXXXXXXXXXXXXXXXX

A certain resistor is connected across a battery and dissipates of power. The battery is replaced with an battery. How much power is dissipated in the resistor now? 8 views

Microscopic View of Current 5 videos | 4 questions VIDEOS

Anderson Video - Electron Drift Example by Professor Anderson 23 views 18:08

Drift Velocity Derivation - A Level Physics by VT Physics 69 views 03:48

Current from drift velocity (I = neAvd) | Electricity | Physics | Khan Academy by Khan Academy India - English 124 views 12:06

Microscopic View of Current by Patrick Ford 3 commentsIcon 66 views 08:17

Drift velocity (concept & intuition) | Electricity | Physics | Khan Academy by Khan Academy India - English 47 views

12:25

PRACTICE

Multiple Choice XXXXXXXXXXXXXXXXXXXXXX

Typical household wiring in the United States is 14-gauge copper wire. 14-gauge wire has a radius of . What is the electron drift speed if a current is carried in a 14-gauge wire? 9 views

Multiple Choice XXXXXXXXXXXXXXXXXXXXXXX

What is the current density in a wire with a radius of carrying a current of?

11 views

What current does a electric field create in an iron wire of mm radius?

13 views

What is the electron current in a gold wire with a radius of when the electron drift speed is Math output error?

11 views

Combining Resistors in Series & Parallel

13 videos | 6 questions

VIDEOS

Anderson Video - Circuit Elements by Professor Anderson 23 views 03:46

Anderson Video - Resistance and Temperature by Professor Anderson 36 views 02:49

Anderson Video - Superconductors by Professor Anderson 12 views 05:19

Combining Resistors in Series & Parallel by Patrick Ford 17 commentsIcon 94 views 12:42

Anderson Video - DC Circuits Intro by Professor Anderson 14 views Anderson Video - Circuits with Resistors by Professor Anderson 14 views 03:39

Anderson Video - Internal Resistance by Professor Anderson 15 views 05:14

How to Add Resistors in a Parallel Circuit by PhysicsHands 63 views 03:23

Calculating resistance in parallel by plowton 67 views 03:35

Resistors in Electric Circuits (4 of 16) Adding Resistors to Series Circuits, Part 1 by Step by Step Science 34 views 12:51

Resistors in Series and Parallel by Ben Finio 37 views 07:54

Shortcut Equations for Resistors Parallel by Patrick Ford 5 commentsIcon 94 views Weird Arrangement (Re-Drawing Resistors) by Patrick Ford

2

commentsIcon

55 views

06:22

PRACTICE

What is the equivalent resistance of the following combination of resistors?

1

commentsIcon

76 views

What is the equivalent resistance of the following combination of resistors?

53 views

If every resistor below has resistance R, what is the equivalent resistance of the combination, in terms of R?

38 views

Multiple Choice XXXXXXXXXXXXXXXXXXXXXX

What is the equivalent resistance of a resistor in parallel with a resistor?

6 views

Multiple Choice XXXXXXXXXXXXXXXXXXXXXX

What is the equivalent resistance of a resistor in series with a resistor?

7 views

Three identical resistors are in parallel, and together they have an equivalent resistance of R.

What is the resistance of each resistor?

9 views

Kirchhoff's Junction Rule

5 videos | 4 questions

VIDEOS

Anderson Video - Kirchoff's Junction Rule by Professor Anderson 48 views Anderson Video - Complex Circuit Example by Professor Anderson 1 ranklcon 23 views 18:58

Simplest Explanation of KIRCHHOFF'S LAWS (kcl kvl) by Fight Academy 47 views 06:26

Kirchhoff's Junction Rule by Patrick Ford 4 commentsIcon 1 rankIcon 91 views 04:08

Kirchoff's Junction Rule for Electric Circuits by lasseviren1 22 views 09:41 PRACTICE

There is a junction of three wires. flow into the junction along one path, and flow out along another path. How much charge flows in or out along the third path in ?

7 views

In the figure, and . What are and ? 6 views

Five wires intersect at a point. Wires A, B, and C carry currents into the point, out of the point, and into the point, respectively. What can you say about the remaining two wires, D and E? 12 views

Anderson Video - Equivalent Resistance by Professor Anderson 29 views 06:51

Resistors in Electric Circuits (9 of 16) Combination Resistors No. 1 by Step by Step Science 43 views 11:33

Resistors in Electric Circuits (10 of 16) Combination Resistors No. 2 by Step by Step Science 29 views 11:25

Solving Resistor Circuits by Patrick Ford 7 commentsIcon 70 views 17:24

Circuit analysis - Solving current and voltage for every resistor by Math Meeting 72 views 15:47

How to Solve Any Series and Parallel Circuit Problem by Jesse Mason

115 views 14:06

Electrical Engineering: Basic Laws (12 of 31) Kirchhoff's Laws: A Harder by Michel van Biezen 22 views 09:20

How to Solve a Kirchhoff's Rules Problem - Simple Example by Jesse Mason 31 views 09:11

Solving Circuit Problems using Kirchhoff's Rules by Physics Ninja 79 views 19:19

Find Current of One Resistor by Patrick Ford

4

commentsIcon

48 views

01:49

PRACTICE

What is current and voltage across each resistor below?

2

commentsIcon

49 views

What is the voltage of the battery below?

4

commentsIcon

42 views

Multiple Choice XXXXXXXXXXXXXXXXXXXXXXX

The five identical lightbulbs in the figure are all glowing. What change in brightness will occur if bulb S is unscrewed and removed from the circuit?

7 views

If the current in the resistor is , what is ?
11 views
Kirchhoff's Loop Rule
9 videos | 3 questions
VIDEOS

Anderson Video - Kirchoff's Loop Rule by Professor Anderson 45 views 04:46

Kirchhoff's Rules (Laws) - Introduction by Jesse Mason 31 views 03:50

Kirchoff's Loop Rule for Electric Circuits by lasseviren1 19 views 10:51

Intro to Kirchhoff's Loop Rule by Patrick Ford 4 commentsIcon 119 views 11:16

Direction of Current in Loop Equations by Patrick Ford 5 commentsIcon 1 rankIcon 70 views

```
Solving Circuits with Multiple Sources
by Patrick Ford
16
commentsIcon
ranklcon
48 views
12:36
Combining Voltage Sources in Series
by Patrick Ford
commentsIcon
ranklcon
76 views
04:01
Find Two Voltages (3 sources)
by Patrick Ford
commentsIcon
ranklcon
41 views
07:05
How to Check Your Work (Kirchhoff's Rules)
by Patrick Ford
commentsIcon
1
ranklcon
43 views
07:02
PRACTICE
For the circuit below, find the current through each of the 3 branches.
```

commentsIcon

82 views

For the circuit below, calculate (a) the voltage V1 shown, and (b) the current through the 6-Ohm resistor.

1

commentsIcon

99 views

For the circuit below, calculate the voltage across the 100-Ohm resistor.

3

commentsIcon

49 views

28. Magnetic Fields and Forces Magnets and Magnetic Fields 8 videos | 5 questions VIDEOS

Anderson Video - Magnetism Intro by Professor Anderson 1 ranklcon 53 views 08:45

Anderson Video - Tesla Units by Professor Anderson 36 views 01:52

Magnetism (1 of 13) Magnets & Magnetic Field Lines, An Explanation by Step by Step Science 38 views 11:01

How Magnets Work by Patrick Ford 88 views Magnetism: Crash Course Physics #32 by CrashCourse 42 views 03:49

Magnets and Magnetic Fields by Professor Dave Explains 39 views 06:15

Magnetic Fields and Magnetic Dipoles by Patrick Ford 2 commentsIcon 74 views 06:04

Compasses and Earth's Magnetic Field by Patrick Ford 4 commentsIcon 96 views 11:32 PRACTICE

How Magnets Work Concept:

by

15 views

Which option best completes the following sentence? If a magnet is carefully balanced, as in a compass, the north end of the magnet points roughly toward...

17 views

Multiple Choice XXXXXXXXXXXXXXXXXXXXXXX

A wire carries a positive current to the left in the plane of this screen. What is the direction of the magnetic field at a point near the top of the screen, still in the plane of the screen?

12 views

At what distance from a wire carrying a 10 A current is the magnetic field strength equal to ? This is the approximate value of the earth's magnetic field.

1

ranklcon

16 views

Two long parallel wires lie in the -plane, each carrying a A current in opposite directions. Wire 1 lies along the line and carries a current in the positive -direction; wire 2 lies along the line and carries a current in the negative -direction. What is the magnitude of the magnetic field at the point ?

19 views
Summary of Magnetism Problems
5 videos | 1 question
VIDEOS

Anderson Video - Magnetic Materials by Professor Anderson 24 views 04:28

Anderson Video - Hard Drives by Professor Anderson 24 views 05:56

Magnetic (AP Physics SuperCram Review) by We Are Showboat 29 views 04:40

Summary of Magnetism Problems by Patrick Ford 5 commentsIcon 1 rankIcon 70 views 09:52 Magnetism Problems by Dr. Oommen George 24 views 35:30 PRACTICE

Multiple Choice XXXXXXXXXXXXXXXXXXXXXXX

A loop of wire with a radius of lies in the -plane and is centered on the origin. It carries a counterclockwise current of A when viewed from above the -plane. A long, straight wire lies along the line . so that it is tangent to the lowest point on the loop. This straight wire carries a current of in the negative x-direction. What is the strength of the magnetic field at the center of the loop?

10 views

Force on Moving Charges & Right Hand Rule 7 videos | 2 questions VIDEOS

Anderson Video - Magnetic Force Right Hand Rule by Professor Anderson 32 views 08:58

Anderson Video - Right Hand Rule Examples by Professor Anderson 31 views 06:10

Anderson Video - Magnetic Fields and Work by Professor Anderson 11 views 02:50

Force on Moving Charges & Right Hand Rule by Patrick Ford 20 commentsIcon ranklcon 87 views 19:57

Magnetic Force & the Right Hand Rule by SiouxFallsPhysics 26 views 09:04

Physics - Magnetic Forces on Moving Charges - Direction (1 of 6) An Introduction by Michel van Biezen 30 views 08:26

Force on Charge Moving at an Angle by Patrick Ford 7

1

commentsIcon

48 views

06:21

PRACTICE

An electron is moving in a straight line (red line below) when it enters the horizontal 0.2 T magnetic field (blue lines). The angle shown below is 37°. If the electron experiences a 10-12 N force upon entering the field, how fast must it be moving?

10

commentsIcon

50 views

Multiple Choice XXXXXXXXXXXXXXXXXXXXXX

A charged particle moving in a magnetic field experiences a force toward the top of this screen when it is moving toward the right and the field is into this screen. Is this particle positive, negative or neutral?

6 views

Circular Motion of Charges in Magnetic Fields 5 videos | 1 question VIDEOS

Anderson Video - Motion of Charge in Fields

by Professor Anderson 25 views 03:52

Anderson Video - Cyclotron Motion by Professor Anderson 1 commentsIcon 27 views 06:20

Path of charged particle in magnetic field | Moving charges & magnetism | Physics | Khan Academy by Khan Academy India - English 31 views 12:01

Circular Motion of Charges in Magnetic Fields by Patrick Ford 6 commentsIcon 66 views 11:33

Uniform Circular Motion in a Magnetic Field (Charged Particle Trajectory, Cyclotron/Accelerator) by Elucyda

37 views

12:37

PRACTICE

A 4 kg, 3 C (unknown sign) charge originally moving in the +x axis with 5 m/s when it enters (red arrow) a small square area that has a constant magnetic field, as shown below. The field causes the charge to be deflected, and it exits the area moving in the +y axis. What is the magnitude of the magnetic field? (Is this charge +3 C or -3 C?)

4

commentsIcon

35 views

Mass Spectrometer

7 videos | 2 questions

VIDEOS

Anderson Video - Mass Spectrometer by Professor Anderson 25 views 09:37

AP Physics 2: Magnetism 8: Mass Spectrometer Problem by Yau-Jong Twu 21 views 04:33

AP Physics 2: Magnetism 7: Mass Spectrometer by Yau-Jong Twu 28 views 05:38

Mass Spectrometers by Patrick Ford 6 commentsIcon 38 views 20:30

Mass Spectrometer by Andrey K 19 views 08:06

Mass spectrometry | Atomic structure and properties | AP Chemistry | Khan Academy by Khan Academy 44 views 04:18

Find Mass-to-Charge Ratio in Spectrometer by Patrick Ford

1

commentsIcon

53 views

04:12

PRACTICE

A negative charge in a spectrometer is accelerated in the negative x-axis. It is later deflected and collides some distance ABOVE velocity selector. What are the orientations of the electric and magnetic fields, respectively, inside the selector?

3

commentsIcon

30 views

A 2 kg, -3 C charge is accelerated through a potential difference of 4 V. The velocity selector has an electric field of magnitude 5 N/C. How far from the velocity selector will the charge collide against the spectrometer "wall"?

1

commentsIcon

27 views

Magnetic Force on Current-Carrying Wire 6 videos | 2 questions VIDEOS

Anderson Video - Force on a Wire in a Magnetic Field by Professor Anderson 25 views 09:32

Magnetic Force on a Current Carrying Wire by The Organic Chemistry Tutor 44 views 04:32

Force on a Current Carrying Wire in a Magnetic field by James Dann, Ph.D. 41 views 01:27 Magnetic Force on Current-Carrying Wire by Patrick Ford 4 commentsIcon 70 views 09:57

Magnetic force on a current carrying wire | Physics | Khan Academy by Khan Academy 23 views 10:55

Find Force on Current-Carrying Wire at an Angle by Patrick Ford 3 commentsIcon 43 views 08:48

A 5-m current-carrying wire (red line) is ran through a 4 T magnetic field (blue lines), as shown. The angle shown is 30°. What must the magnitude and direction of the current in the wire be when it feels a 3 N force directed into the page?

3

commentsIcon

PRACTICE

38 views

Suppose a certain type of wire has a length of and a mass of At a point where earth's magnetic field is parallel to its surface, how much current would have to flow in this wire for the magnetic force on it to equal its weight?

8 views

Force and Torque on Current Loops 6 videos | 2 questions VIDEOS

Anderson Video - Force on a Wire in a Magnetic Field by Professor Anderson 21 views 09:32 Anderson Video - Magnetic Torque by Professor Anderson 27 views 13:27

Force and Torque on Current Loops by Patrick Ford 7 commentsIcon 2 rankIcon 60 views 12:54

Torque acting on current loops | Moving charges & magnetism | Physics | Khan Academy by Khan Academy India - English

17 views

04:34

Torque on a Current Loop In a Magnetic Field & Magnetic Dipole Moment - Physics by The Organic Chemistry Tutor 32 views 10:12

Torque on a Loop at an Angle by Patrick Ford 6

commentsIcon

1

ranklcon

32 views

05:03

PRACTICE

Multiple Choice XXXXXXXXXXXXXXXXXXXXXXX

A square loop of wire has a side length of and carries a current. What is the size of its magnetic dipole moment?

12 views

A single circular loop of wire has a radius

29. Sources of Magnetic Field Magnetic Field Produced by Moving Charges 3 videos | 4 questions VIDEOS

Calculating the Magnetic Field Due to a Moving Point Charge by lasseviren1 39 views 09:00

Magnetic Field of a Moving Charge, Proton, Right Hand Rule - Physics & Electromagnetism by The Organic Chemistry Tutor 33 views 06:24

Magnetic Field Produced by Moving Charges by Patrick Ford

4

commentsIcon

1

ranklcon

68 views

10:47

PRACTICE

As a proton passes the origin, its velocity is in the positive x direction. What is the magnitude of the magnetic field at the point (, ,)?

11 views

As a proton passes the origin, its velocity is in the positive x direction. What is the direction of the magnetic field at the point (, ,)?

7 views

Multiple Choice XXXXXXXXXXXXXXXXXXXXXX

A charged particle moving in a magnetic field has a force to the top of the page when it is moving toward the right and the field is into the page. Is this particle positive, negative or neutral?

10 views

Multiple Choice XXXXXXXXXXXXXXXXXXXXXXX

? 8 views Magnetic Field Produced by Straight Currents 7 videos | 5 questions VIDEOS

Anderson Video - Magnetic Field from a Long Wire by Professor Anderson 16 views 07:20

Magnetic Field due to Long Wire by Andrey K 29 views 07:07

Magnetic Field of a Straight Current Carrying Wire by The Organic Chemistry Tutor 36 views 14:32

Magnetic Field Produced by Straight Currents by Patrick Ford 9 commentsIcon 1 rankIcon 59 views 14:06

Magnetic field created by a current carrying wire | Physics | Khan Academy by Khan Academy 28 views 09:42

Find Field due to Two Perpendicular Currents

by Patrick Ford 8 commentsIcon 1 rankIcon 43 views 06:51

Find Zero Magnetic Field by Patrick Ford 2 commentsIcon 1 rankIcon 43 views 07:55 PRACTICE

At what distance from a wire carrying a current is the magnetic field strength equal to Math output error? This is the approximate value of the Earth's magnetic field.

15 views

5 views

Typical household wiring in the United States is 14-gauge copper wire which has a radius of Math output error. What is the magnetic field strength inside the wire, halfway between the center and the outside edge, when it is carrying a typical household current of? 8 views

Multiple Choice XXXXXXXXXXXXXXXXXXXXXXX

A wire near the equator carries a current perpendicular to the Earth's magnetic field of μ in a location where the field is parallel to the ground and points straight north. Assuming it was of correct magnitude, what direction should the current be in to levitate the wire? 9 views

Multiple Choice XXXXXXXXXXXXXXXXXXXXXX

A wire near the equator carries a current perpendicular to the Earth's magnetic field of μ in a location where the field is parallel to the ground and points straight north. The wire has a mass per length of . What magnitude of current in the wire could balance it against the force of gravity? (This example is not very realistic. The mass per length given would be reasonable for a very thin wire which could not handle this large of a current for very long.)

A wire near the equator carries a current perpendicular to the Earth's magnetic field of μ in a location where the field is parallel to the ground and points straight north. The wire has a mass

per length of . What magnitude of current in the wire could balance it against the force of gravity? (This example is not very realistic. The mass per length given would be reasonable for a very thin wire which could not handle this large of a current for very long.) 5 views

Magnetic Force Between Parallel Currents 5 videos | 3 questions VIDEOS

Anderson Video - Magnetic Force Between Parallel Wires by Professor Anderson 22 views 13:04

Magnetic Force Between Two Parallel Current Carrying Wires, Physics & Electromagnetism by The Organic Chemistry Tutor 27 views 13:45

Magnetism (11 of 13) Magnetic Force Due to Parallel Wires, Current Opposite Directions by Step by Step Science 35 views 08:09

Magnetic Force Between Parallel Currents by Patrick Ford 5 commentsIcon 1 rankIcon 50 views 10:11

Magnetism (10 of 13) Magnetic Force Due to Parallel Wires, Current Same Direction by Step by Step Science
26 views
05:49
PRACTICE

Two very long wires of unknown lengths are a parallel distance of 2 m from each other. If both wires have 3 A of current flowing through them in the same direction, what must the force per unit length on each wire be? BONUS:Is the mutual force between the wires attractive or repulsive?

2

commentsIcon

35 views

Two long parallel wires lie in the x-y plane, and each carry currents in opposite directions. Wire 1 lies along the line and carries a current in the positive x direction; wire 2 lies along the y = 0 line and carries a current in the negative x direction. What is the magnitude of the magnetic field at the point (x, y)?

5 views

Multiple Choice XXXXXXXXXXXXXXXXXXXXXX

Two long parallel wires lie in the x-y plane, and each carry currents in opposite directions. Wire 1 lies along the line and carries a current in the negative x direction; wire 2 lies along the line and carries a current in the positive x direction. What is the direction of the magnetic field at the point (, ,)?

11 views

Magnetic Force Between Two Moving Charges

1 video

VIDEOS

Magnetic Force Between Two Moving Charges by Patrick Ford 2 commentsIcon 99 views 09:08 Magnetic Field Produced by Loops and Solenoids 4 videos | 6 questions VIDEOS

Magnetic Field Produced by Loops and Solenoids by Patrick Ford 12 commentsIcon 1 rankIcon 72 views 13:57 Find How Many Loops in a Solenoid by Patrick Ford 45 views 01:48

Designing a Solenoid (Total Length of Wire) by Patrick Ford 1 commentsIcon 32 views 03:50

Find Magnetic Field By Two Concentric Loops by Patrick Ford 7 commentsIcon 49 views 05:37 PRACTICE

Multiple Choice XXXXXXXXXXXXXXXXXXXXXX

The single loop below has a radius of 10 cm and is perpendicular to the page (shown at a slight angle so you can better visualize it). If the magnetic field at the center is 10-6 T directed left, what is the magnitude of the current? What is the direction of the current at the top of the wire:into the page (towards left) or out of the page (towards right)?

1

commentsIcon

34 views

Multiple Choice XXXXXXXXXXXXXXXXXXXXXX

A long wire having total resistance of 10 Ω is made into a solenoid with 20 turns of wire per centimeter. The wire is connected to a battery, which provides a current in order to produce a 0.04 T magnetic field through the center of the solenoid. What voltage must this battery have? 31 views

Open Question

The two tightly wound solenoids below both have length 40 cm and current 5 A in the directions shown. The left solenoid has radius 20 cm and 50 m of total wire. The right solenoid has radius 0.5 m and 314 m of total wire. The thinner solenoid is placed entirely inside the wider one so their central axes perfectly overlap. Assume wires don't touch. What is the magnitude and direction of the magnetic field that is produced by a combination of the two solenoids at their

central axis?(Note:your worksheet may have a typo and say "0.5 cm"for the right solenoid's radius; it should be 0.5 m.)

4

commentsIcon

27 views

Multiple Choice XXXXXXXXXXXXXXXXXXXXXXX

A certain solenoid is long and has 1500 turns of wire. If the magnetic field inside the solenoid is , what is the current in the wire?

9 views

A loop of wire has a magnetic dipole moment of . What is the on-axis magnetic field strength from the loop?

9 views

Multiple Choice XXXXXXXXXXXXXXXXXXXXXXX

A square loop of wire with on a side carries a current. What is the size of its magnetic dipole moment?

19 views

Toroidal Solenoids aka Toroids

4 videos

VIDEOS

Magnetic Field of a Toroidal Coil by BYU Physics Demonstrations 41 views 00:30

Physics - E&M: Magn Field Generated by Moving Charge & Currents (28 of 28) Ampere's Law: Toroidal by Michel van Biezen 25 views 07:02

The Magnetic Field Due to a Toroid by lasseviren1 48 views 08:01

Toroidal Solenoids aka Toroids by Patrick Ford

4

commentsIcon
43 views
12:13
Biot-Savart Law (Calculus)
7 videos | 1 question
VIDEOS

The Law of Biot-Savart (part II) by lasseviren1 25 views 07:37

Law of Biot-Savart by lasseviren1 39 views 10:01

The Biot-Savart Law by Jennifer Cash 62 views 05:53

Biot-Savart Law with Calculus by Patrick Ford 41 views 04:53

Physics - E&M: Magn Field Generated by Moving Charges & Current (14 of 28) Biot-Savart Law: Ex by Michel van Biezen 27 views 09:25

Biot Savart law (vector form) | Moving charges & magnetism | Khan Academy by Khan Academy India - English 54 views

Magnetic Field due to Finite Wire by Patrick Ford 2

commentsIcon

37 views

07:59

PRACTICE

What is the magnetic field at the center of the following ring of current?

3

commentsIcon

25 views

Ampere's Law (Calculus)

5 videos | 1 question

VIDEOS

Field due to straight wire carrying current (inside) | Moving charges & magnetism | Khan Academy by Khan Academy India - English 22 views 12:05

Field due to straight wire carrying current (Outside) | Moving charges & magnetism | Khan Academy

by Khan Academy India - English

34 views

09:59

Finding the Magnetic Field Due to a Long, Straight, Current Carrying Wire Using Ampere's Law by Melvin Vaughn

25 views

09:59

Ampere's Law with Calculus by Patrick Ford

```
2
commentsIcon
1
rankIcon
49 views
05:21
Magnetic Field
```

Magnetic Field Inside a Solenoid by Patrick Ford 1 commentsIcon 39 views 05:22 PRACTICE

A solid, cylindrical conductor carries a uniform current density, J. If the radius of the cylindrical conductor is R, what is the magnetic field at a distance ? from the center of the conductor when r < R? What about when r > R?

1

commentsIcon 86 views

30. Induction and InductanceIntro to Induction2 videosVIDEOS

Electromagnetic induction (& Faraday's experiments) by Khan Academy India - English 35 views 10:12

Introduction to Induction by Patrick Ford 1 commentsIcon 1 rankIcon 76 views

05:42

Magnetic Flux 6 videos | 3 questions VIDEOS

Anderson Video - Magnetic Flux by Professor Anderson 16 views 10:15

Electromagnetic Induction (2 of 15) Magnetic Flux, An Explanation by Step by Step Science 45 views 10:49

Flux and magnetic flux by Khan Academy 23 views 10:02

Magnetic Flux by Patrick Ford 1 commentsIcon 1 rankIcon 89 views 04:52

Magnetic Flux, Basic Introduction - Physics Problems by The Organic Chemistry Tutor 26 views 06:34

Magnetic Flux of a Rotating Ring by Patrick Ford 1

commentsIcon

64 views

04:27

PRACTICE

Multiple Choice XXXXXXXXXXXXXXXXXXXXXXX

A ring of radius 0.5m lies in the xy-plane. If a magnetic field of magnitude 2 T points at an angle of 22° above the x-axis, what is the magnetic flux through the ring?

6

commentsIcon

39 views

Multiple Choice XXXXXXXXXXXXXXXXXXXXXX

A square conducting loop with sides equal to lies such that the plane of the loop is perpendicular to a magnetic field. What is the flux through the loop?

11 views

A square conducting loop with sides equal to lies such that the plane of the loop is perpendicular to the μ magnetic field. What is the flux through the loop?

13 views

Faraday's Law

8 videos | 4 questions

VIDEOS

Anderson Video - Faraday's Law by Professor Anderson 32 views 03:12

Anderson Video - Faraday's Law Example by Professor Anderson 34 views 08:34

Faraday's Law by Patrick Ford 5 commentsIcon 62 views 08:59 Faraday's Law example | Physics | Khan Academy by Khan Academy 23 views 09:29

Faraday's Law Introduction | Physics | Khan Academy by Khan Academy 33 views 05:36

Electromagnetic Induction (6 of 15) Faraday's Law, Example Problems by Step by Step Science
93 views
14:23

Faraday's Law of Electromagnetic Induction, Magnetic Flux & Induced EMF - Physics & Electromagnetism by The Organic Chemistry Tutor 69 views 11:53

Current in a Circuit with a Changing Magnetic Field by Patrick Ford 6 commentsIcon 63 views

09:10

PRACTICE

A tightly-wound 200-turn rectangular loop has dimensions of 40cm by 70cm. A constant magnetic field of 3.5T points in the same direction as the normal of the loop. If the dimensions of the loop change to 20cm by 35cm over 0.5s, with the number of turns remaining the same, what is the induced EMF on the rectangular loop?

4

commentsIcon

35 views

Open Question

A square conducting wire of side length 4 cm is in a 2 T magnetic field. It rotates such that the angle of the magnetic field to the normal of the square increases from 30° to 60° in 2 s. What is the induced current on the wire if its resistance is $5 \text{ m}\Omega$?

1

commentsIcon

23 views

The figure shows a wire loop being moved toward a current-carrying wire. If the loop continues to move past the wire, so that the loop is lower than the wire in the picture, and still moving, what will be the direction of the induced current in the loop?

12 views

In a region of space, a magnetic field is increasing at . A square loop of wire with a side of is oriented perpendicular to the field. The loop has a total resistance of . What current is induced in the loop?

9 views Lenz's Law 7 videos | 4 questions VIDEOS

Anderson Video - Lenz's Law by Professor Anderson 32 views 03:47

Anderson Video - Lenz's Law Example by Professor Anderson 21 views 04:29

Electromagnetic Induction (11 of 15) Lenz's Law, An Explanation by Step by Step Science 26 views 08:07

Lenz's Law by Patrick Ford

2 commentsIcon 64 views 11:07

Lenz's Law (part 1 of 3) by lasseviren1 22 views 10:09

Lenz's Law | Magnetic forces, magnetic fields, and Faraday's law | Physics | Khan Academy by Khan Academy

34 views 05:45

Lenz's Law for a Long Straight Wire by Patrick Ford 2

commentsIcon

49 views

06:36

PRACTICE

Multiple Choice XXXXXXXXXXXXXXXXXXXXXX

An outer ring is connected to a variable voltage source. If the battery's voltage is continuously INCREASING, what is the direction of the induced current in the inner ring, centered inside of the outer ring?

3

commentsIcon

24 views

What emf is created in a long conductor moving at in a magnetic field? Assume the conductor's velocity is perpendicular to the field.

11 views

If the metal triangle shown in the figure is pushed to the left, farther into the magnetic field, what is the direction of the induced current in the triangle?

13 views

Multiple Choice XXXXXXXXXXXXXXXXXXXXXX

In a region of space, a magnetic field is increasing at . A square loop of wire with a side of is oriented perpendicular to the field. The loop has a total resistance of . What current is induced in the loop?

12 views
Motional EMF
6 videos | 2 questions
VIDEOS

Motional emf by Andrey K 41 views 05:10

Emf induced in rod traveling through magnetic field | Physics | Khan Academy by Khan Academy 38 views 08:01

Electromagnetic Induction (1 of 15) Emf Across a Moving Wire, Motional Emf by Step by Step Science 27 views 08:04

Motional EMF by Patrick Ford 58 views 09:57

Motional EMF by Physics Ninja 32 views 14:31

Forces on Loops Exiting Magnetic Fields by Patrick Ford

commentsIcon

34 views

07:19

PRACTICE

A thin rod moves in a perpendicular, unknown magnetic field. If the length of the rod is 10 cm and the induced EMF is 1 V when it moves at 5 m/s, what is the magnitude of the magnetic field?

34 views

Multiple Choice XXXXXXXXXXXXXXXXXXXXXXX

A 30 mH inductor carries a current of . If the circuit is opened and the current stops over a period of μ , what potential develops across the inductor?

7 views

Transformers

5 videos | 2 questions

VIDEOS

Anderson Video - Transformer Example by Professor Anderson 16 views 05:08

Anderson Video - Transformers by Professor Anderson 18 views 07:32

Transformers by Patrick Ford 1 commentsIcon 31 views 06:12

Transformers - working & applications (step up and step down) | A.C. | Physics | Khan Academy by Khan Academy India - English

44 views

09:03

Transformers | Magnetism | Physics | FuseSchool by FuseSchool - Global Education 20 views 04:09 PRACTICE

Multiple Choice XXXXXXXXXXXXXXXXXXXXXXX

An outlet in North America outputs electricity at 120 V, but a typical laptop needs to operate at around 20 V. In order to do so, a transformer is placed in a laptop's power supply. If the coil in the circuit connected to the laptop has 20 turns, how many turns must the coil in the circuit with the outlet have?

2

commentsIcon

21 views

A transformer has 200 turns in the primary and 25 turns in the secondary. If the primary is hooked up to a household outlet, what is the potential across the secondary coil?

10 views

Mutual Inductance 4 videos | 1 question VIDEOS

Anderson Video - Mutual Inductance by Professor Anderson 37 views 06:20

Physics - E&M: Inductance (1 of 20) Mutual Inductance Explained by Michel van Biezen 21 views 10:36

Mutual Induction by Patrick Ford 3 commentsIcon 35 views 12:59 Mutual induction & inductance | Electromagnetic induction | Physics | Khan Academy by Khan Academy India - English

27 views

09:25

PRACTICE

Multiple Choice XXXXXXXXXXXXXXXXXXXXXX

F

commentsIcon 41 views

Self Inductance

6 videos | 2 questions

VIDEOS

Anderson Video - Self Inductance by Professor Anderson 15 views 02:25

Anderson Video - Why Does your Appliance Spark by Professor Anderson 16 views 05:49

Physics - E&M: Inductance (3 of 20) Self Inductance: Explained by Michel van Biezen 19 views 06:32

Self Inductance by Patrick Ford 1 comments/con 35 views 07:58

What are inductors? (self-inductance) | Electromagnetic induction | Khan Academy by Khan Academy India - English 32 views

06:35

Self-Inductance of a Toroid by Patrick Ford

3

commentsIcon

51 views

07:28

PRACTICE

A single loop of wire with a current of 0.3A produces a flux of 0.005 Wb. If the self-induced EMF on this loop is 10 mV, how quickly must the current be changing?

2

commentsIcon

18 views

Multiple Choice XXXXXXXXXXXXXXXXXXXXXXX

An inductor circuit with a single resistor in series with a single inductor has a time constant of .

What is the value of the resistance if the inductor has a self-inductance of μ ?

7 views

Inductors

7 videos | 1 question

VIDEOS

Anderson Video - Energy in an Inductor by Professor Anderson 15 views 03:25

Anderson Video - EMF Example by Professor Anderson 11 views 03:27 Anderson Video - Induced Current in Wire Loop by Professor Anderson 12 views 10:09

Inductors in Circuits by Patrick Ford 3 commentsIcon 28 views 07:10

Understanding Inductors! by Sabins 17 views 04:24

Electrical Engineering: Ch 7: Inductors (1 of 20) What is an Inductor? by Michel van Biezen 28 views 07:49

What are inductors? (self-inductance) | Electromagnetic induction | Khan Academy by Khan Academy India - English 34 views 11:28

A 30 mH inductor carries a current of . If the circuit is opened and the current stops over a period of μ , what potential develops across the inductor?

13 views
LR Circuits
6 videos | 2 questions
VIDEOS

PRACTICE

Anderson Video - LR Circuits by Professor Anderson 18 views 05:54

RL Circuit Analysis (1 of 8) Voltage and Current by Step by Step Science 23 views 09:53

The RL Circuit by lasseviren1 42 views 10:00

LR Circuits by Patrick Ford 1 commentsIcon 40 views 07:50

RL Circuits - Inductors & Resistors by The Organic Chemistry Tutor 44 views 22:26

Unknown Resistance in an LR Circuit by Patrick Ford 1 commentsIcon 33 views 03:07 PRACTICE

Consider the LR circuit shown below. Initially, both switches are open. Switch 1 is closed. a) What is the maximum current in the circuit after a long time? Then, S1 is opened and S2 is closed. b) What is the current in the circuit after 0.05s?

commentsIcon

25 views

An LR circuit with L = 0.1 H and R = 10 Ω are connected to a battery with the circuit initially broken. When the circuit is closed, how much time passes until the current reaches half of its maximum value?

4

commentsIcon
28 views
LC Circuits
7 videos | 3 questions
VIDEOS

LC Oscillating Circuit: Example Problems by Step by Step Science 52 views 14:20

LC Oscillating Circuit: An Explanation by Step by Step Science 21 views 16:42

The LC Circuit (part II) by lasseviren1 32 views 10:02

LC Circuits by Patrick Ford 38 views 11:31

The LC Circuit by lasseviren1 24 views 10:18 Oscillations in an LC Circuit by Patrick Ford 1 commentsIcon 39 views 04:26

Energy in an LC Circuit by Patrick Ford 2 commentsIcon 37 views 10:07

PRACTICE

An LC circuit with an inductor of 0.05 H and a capacitor of 35 µF begins with the current of -1A. The capacitor plates have a maximum charge of 2.65mC at any time during the oscillation.

What is the phase angle of this oscillation?

1

commentsIcon

28 views

In an oscillating LC circuit in which the capacitance $C = 4\mu F$ and the maximum voltage across the capacitor V = 1.50V, the maximum current measured across the inductor is 50mA. What is the angular frequency of this LC circuit?

20 views

What is the resonant frequency of an LC circuit consisting of a inductor paired with a capacitor?

9 views

LRC Circuits

5 videos

VIDEOS

RLC Circuits (14 of 19); Determining the Resonance Frequency for Series RLC Circuits by Step by Step Science 20 views

05:43

Series RLC Circuits, Resonant Frequency, Inductive Reactance & Capacitive Reactance - AC Circuits by The Organic Chemistry Tutor 26 views 10:45

Introduction to RLC Circuits by Dave Gordon 18 views 14:41

LRC Circuits by Patrick Ford 3 commentsIcon 39 views 09:40

Amplitude Decay in an LRC Circuit by Patrick Ford 2 commentsIcon 22 views 04:24

31. Alternating CurrentAlternating Voltages and Currents7 videos | 5 questionsVIDEOS

What is Alternating Current (AC)? by Math and Science 45 views 13:06 AC Power - Alternating Current Generation - Explained by Engineering Explained 45 views 04:31

Electrical Current Explained - AC DC, fuses, circuit breakers, multimeter, GFCI, ampere by The Engineering Mindset 40 views 18:45

Alternating Voltages and Currents by Patrick Ford 7 commentsIcon 40 views 07:49

AC Circuits: Crash Course Physics #36 by CrashCourse 38 views 10:07

Alternating Current vs Direct Current - Rms Voltage, Peak Current & Average Power of AC Circuits by The Organic Chemistry Tutor 34 views 11:30

AC Circuit Graphs by Patrick Ford 1 commentsIcon 63 views 04:35 PRACTICE

An AC source produces an alternating current in a circuit with the function $?(?) = (1.5 ?) \cos[(250 s-1)?]$. What is the frequency of the source? What is the maximum current in the circuit?

1

commentsIcon

31 views

Multiple Choice XXXXXXXXXXXXXXXXXXXXXX

The current in an AC circuit takes 0.02 s to change direction. What is the angular frequency of the AC source?

1

commentsIcon

23 views

Multiple Choice XXXXXXXXXXXXXXXXXXXXXXX

An AC emf source is given by. What is the instantaneous emf of this source at?

5 views

An AC emf source is given by . What is the instantaneous emf of this source at ?

7 views

If for a certain 60 Hz outlet, what is the peak voltage across the outlet?

5 views

RMS Current and Voltage

8 videos | 2 questions

VIDEOS

Root Mean Square (RMS) Voltage and Current by ElectronX Lab 59 views 11:07

Root Mean Square (RMS) Voltage for Sinusoidal, Square ,and Sawtooth Signals by Physics Ninja 39 views 18:49

RMS (Effective) Voltage and Current by Darryl Morrell 34 views 14:57 RMS Current and Voltage by Patrick Ford 2 commentsIcon 45 views 07:14

What is RMS value | Easiest Explanation | TheElectricalGuy by Gaurav J - TheElectricalGuy 54 views 08:27

21.1 Rms Current and Voltage in AC Circuitsby Chad's Prep22 views02:25

RMS Value of AC Circuits by The Organic Chemistry Tutor 29 views 11:43

Intro to AC Circuits using Phasors and RMS Voltage and Current | Doc Physics by Doc Schuster
19 views

19 VIEWS

16:11

PRACTICE

An AC source operates with a 0.05 s period. 0.025 s after the current is at a maximum, the current is measured to be 1.4 A. What is the RMS current of this AC circuit?

1

commentsIcon

16 views

Multiple Choice XXXXXXXXXXXXXXXXXXXXXX

A person touches a wire carrying a 120 V AC voltage. One hand touches the wire, and both of the person's feet are bare and are touching the ground. Assume skin resistance at the hand and at each foot is . What is the current through the person's torso? 8 views

Phasors 9 videos | 3 questions VIDEOS

Three phase electric power and phasor diagrams explained by Physics Videos by Eugene Khutoryansky 32 views 05:51

Electrical Engineering: Ch 10 Alternating Voltages & Phasors (8 of 82) What is a Phasor? by Michel van Biezen 61 views 04:46

Introduction to Phasors, Impedance, and AC Circuits by Charles Clayton 75 views 03:53

Phasors by Patrick Ford 1 commentsIcon 67 views 08:32

Lesson 10 - Practice With Phasors (AC Circuit Analysis) by Math and Science 45 views 04:01

Phasors by Neso Academy 46 views 13:35 Electrical Engineering: Ch 10 Alternating Voltages & Phasors (19 of 82) Phasor Addition of Voltages by Michel van Biezen 30 views 06:02

Electrical Engineering: Ch 10 Alternating Voltages & Phasors (1 of 82) Alternating Voltages by Michel van Biezen 26 views 04:37

Converting Between a Function and a Phasor by Patrick Ford
36 views
03:16
PRACTICE

Multiple Choice XXXXXXXXXXXXXXXXXXXXXXX

The following phasor diagram shows an arbitrary phasor during its first rotation. Assuming that it begins with an angle of 0°, if the phasor took 0.027 s to get to its current position, what is the angular frequency of the phasor?

1

commentsIcon

28 views

Multiple Choice XXXXXXXXXXXXXXXXXXXXXX

An AC source oscillates with an angular frequency of 120 s-1. If the initial voltage phasor is shown in the following phasor diagram, draw the voltage phasor after 0.01 s. (Select the correct absolute angle below of the phasor's location below after you have drawn it.)

21 views

Multiple Choice XXXXXXXXXXXXXXXXXXXXXX

A phasor of length 4 begins at 0° . If it is rotating at ω = 250 s-1 , what is the value of the phasor after 0.007 s?

1

commentsIcon

19 views

Resistors in AC Circuits 11 videos | 2 questions

VIDEOS

Anderson Video - Ohm's Law for AC Circuits by Professor Anderson 37 views 02:05

Anderson Video - Reactance Example by Professor Anderson 23 views 03:39

Alternating Current | Pure Resistor in AC circuit by Unal Arslan 27 views 21:46

Resistors in AC Circuits by Patrick Ford 2 commentsIcon 30 views 03:12

Pure resistor in electrical AC Circuits by How to BE 26 views 06:57

College Physics Lectures, Resistors in AC Circuits by Jose Menchaca 39 views 10:13

Resistors in AC Circuits by Prof_Clark 22 views 02:25 Resistors in AC Circuits (Power) by ElectronX Lab 26 views 08:48

25 - AC circuits - Resistor by Cogverse Academy 21 views 02:02

Resistors in AC Circuits by Andrey K 27 views 07:43

Resistors in Parallel in an AC Circuit by Patrick Ford 2 commentsIcon 51 views 02:32 PRACTICE

Multiple Choice XXXXXXXXXXXXXXXXXXXXXX

The voltage across a resistor is found to be given by $v R (t) = (10 V) \cos[(120 s-1)t]$: a) At what frequency does the AC course operate? b) If the resistance is 12Ω , what is the maximum current in this circuit? c) What is the RMS voltage of the AC source? 32 views

In a kitchen in the United States, you turn on a toaster, a microwave, and a coffee machine at the same time. All are wired in parallel and are connected to a 20 A circuit breaker. If the toaster uses and the coffee machine uses what is the maximum power the microwave could use without tripping the circuit breaker?

3 views
Phasors for Resistors
8 videos | 1 question
VIDEOS

by gEEch 35 views 13:07

25 - AC circuits - Resistor by Cogverse Academy 38 views 02:01

Circuit Analysis Lecture 17: AC Circuits and Phasors by Aaron Carman 46 views 27:00

Phasors for Resistors by Patrick Ford 1 commentsIcon 28 views 04:11

Resistor Circuit : AC sources and phasors 1 by Tech Tins 21 views 04:13

Phasor Diagram for Pure Resistive Circuits | Electrical Engineering by Magic Marks 52 views 01:58

Electrical Engineering: Ch 10 Alternating Voltages & Phasors (22 of 82) Phasor Diagram for Resistors by Michel van Biezen 29 views 04:32

Phasor Relationship for Resistor by Neso Academy 14 views 04:07 PRACTICE

Multiple Choice XXXXXXXXXXXXXXXXXXXXXX

A 12 Ω resistor is connected to an AC source. If the resistor's voltage phasor is initially at 0°, and the figure below shows the phasor after 0.04 s, answer the following: a) What is the angular frequency of the source? Assume the phasor is on its first rotation. b) What does the current phasor diagram look like? c) What is the current in the circuit at this point (t = 0.04?)?

commentsIcon 15 views Capacitors in AC Circuits 12 videos | 6 questions VIDEOS

Anderson Video - Capacitor Circuit Example by Professor Anderson 27 views 04:13

Anderson Video - Capacitor in AC Circuit by Professor Anderson 33 views 04:42

Anderson Video - Capacitor Reactance by Professor Anderson 27 views 05:10

Capacitors in AC Circuits by Patrick Ford 3 commentsIcon 44 views 07:09 AC Through Pure Capacitance Alone [Year- 1] by Mobile Tutor 24 views 10:34

Capacitors in AC Circuits (Impedance) by ElectronX Lab 20 views 19:34

AC circuit containing only capacitor (≠ 3d animation) by The visual Class 72 views 03:48

capacitor in ac circuit by DG E LEARING ADU ACADEMY 41 views 04:06

Capacitors in AC Circuits by L2 Theory - Van Andel 24 views 13:22

RLC Circuits (4 of 19) Capacitive Reactance; Phase Shift, Phasor Diagrams, Frequency, An Explanation by Step by Step Science 25 views 11:35

AC Circuit: Resistor and a Capacitor in series by Physics Ninja 18 views 05:47 Current in a Parallel RC AC Circuit by Patrick Ford 3 commentsIcon 39 views 03:45 PRACTICE

An AC source operates at a maximum voltage of 120 V and a frequency of 60 Hz. If it is connected to a 175 μ F capacitor, what is the maximum charge stored on the capacitor? 29 views

A 300 μ F capacitor is connected to an AC source operating at an RMS voltage of 120 V. If the maximum current in the circuit is 1.5 A, what is the oscillation frequency of the AC source? 64 views

Multiple Choice XXXXXXXXXXXXXXXXXXXXXX

The peak current to and from a capacitor is i when the emf source has a peak voltage V and frequency f. What is the peak current to and from the capacitor if the frequency and peak voltage are doubled to 2f and, respectively?

10 views

An AC circuit consists of a capacitor and an emf source with frequency . If the source is turned on at , and the first time the voltage across the capacitor reaches a maximum value is at , when is the first time the current in the capacitor is at a maximum?

9 views

An AC circuit consists of a μ capacitor and an emf source with a peak voltage of 40 V. What is the frequency of the source if the peak current is ?

3 views

A low-pass RC filter has a resistor in series with a μ Capacitor. What is the crossover angular frequency?

12 views

Phasors for Capacitors 8 videos | 1 question VIDEOS by Grover Jessie 45 views 18:37

Transforming capacitors to the phasor domain by Edu Mdu 31 views 00:36

Phasor in Capacitor and Inductor by Electric Videos 37 views 09:54

Phasors for Capacitors by Patrick Ford 28 views 04:32

Phasor representation of capacitor by Scholarswing 26 views 01:11

Example Simple Voltage current across capacitor using Phasors by ENGRTUTOR 24 views 08:25

Phasor Relationship for Capacitor by Neso Academy 27 views 04:54

Capacitors in AC Circuits with Phasors | Doc Physics by Doc Schuster 19 views

16:57 PRACTICE

An AC source operates at a maximum voltage of 60 V and is connected to a 0.7 mF capacitor. If the current across the capacitor is $i(t) = iMAX \cos[(100 \text{ s}-1)t]$, a) What is iMAX? b) Draw the phasors for voltage across the capacitor and current in the circuit at t = 0.02 s. Assume that the current phasor begins at 0° .

1
commentsIcon
28 views
Inductors in AC Circuits
8 videos | 5 questions
VIDEOS

25 - AC circuits - Inductive reactanceby Cogverse Academy37 views04:09

Inductors in AC Circuit (Power) by ElectronX Lab 29 views 09:37

Inductors Explained - The basics how inductors work working principle by The Engineering Mindset 54 views 10:19

Inductors in AC Circuits by Patrick Ford 2 commentsIcon 58 views 07:14

Inductive Reactance, Impedance, & Power Factor - AC Circuits - Physics

by The Organic Chemistry Tutor 54 views 12:34

Inductors Have Inductance, Reactance, AND Impedance. DANG, DAWG. | Doc Physics by Doc Schuster 36 views 10:33

AC CIrcuit: Inductor and Resistor in Series by Physics Ninja 42 views 05:06

Inductors and Graphs by Patrick Ford 1 commentsIcon 23 views 03:36 PRACTICE

Will a frequency f = 60 Hz or $\omega = 75 \text{ s} - 1$ produce a larger max current in an inductor connected to an AC source?

11 views

A certain laptop charger says that the provided to the laptop is 12 V. You know this charger is plugged into an outlet for which is 120 V, such that there must be a transformer inside the laptop charger. If the number of windings of wire on the laptop side of the transformer is 60, how many windings of wire must be on the outlet side of the transformer?

8 views

Multiple Choice XXXXXXXXXXXXXXXXXXXXXX

The peak current to and from an inductor is when the emf source has a peak voltage and frequency . What is the peak current to and from the inductor if the frequency and peak voltage are doubled to and . respectively?

3 views

An AC circuit consists of an inductor and an emf source with frequency . If the source is turned on at , and the first time the voltage across the inductor reaches a maximum value is at , when is the first time the current in the inductor is at a maximum?

9 views

Multiple Choice XXXXXXXXXXXXXXXXXXXXXX

The peak current to and from an inductor is i when the emf source has a peak voltage V and frequency f. What is the peak current to and from the inductor if the frequency and peak voltage are doubled to 2f and 2V, respectively?

13 views
Phasors for Inductors
9 videos | 1 question
VIDEOS

Anderson Video - Resistor and Inductor in AC Circuits by Professor Anderson 43 views 08:17

232 213 phase of current and voltage for inductor phasor for LC circuit or LRC circuit by dave smith 20 views 05:35

AC Theory: How to Draw a Phasor Diagram for an Inductive Load to Scale by Joe Robinson Training 55 views 11:42

Phasors for Inductors by Patrick Ford 2 commentsIcon 55 views 03:33

Electrical Engineering: Ch 10 Alternating Voltages & Phasors (26 of 82) RCL V=? & I=? - Inductor

by Michel van Biezen 42 views 03:24

Phasors Example (With resistor, inductor and capacitor) by Electric Videos 46 views 07:20

Phasors for Inductors in AC Circuits | Doc Physics by Grover Jessie 30 views 17:26

Phasors for Inductors in AC Circuits | Doc Physics by Doc Schuster 29 views 15:11

Phasor Relationship for Inductor by Neso Academy 31 views 06:03 PRACTICE

Multiple Choice XXXXXXXXXXXXXXXXXXXXXX

An AC source operates at a maximum voltage of 75 V and is connected to a 0.4 H inductor. If the current across the inductor is $i(t) = iMAX \cos[(450 \text{ s} - 1)t]$, a) What is iMAX? b) Draw the phasors for voltage across the inductor and current in the circuit at t = 4.2 ms. Assume that the current phasor begins at 0° .

13 views Impedance in AC Circuits 11 videos | 2 questions VIDEOS

Anderson Video - LRC Circuits and Impedance by Professor Anderson 12 views Anderson Video - Ohm's Law and Impedance by Professor Anderson 21 views 06:58

Finding Total Impedance by MrClean1796 43 views 05:05

Impedance in AC Circuits by Patrick Ford 1 commentsIcon 36 views 08:40

AC Theory: How to Calculate Impedance and Construct an Impedance Triangle by Joe Robinson Training 37 views 12:49

Electronic Basics #37: What is Impedance? (AC Resistance?) by GreatScott!
34 views
10:09

Impedance by The Organic Chemistry Tutor 26 views 10:32

AC current impedance - Alternating Voltage for inductors, capacitors by Physics Videos by Eugene Khutoryansky 43 views

Resistors in AC Circuits (Impedance) by ElectronX Lab 19 views 06:52

Introduction to Phasors, Impedance, and AC Circuits by Charles Clayton 30 views 03:52

An AC source operates at a maximum voltage of 120 V and an angular frequency of 377 s-1 . If this source is connected in parallel to a 15 Ω resistor and in parallel to a 0.20 mF capacitor, answer the following questions: a) What is the maximum current produced by the source? b) What is the maximum current through the capacitor?

16 views Series LRC Circuits 8 videos | 6 questions VIDEOS

RLC Circuits (12 of 19) Series RLC; Calculating Impedance, Current and Voltage by Step by Step Science 42 views 13:16

Calculating Impedance, Supply Current and Voltages in Series RLC Circuit

by Engineers Academy 49 views 20:47

Phasor Diagram of Series RLC Circuit by Neso Academy 61 views 08:07

LRC Circuits in Series by Patrick Ford 2 commentsIcon 23 views 05:55

Series RLC Circuit by Zack Hartle 33 views 21:27

RLC Circuits (3 of 19) Resistance; Phase Shift, Phasor Diagrams, Impedance, An Explanation by Step by Step Science 27 views 05:01

AC Analysis: Series Resistor/Inductor/Capacitor Circuit by ElectronX Lab 25 views 08:05

Phasors Example (With resistor, inductor and capacitor) by Electric Videos 63 views 07:20
PRACTICE

An AC source operates at an RMS voltage of 70 V and a frequency of 85 Hz. If the source is connected in series to a 20 Ω resistor, a 0.15 H inductor and a 500 μ F capacitor, answer the following questions: a) What is the maximum current produced by the source? b) What is the maximum voltage across the resistor? c) What is the maximum voltage across the inductor? d) What is the maximum voltage across the capacitor?

1

commentsIcon

29 views

An inductor, a capacitor, and a resistor are in series with a AC source. If the capacitor is, the inductor is, and the resistor is, what is the impedance?

10 views

An inductor, a capacitor, and a resistor are in series with a AC source with peak voltage 13 V. If the impedance of the circuit is , what is the peak current?

7 views

An inductor, a capacitor, and a resistor are in series with an AC source. If the capacitor is 470 nF, the inductor is , and the resistor is 800 Ω , what is the circuit's resonant (angular) frequency? 8 views

Multiple Choice XXXXXXXXXXXXXXXXXXXXXX

An inductor, a capacitor, and a resistor are in series with a AC source. If the capacitor is , the inductor is and the resistor is . what is the impedance?

7 views

Multiple Choice XXXXXXXXXXXXXXXXXXXXXX

An inductor, a capacitor, and a resistor are in series with an AC source. If the capacitor is , the inductor is , and the resistor is . what is the circuit's resonant frequency?

5 views

Resonance in Series LRC Circuits 8 videos | 1 question VIDEOS

RLC Circuits (14 of 19); Determining the Resonance Frequency for Series RLC Circuits by Step by Step Science 36 views 05:43

Steady State Circuit Analysis with Phasors by Matthew Araujo

Series RLC Circuits, Resonant Frequency, Inductive Reactance & Capacitive Reactance - AC Circuits by The Organic Chemistry Tutor

36 views 10:45

Resonance in Series LRC Circuits by Patrick Ford 24 views 05:23

Series Resonance in RLC Circuit by ALL ABOUT ELECTRONICS 40 views 19:33

Phasor and The Phasor Diagram in AC Circuits Explained by ALL ABOUT ELECTRONICS 81 views 13:29

Resonance Circuits: LC Inductor-Capacitor Resonating Circuits by Physics Videos by Eugene Khutoryansky 47 views 07:18

AC Circuits - Impedance & Resonant Frequency by The Organic Chemistry Tutor 30 views 30:33 PRACTICE

A series LRC circuit is formed with a power source operating at VRMS = 100 V, and is formed with a 15 Ω resistor, a 0.05 H inductor, and a 200 μ F capacitor. What is the voltage across the inductor in resonance? The voltage across the capacitor?

26 views Power in AC Circuits 8 videos VIDEOS

Electrical Engineering: Ch 12 AC Power (36 of 58) How to Calculate the Power Factor? by Michel van Biezen 37 views 10:56

Electrical Engineering: Ch 12 AC Power (10 of 38)What is Average Power Supplied and Absorbed?(-26.5) by Michel van Biezen 36 views 07:15

Electrical Engineering: Ch 12 AC Power (1 of 38) Instantaneous Power by Michel van Biezen 30 views 05:42

Power in AC Circuits by Patrick Ford 1 commentsIcon 21 views 05:37

Electrical Engineering: Ch 12 AC Power (16 of 38) How to Find Maximum Power Transferred? by Michel van Biezen 22 views 03:14

AC Theory: How to Calculate Power Factor in an AC Circuit: What is Power Factor? by Joe Robinson Training 48 views

Electrical Engineering: Ch 12 AC Power (2 of 38) Instantaneous Power: A Closer Look by Michel van Biezen 19 views 04:57

Power Factor - Basic Introduction - Reactive and Apparent Power. by The Organic Chemistry Tutor 37 views 20:27

32. Electromagnetic WavesWhat is an Electromagnetic Wave?12 videos | 4 questionsVIDEOS

Anderson Video - Electromagnetic Waves Intro by Professor Anderson 29 views 08:54

Anderson Video - Electromagnetic Waves by Professor Anderson 29 views 06:05

Anderson Video - How to Detect Electromagnetic Waves by Professor Anderson 51 views 04:15

What is an Electromagnetic Wave? by Patrick Ford
1

ranklcon 64 views 07:07

Anderson Video - Electromagnetic Wave Example by Professor Anderson 22 views 04:55

Astronomy - Ch. 5: Light & E&M Radiation (5 of 30) How Are E&M Waves Produced? by Michel van Biezen 41 views 09:25

Electromagnetic Waves - with Sir Lawrence Bragg by Ri Archives 31 views 20:23

Intro to Electromagnetic Waves (how EM waves are created, Poynting vector) by PhysicsOMG 27 views 08:20

GCSE Physics - Electromagnetic Waves #64 by Cognito 37 views 04:52

Electromagnetic Waves by Bozeman Science 31 views 04:03

Electromagnetic Waves by Physics Videos by Eugene Khutoryansky 32 views What is an Electromagnetic Wave?

by Physics Made Easy

30 views

03:41

PRACTICE

If a lightyear is defined as the distance light travels in one year, what do you think a light minute is?1) If Mars is 12 light-minutes away, how far away is it in meters? 2) How long would it take to send a radio transmission to Mars?

30 views

What is the magnetic field amplitude of an electromagnetic wave that has electric field amplitude

11 views

A lightbulb emits light uniformly in all directions. What is the electric field amplitude away from the lightbulb?

7 views

Alice observes an electric field,

[,] and a magnetic field

[.] Bob is cruising by, with velocity

, in Alice's reference frame. What electric field does Bob observe? 5 views
The Electromagnetic Spectrum
8 videos | 1 question
VIDEOS

Anderson Video - Electromagnetic Spectrum by Professor Anderson 32 views 10:43

What is the ELECTROMAGNETIC SPECTRUM by MooMooMath and Science 24 views 02:46

The Electromagnetic Spectrum by Patrick Ford 1 ranklcon 46 views 10:08 Electromagnetic Spectrum Explained - Gamma X rays Microwaves Infrared Radio Waves UV Visble Light by The Organic Chemistry Tutor 32 views

16:33

Electromagnetic Radiation by Bozeman Science 25 views 03:02

What is the Electromagnetic Spectrum? by MonkeySee 33 views 02:13

ELECTROMAGNETIC SPECTRUM by 7activestudio 28 views 02:55

Anderson Video - Intensity of the Sun Example by Professor Anderson 16 views 06:16 Anderson Video - Electromagnetic Energy by Professor Anderson 13 views 07:13

Anderson Video - Radiation Pressure by Professor Anderson 18 views 13:53

Energy Carried by Electromagnetic Waves by Patrick Ford 2 commentsIcon 1 rankIcon 55 views 08:18

Anderson Video - Intensity by Professor Anderson 26 views 04:52

Anderson Video - Burning Holes with Sunlight by Professor Anderson 16 views 05:31

phys2B ch24.4 The Energy Carried by Electromagnetic Waves by Leila Jewell 32 views 06:15

Energy Density of Electromagnetic Waves by Andrey K

20 views 08:39

The Energy Carried by Electromagnetic Waves by z physics 23 views 04:29

The Energy Carried by Electromagnetic Waves by Diana Driscoll 32 views 04:53

21.4 Energy, Power, and Intensity of Electromagnetic Waves by Chad's Prep 15 views 04:04

Energy Density of Electromagnetic Waves (Light) | Doc Physics by Doc Schuster 16 views 06:44

University Physics Lectures, Rate of Energy Transfer by Sinusoidal Waves on Strings by Jose Menchaca
34 views
07:04
PRACTICE

Multiple Choice XXXXXXXXXXXXXXXXXXXXXX

A 100 W lightbulb actually emits around only 10 W of light. What is the intensity of the light 1 cm away if the light is emitted perfectly spherically? What is the magnitude of the electric field emitted by the lightbulb? What about the magnetic field?

25 views

Suppose a certain star has a temperature of At what wavelength will this star emit the most energy?

9 views

A light bulb emits light uniformly in all directions. What is the electric field amplitude away from the light bulb?

11 views

What is the average magnitude of the Poynting vector for an electromagnetic wave with magnetic field amplitude equal to ?

10 views

Multiple Choice XXXXXXXXXXXXXXXXXXXXXX

At one instant, an electromagnetic wave has a Poynting vector in the positive x direction and a magnetic field in the negative z direction. What is the direction of the electric field?

12 views

Electromagnetic Waves as Sinusoidal Waves 8 videos | 1 question

VIDEOS

Sinusoidal Electromagnetic Wave Example by Prof_Clark 60 views 02:52

Physics 50 E&M Radiation (24 of 33) E & B Field on an E & M Wave by Michel van Biezen 13 views 08:34

Example - Finding the Amplitude and Wavelength of the Electric Field of an Electromagnetic Wave by Melvin Vaughn 29 views 05:46

Electromagnetic Waves as Sinusoidal Waves by Patrick Ford 3 commentsIcon 27 views 07:10 Example - Determining the Electric Field of an Electromagnetic Wave, Part 1 of 3 by Melvin Vaughn 25 views 06:58

Sinusoidal Electromagnetic Wave Example by Prof_Clark 18 views 02:52

8.1.3 Sinusoidal Wavesby Real Physics23 views07:38

At one point in an otherwise empty space, an electromagnetic wave has a magnetic field strength of μ . What is the speed of this wave?

Polarization Filters
11 videos | 3 questions
VIDEOS

Anderson Video - Polarization by Professor Anderson 14 views 04:04

Anderson Video - Polarizer by Professor Anderson

9 views 06:25

Physics - Optics: Polarization (3 of 5) Three Polarizers by Michel van Biezen 19 views 03:11

Polarization Filters by Patrick Ford 2 commentsIcon 1 rankIcon 34 views 10:35

Polarized Light and Polarized Filters by The Physics Classroom 20 views 09:04

Intro to Polarization Filters! or...why are those sunglasses so expensive? | Doc Physics by Doc Schuster 19 views 07:14

How polarising filters work? | Polarization of light | Floatheadphysics by FloatHeadPhysics 19 views 14:33

Polarization of Electromagnetic Waves — Lesson 5 by EMViso 42 views 01:08

25 - EM waves - Polarization by Cogverse Academy 25 views 05:09

Polarization of Light: circularly polarized, linearly polarized, unpolarized light. by Physics Videos by Eugene Khutoryansky 25 views 19:51

Initially Vertically Polarized Light by Patrick Ford 4 commentsIcon 1 rankIcon 27 views

PRACTICE

03:38

In each of the following cases, initially vertically polarized light enters the polarizing apparatus with the same initial intensity. Which polarizing apparatuses will cause the light to exit with the largest intensity, 90° from its initial polarization? a) A single polarizing filter, oriented 90° from the vertical b) Two polarizing filters, the first 45° from the vertical and the second 90° from the vertical c) Two polarizing filters, the first 60° from the vertical and the second 90° from the vertical d) Two polarizing filters, the first 30° from the vertical and the second 90° from the vertical.

3

commentsIcon

29 views

Vertically polarized light of intensity strikes a polarizing filter with its axis tilted clockwise from vertical. What is the intensity of the transmitted light?

10 views

Unpolarized light strikes a polarizing filter. It then passes through a second polarizer. The axis of the second polarizer is tilted from the axis of the first. If the intensity of light emerging from the second polarizer is . what intensity does the light have as it strikes the first polarizer?

6 views

Displacement Current and Maxwell's Equations

9 videos | 2 questions

VIDEOS

Anderson Video - Electromagnetic Wave Propagation Vector by Professor Anderson 21 views 08:22

Physics - E&M: Maxwell's Equations (27 of 30) Diff. Form of Ampere's Law: Displacement Current by Michel van Biezen 17 views 08:39

Displacement Current derivation (best explanation) by CONCEPT BOOSTER
36 views
09:23

Displacement Current and Maxwell's Equations by Patrick Ford 3 commentsIcon 94 views 12:04

Displacement Current (Maxwell's Equations) | Electrodynamics by Pretty Much Physics 29 views 01:50

Displacement Current & Maxwell's Equations by Professor Brei 33 views 17:52

Displacement Current & Maxwell's Equations

by Electric and Magnetic Fields 21 views 10:31

Maxwell's Equations, Electromagnetic Waves, Displacement Current, & Poynting Vector - Physics by The Organic Chemistry Tutor 40 views 17:39

Derivation of Electromagnetic Waves from Maxwell's Equations by Andrey K 31 views 23:10 PRACTICE

What is the displacement current in a parallel plate capacitor with circular plates of area , separated by μ , when the electric field in the capacitor is changing at a rate of ? 9 views

A tetrahedron exists in space. The magnetic flux through 3 of its sides is , , and , respectively. What is the magnetic flux through the fourth side? 8 views

33. Geometric Optics Ray Nature Of Light 5 videos | 2 questions VIDEOS

Anderson Video - Geometric Optics Intro by Professor Anderson 20 views 03:38

VIDEO 1: The Ray Model of Light & Reflection by Graeme Low 30 views

Science Prep Course Physics: Lesson 2 - Ray Model of Light by BVC Upgrading 24 views 07:06

Introduction: Ray Model of Light by Physics and Astronomy Videos 28 views 03:51 PRACTICE

Multiple Choice XXXXXXXXXXXXXXXXXXXXXX

A small light source is casting your shadow on a large wall. Both you and the light are on a line normal to the wall. You are one-fourth of the way from the light to the wall. How wide is your shadow compared to your normal width?

10 views

Multiple Choice XXXXXXXXXXXXXXXXXXXXXXX

When light reflects off of a smooth surface, and rays that were initially parallel remain parallel, this is called...

10 views

Reflection Of Light 7 videos | 2 questions VIDEOS

Anderson Video - Specular vs. Diffuse Reflection by Professor Anderson 35 views 03:41

Anderson Video - Corner Cube Reflector by Professor Anderson 12 views 07:54 The Law Of Reflection. Measuring the angle of incidence and angle of reflection. by Mr E's Science Episodes 44 views 07:57

Reflection of Light by Patrick Ford 1 commentsIcon 1 rankIcon 35 views 05:09

REFLECTION OF LIGHT by 7activestudio

52 views

02:57

VIDEO 1: The Ray Model of Light & Reflection

by Graeme Low

20 views

04:38

Hanging Mirror by Patrick Ford

7

commentsIcon

1

ranklcon

28 views

04:04

PRACTICE

What is the distance, d, between the incoming and outgoing rays?

3

commentsIcon

33 views

When you look in your bathroom mirror in the morning, you see your reflection behind the mirror. If you are standing from the mirror, how far are you from the image of you?

11 views

Refraction Of Light
6 videos | 6 questions

VIDEOS

Huygen's principle of secondary waves | Wave optics

Khan Academy India - English **

Anderson Video - Refraction of Light by Professor Anderson 17 views 02:19

Refraction Explained by Science Sauce 40 views 04:53

Refraction of Light by Patrick Ford 1 commentsIcon 1 rankIcon 46 views 11:07

Refraction of Light

by The Organic Chemistry Tutor **

Snell's Law by Patrick Ford 5 commentsIcon 1 rankIcon 63 views Refraction Through Multiple Boundaries by Patrick Ford 3 commentsIcon 1 rankIcon 33 views 09:35

A light ray passes from air to glass, with an index of refraction of 1.5. If the light if blue, with a wavelength of 450 nm, what is the wavelength of the light ray after it passes into the glass?

commentsIcon

PRACTICE

46 views

Suppose a ray of light starts in air, then enters a slab of diamond with parallel faces, and then exits again. If the ray entered the diamond at an angle from a line normal to the diamond slab, what is true of the final angle from normal?

10 views

Light shines from a laser in air down into water. If the laser beam in air makes an angle of with the water's surface, what angle will it make with the surface under water?

9 views

Multiple Choice XXXXXXXXXXXXXXXXXXXXXXX

A graduated cylinder is filled with of oil floating on of water. How long, in nanoseconds, does it take light to travel from the top of the oil to the bottom of the water?

9 views

A light ray, moving in air, is incident on a piece of plastic at an angle of 23° with respect to the normal. Inside the plastic the ray travels at an angle of 16° with respect to the normal. What is the index of refraction of the plastic?

13 views

Multiple Choice XXXXXXXXXXXXXXXXXXXXXX

If oil is floating on water, what is the critical angle at the oil/water boundary?

12 views

Total Internal Reflection 4 videos | 1 question

VIDEOS

Anderson Video - Total Internal Reflection by Professor Anderson 19 views 08:14

Total Internal Reflection of Light and Critical Angle of Refraction Physics by The Organic Chemistry Tutor 30 views 10:20

Total Internal Reflection by Patrick Ford 3 commentsIcon 63 views 07:48

Total internal reflection | Geometric optics | Physics | Khan Academy by Khan Academy 47 views 07:55
PRACTICE

Most pools have an underwater light for swimming at night. If the underwater light is 1 m below the surface, for what area of the surface of the water are you able to see the light? Note that the refractive index of water is 1.33.

3
commentsIcon
29 views
Ray Diagrams For Mirrors
7 videos | 4 questions
VIDEOS

Anderson Video - Mirrors by Professor Anderson 14 views Ray diagrams for convex mirrors by Swanson Does Science 40 views 04:59

Image formation by Concave Mirror by Physics Galaxy 72 views 06:08

Ray Diagrams for Concave Mirrors by Patrick Ford 2 commentsIcon 65 views 12:04

Ray Tracing for Concave and Convex Mirrors by Physics Ninja 32 views 10:42

Ray Diagrams for Convex Mirrors by Patrick Ford 2 commentsIcon 37 views 07:55

Ray Diagrams for Plane Mirrors by Patrick Ford 39 views 06:06 PRACTICE Open Question Will an image be formed for an object placed inside the focus of a convex mirror? If so, where will it be formed?

2

commentsIcon

27 views

Multiple Choice XXXXXXXXXXXXXXXXXXXXXX

Find the location of the virtual image produced by a convex mirror when the object is placed a distance less than the focal length form the surface of the mirror.

32 views

Multiple Choice XXXXXXXXXXXXXXXXXXXXXX

You want to hang a plane mirror on your wall. If you want your entire body to fit into the mirror, what's the maximum height off the ground that the mirror must be? What is the smallest mirror you can buy? Consider yourself to be 1.55 m tall.

1

commentsIcon

30 views

Multiple Choice XXXXXXXXXXXXXXXXXXXXXX

An object is in front of a concave mirror with a focal length of . What is the magnification of the image?

10 views

Mirror Equation

9 videos | 3 questions

VIDEOS

Anderson Video - Law of Reflection by Professor Anderson 16 views 04:55

Anderson Video - Wall Mirror Question by Professor Anderson 16 views 03:23

Anderson Video - The Mirror Equation by Professor Anderson 20 views 05:35 Mirror Equation by Patrick Ford 4 commentsIcon 45 views 09:03

Anderson Video - Magnification by Professor Anderson 13 views 05:21

Mirror equation example problems | Geometric optics | Physics | Khan Academy by Khan Academy 32 views 11:00

Spherical Mirrors & The Mirror Equation - Geometric Optics by The Organic Chemistry Tutor 34 views 11:27

The Mirror Equation (Concave Mirrors) by The Science Classroom 27 views 05:25

Object in Front of Convex Mirror by Patrick Ford 3 commentsIcon 36 views 04:11 PRACTICE

A 4 cm tall object is placed in 15 cm front of a concave mirror with a focal length of 5 cm. Where is the image produced? Is this image real or virtual? Is it upright or inverted? What is the height of the image?

2

commentsIcon

33 views

You want to produce a mirror that can produce an upright image that would be twice as tall as the object when placed 5 cm in front of it. What shape should this mirror be? What radius of curvature should the mirror have?

3

commentsIcon

22 views

Multiple Choice XXXXXXXXXXXXXXXXXXXXXX

An object is in front of a converging lens with a focal length of . Use ray tracing to determine the location of the image. Is the image upright or inverted?

12 views

Refraction At Spherical Surfaces 5 videos | 3 questions VIDEOS

Anderson Video - Spherical Mirrors by Professor Anderson 20 views 07:48

REFRACTION AT SPHERICAL SURFACE _ PART 01 by 7activestudio 24 views 03:50

Solved example: Curved surface refraction | Class 12 (India) | Physics | Khan Academy by Khan Academy India - English 23 views 11:38

Refraction at Spherical Surfaces by Patrick Ford 4 commentsIcon 43 views Curved surface refraction formula | Class 12 (India) | Physics | Khan Academy

by Khan Academy India - English

31 views

13:08

PRACTICE

An object is embedded in glass as shown in the following figure. If the glass has a concave face, and is embedded in water, where will the image be located? Will the image be real or virtual?

3

commentsIcon

39 views

Multiple Choice XXXXXXXXXXXXXXXXXXXXXX

A student observes a goldfish in a flat sided aquarium. The goldfish observes the student. If the student observes that the image of the fish's nose is from the side of the tank, how far behind the glass is the nose of the fish?

12 views

One side of a biconvex glass lens (n=1.5) has a radius of curvature of, while the other side has a radius of curvature of. What is its focal length?

7 views

Ray Diagrams For Lenses 15 videos | 4 questions VIDEOS

Anderson Video - Image Formation with Spherical Mirrors by Professor Anderson 19 views 08:17

Anderson Video - Optical Instruments- Eyeballs by Professor Anderson 21 views 06:03

Anderson Video - Convering Lens Example

by Professor Anderson 15 views 07:12

Ray Diagrams for Converging Lenses by Patrick Ford 2 commentsIcon 55 views 06:37

Anderson Video - Nearsighted vs. Farsighted by Professor Anderson 38 views 06:28

Anderson Video - Camera Focus by Professor Anderson 16 views 03:24

Anderson Video - Glasses by Professor Anderson 14 views 03:51

Anderson Video - Inability to Focus Underwater by Professor Anderson 12 views 05:38

Anderson Video - Magnifying Glass by Professor Anderson 23 views 05:05

Anderson Video - Microscope

by Professor Anderson 17 views 04:50

Anderson Video - Telescope by Professor Anderson 15 views 05:31

Anderson Video - Resolving Power of a Telescope by Professor Anderson 12 views 07:53

Ray Diagrams (4 of 4) Concave Lens and Convex Mirror by Step by Step Science 20 views 05:32

Ray Diagrams (2 of 4) Convex Lens by Step by Step Science 22 views 12:32

Ray Diagrams for Diverging Lenses by Patrick Ford 2 commentsIcon 97 views 06:12 PRACTICE

If an object is placed within the focus of a converging lens (it's at a distance of less than the focal length), will a real image form? If so, does it form at a distance less than or greater than the focal length?

3

commentsIcon

31 views

If an object is placed within the focus of a diverging lens (it's at a distance of less than the focal length), where will the image form? If so, does it form at a distance less than or greater than the focal length?

21 views

Multiple Choice XXXXXXXXXXXXXXXXXXXXXX

An object is in front of a diverging lens with focal length . Where is the image located? 10 views

Multiple Choice XXXXXXXXXXXXXXXXXXXXXXX

A tall object is in front of a diverging lens with focal length. What is the height of the image and is it upright or inverted?

8 views

Thin Lens And Lens Maker Equations 16 videos | 1 question VIDEOS

Anderson Video - Lenses by Professor Anderson 17 views 05:09

Anderson Video - Thin Lens and Image Formation by Professor Anderson 20 views 05:17

Anderson Video - Thin Lens Image Formation by Professor Anderson 28 views 04:07

Thin Lens Equation by Patrick Ford 6 commentsIcon 44 views 07:58 Anderson Video - Power of a Lens by Professor Anderson 22 views 03:40

Anderson Video - Diverging Lens by Professor Anderson 20 views 03:17

Anderson Video - Thins Lens Equation by Professor Anderson 21 views 05:13

Anderson Video - Contact Lens Example by Professor Anderson 16 views 08:25

Physics - Optics: Lensmaker's Equation (5 of 5) Vision Correction Lens (Glasses) by Michel van Biezen 51 views 02:39

Physics - Optics: Lensmaker's Equation (4 of 5) by Michel van Biezen 30 views 02:13

Physics - Optics: Lensmaker's Equation (1 of 5) by Michel van Biezen 27 views 04:03

Thin Lens Equation, Optics, Converging Lens & Diverging Lens - Physics by The Organic Chemistry Tutor

52 views 11:48

Thin lens equation and problem solving | Geometric optics | Physics | Khan Academy by khanacademymedicine
38 views
12:56

Lens Maker Equation by Patrick Ford 7 commentsIcon 48 views 05:38

What Types of Images Can be Formed by Lenses? by Patrick Ford 30 views 03:25

Image Formation by a Biconcave Lens by Patrick Ford 6 commentsIcon 46 views 04:34 PRACTICE

A biconvex lens has a focal length of 12 cm. If an object is placed 5 cm from the lens, where is the image formed? Is it real or virtual? Is it upright or inverted? What's the height of the image if the object is 2 cm tall?

1 commentsIcon 28 views

34. Wave Optics
Diffraction
2 videos | 6 questions
VIDEOS

Blue Sky and Red Sunsets

by ck-12 **

Apertures and Diffraction - Exploring Wave Motion (3/5) by OpenLearn from The Open University 21 views 02:39

Diffraction by Patrick Ford 4 commentsIcon 49 views 08:44 PRACTICE

A diffraction grating with is illuminated by two wavelengths of light: and What is the distance between the bright fringes of the two colors of light on a screen away?

10 views

A diffraction grating has If it is illuminated by a laser at how many bright spots will be observed on a screen placed behind the grating?

9 views

10 views

A particular kind of oil with an index of refraction of has spilled on water. The different thicknesses of the oil slick result in different colors being strongly reflected at different parts of the spill. But near the edges, you identify the thinnest part of the oil layer that strongly reflects green light with a wavelength of 550 nm when you are directly overhead. What is the thickness of the oil at this point? Assume light is incident normal to the oil surface.

You place one glass slide on top of another, with an animal hair between them at one end. You illuminate the slides with blue light of wavelength You count along the slide and find 300 transitions from bright to dark and back to light. How thick is the hair? 6 views

A carbon dioxide laser produces μ electromagnetic waves, which pass through a circular aperture with diameter . What is the approximate width of the laser beam when it strikes a target away?

5 views

Multiple Choice XXXXXXXXXXXXXXXXXXXXXX

A light is used to illuminate a diffraction grating with . What is the angle, measured from the central maximum, to the m=3 bright fringe?

10 views

Diffraction with Huygen's Principle

4 videos | 1 question

VIDEOS

Huygens Principle - Physics by The Organic Chemistry Tutor 34 views 01:39

Diffraction and Huygens's Principle - IB Physics by Andy Masley's IB Physics Lectures 40 views 03:42

Single slit interference | Light waves | Physics | Khan Academy by khanacademymedicine 44 views 15:00

Diffraction with Huygen's Principle by Patrick Ford 2 commentsIcon

ranklcon

65 views

14:47

PRACTICE

A diffraction grating has . If it is illuminated by a laser at , how many bright spots will be observed on a screen placed behind the grating?

6 views

Young's Double Slit Experiment

7 videos | 5 questions

VIDEOS

Anderson Video - Double-Slit Interference Example by Professor Anderson 25 views 12:15

Thomas Young's Double Slit Experiment by MITK12Videos 28 views 07:33

Young's double slit Experiment explained by PhysicsHigh 62 views 08:52

Young's Double Slit Experiment by Patrick Ford 8 commentsIcon 1 rankIcon 74 views 12:01

Young's Double Slit Experiment by The Organic Chemistry Tutor 34 views 17:25

Young's double slit introduction | Light waves | Physics | Khan Academy by khanacademymedicine 30 views 09:33

Unknown Wavelength of Laser through Double Slit

by Patrick Ford

2

commentsIcon

1

ranklcon

42 views

05:42

PRACTICE

Multiple Choice XXXXXXXXXXXXXXXXXXXXXX

A 450 nm laser shines light through a double slit of 0.2 mm separation. If a screen is placed 4 m behind the double slit, how wide are the bright fringes of the diffraction pattern?

6

commentsIcon

16 views

Multiple Choice XXXXXXXXXXXXXXXXXXXXXXX

A 532 nm laser illuminates a pair of slits separated by . What is the angular separation, in degrees, between the and bright fringes?

12 views

Multiple Choice XXXXXXXXXXXXXXXXXXXXXXX

In a two-slit experiment, laser light of wavelength passes through a pair of slits separated by If the observing screen is from the slits, what is the separation, in mm, between the bright fringes?

8 views

Multiple Choice XXXXXXXXXXXXXXXXXXXXXX

A laser illuminates a pair of slits separated by μ . What is the angular separation, in degrees, between the m = 1 and m = 2 bright fringes?

9 views

In a two-slit experiment, laser light of wavelength passes through a pair of slits separated by μ . If the observing screen is from the slits, what is the separation, in mm, between the bright fringes?

5 views

Single Slit Diffraction

7 videos | 6 questions

VIDEOS

Anderson Video - Single-Slit Diffraction by Professor Anderson

24 views 03:03

Anderson Video - Single-Slit Diffraction Example by Professor Anderson 24 views 06:06

Topic 9.2 - Single-slit Diffraction by rowlandphysics 19 views 07:34

Single Slit Diffraciton by Patrick Ford 4 commentsIcon 33 views 12:33

Single Slit Diffraction - Physics Problems by The Organic Chemistry Tutor 78 views 10:44

Physics - Optics: Single Slit Diffraction (1 of 15) Basics by Michel van Biezen 29 views 05:22

Number of Dark Fringes on a Screen by Patrick Ford 8 commentsIcon 33 views 09:05 PRACTICE

Multiple Choice XXXXXXXXXXXXXXXXXXXXXXX

Light from a 600 nm laser is shown through a single slit of unknown width. If a screen is placed 4.5 m behind the slit captures a diffraction patter with a central bright fringe of width 20 mm, what is the width of the single slit?

1

commentslcon

21 views

Multiple Choice XXXXXXXXXXXXXXXXXXXXXX

A single slit is illuminated by coherent monochromatic light at On a screen behind the slit, a central bright spot is observed to have a width of What is the width of the single slit?

12 views

A carbon dioxide laser produces μ electromagnetic waves, which pass through a circular aperture with diameter. What is the approximate width of the laser beam when it strikes a target away?

6 views

A single slit is illuminated by coherent monochromatic light at . On a screen behind the slit, a central bright spot is observed to have a width of . What is the width of the single slit? 5 views

35. Optical Instruments

Physics 59 Optical Instruments (3 of 20) The Microscope Michel van Biezen

Physics 59 Optical Instruments (2 of 20) The Telescope Michel van Biezen

36. Special Relativity Inertial Reference Frames 5 videos | 2 questions VIDEOS

Anderson Video - Inertial Frames of Reference by Professor Anderson 45 views Inertial Vs. Non inertial frames of reference by dizauvi 38 views 05:57

Frames of Reference (1960) [part 2 of 2] by Paul Schonfeld 35 views 14:00

Inertial Reference Frames by Patrick Ford 6 commentsIcon 46 views 14:10

Frames of Reference (1960) [part 1 of 2] by Paul Schonfeld 41 views 13:27 PRACTICE

Multiple Choice XXXXXXXXXXXXXXXXXXXXXX

Which of the following is a reasonable approximation of an inertial reference frame?

6 views

Leroy is standing 900 m from firecracker A and 600 m from firecracker B. After exploding, the light from both firecrackers arrives at Leroy at the same time. In Leroy's frame of reference, which firecracker exploded first, or were they simultaneous?

11 views Special Vs. Galilean Relativity 4 videos | 3 questions VIDEOS

Relativistic Addition of Velocity | Special Relativity Ch. 6 by minutephysics 34 views

Special Relativity Part 1: From Galileo to Einstein by Professor Dave Explains 27 views 05:49

What is relativity all about? by Fermilab 45 views 11:49

Special Vs. Galilean Relativity by Patrick Ford 2 commentsIcon 37 views 17:25 PRACTICE

Multiple Choice XXXXXXXXXXXXXXXXXXXXXX

Jill can throw a ball at a speed of 80 mph, consistently, on the ground. She gets into the back of a truck, which drives down the road in the direction at 30 mph. Jill faces the back of the truck and throws a ball. According to Galilean relativity, what is the component of the velocity of the ball relative to the ground?

5 views

Multiple Choice XXXXXXXXXXXXXXXXXXXXXX

Sam is cruising in his spaceship moving at . Suzy is directly in front of Sam and is at rest. Suzy flashes her headlights at Sam, hoping he will slow down. According to Sam, how fast is the light from Suzy's headlights moving as it approaches him?

5 views

Olive the astronaut is flying her spaceship back home to earth at . Her spaceship has lights on it; one at the front of her ship, and one at the back of the ship. Olive notes that the two lights flash simultaneously. Are they simultaneous according to an Earth-based observer? If not, which one blinked first?

5 views Consequences of Relativity 17 videos | 6 questions VIDEOS Anderson Video - Relativistic Momentum by Professor Anderson 13 views 08:41

Anderson Video - Length Contraction Example by Professor Anderson 24 views 09:05

Anderson Video - Simultaneity and Relativity by Professor Anderson 26 views 03:38

Time Dilation by Patrick Ford 2 commentsIcon 34 views 12:57

Anderson Video - Time Dilation by Professor Anderson 18 views 04:13

Anderson Video - Length Contraction by Professor Anderson 39 views 04:31

Anderson Video - Relativistic Energy by Professor Anderson 19 views 05:51 Anderson Video - Accelerating a Proton Relativistically by Professor Anderson 19 views 10:08

Anderson Video - Einstein's Velocity Addition Rule by Professor Anderson 24 views 03:58

Theory of relativity explained in 7 mins by LondonCityGirl 64 views 07:30

Neil deGrasse Tyson Explains Time Dilation by StarTalk 60 views 10:41

Special Relativity Part 3: Length Contraction by Professor Dave Explains 32 views 06:02

Length Contraction and Time Dilation | Special Relativity Ch. 5 by minutephysics 45 views 07:17

Time Dilation for a Muon from the Atmosphere by Patrick Ford 3 commentsIcon 23 views 04:32 Length Contraction by Patrick Ford 1 commentsIcon 38 views 07:02

Length Contraction for a Muon from the Atmosphere by Patrick Ford 1 commentsIcon 25 views 07:37

Proper Frames and Measurements by Patrick Ford 2 commentsIcon 17 views 07:49 PRACTICE

Multiple Choice XXXXXXXXXXXXXXXXXXXXXX

The international space station travels in orbit at a speed of 7.67 km/s. If an astronaut and his brother start a stop watch at the same time, on Earth, and then the astronaut spends 6 months on the space station, what is the difference in time on their stopwatches when the astronaut returns to Earth? Note that 6 months is about $1.577 \times 107 \text{ s}$, and $c = 3 \times 10 \text{ 8 m/s}$.

1

commentsIcon

19 views

Multiple Choice XXXXXXXXXXXXXXXXXXXXXX

In the following figure, a right triangle is shown in its rest frame, S'. In the lab frame, S, the triangle moves with a speed v. How fast must the triangle move in the lab frame so that it becomes an isosceles triangle?

1

commentsIcon

16 views

Carol is in the same reference frame with a clock. Bianca is flying past Carol and her clock at a high speed. Bianca sees Carol's clock ticking at one quarter the rate that Carol sees. How fast is Bianca flying relative to Carol?

8 views

Carl is standing in a park 1000 m across. Rohan flies over the park at a very high speed, first passing over the east end of the park, and then passing over the west end. Carl and Rohan are discussing the time interval between when Rohan passed over the east end of the park and when he passed over the west end of the park. Who measured the proper time? 5 views

According to Olive, her new super-speeder space yacht is long. Lennon is on Earth watching Olive approaching at . How long is Olive's space yacht according to Lennon? 5 views

As seen from a distant planet, ships A and B fly toward each other, with ship A having a speed of . and ship B having a speed of . According to the pilot of ship A, how fast is ship B approaching?

4 views Lorentz Transformations 5 videos | 5 questions VIDEOS

Evaluating a Lorentz transformation | Special relativity | Physics | Khan Academy by Khan Academy 50 views 08:41

Introduction to the Lorentz transformation | Special relativity | Physics | Khan Academy by Khan Academy 27 views 08:21

Lorentz Transformations | Special Relativity Ch. 3 by minutephysics 26 views 12:18

Lorentz Transformations of Position by Patrick Ford 2 commentsIcon 36 views 14:16

Lorentz Transformations of Velocity by Patrick Ford 2 commentsIcon 44 views 13:39 PRACTICE All students will stay in period 6 today for FLEX.

As a reminder this is to get a better handle on our FLEX periods, we are going to take a mid-year reset.

This will help us to clarify expectations and hopefully provide more structure for the rest of the year.

To make FLEX block time successful it will take ALL of us to work together and use this time appropriately, so:

- Starting on Tuesday, February 28th all students will remain in the class that meets before FLEX (e.g. on Day 7 students stay in period 7, on Day 1 students stay in period 1, etc.).
 - Staff should review with students how to sign up for FLEX, discuss the <u>FLEX Handbook</u>, answer questions, and make sure all staff has their FLEX options loaded into MyFlex for the rest of the year.
 - I would like to thank our colleague, Meredith Palmer, for presenting this idea to ILT
 - During this two-week period administrators will be in core academic hallways to be available for support and to answer any questions.
- After the two-week period (beginning March 14th) students can begin to sign up again for FLEX but must show their teacher that they have signed up in order to leave the class.
 - On March 7th seniors will still report to their scholarship informational session in the auditorium
 - After this two-week period, if any staff believes there are students in any class who may need extra attention or instruction please let your department head and/or administration know.

- Beginning on March 14th we will continue to use the stay in the class approach that meets prior to FLEX as outlined above. However, if a student shows their teacher that they have signed up for a FLEX activity they can leave the classroom to attend that particular session.
 - If a student is not signed up for a FLEX session, they will remain in their class as a quiet study during FLEX time.