
HSF Packaging Meeting Notes
We can hear you...
Agenda​
https://indico.cern.ch/event/869507/

Participants: Ben Morgan, Patrick Gartung, Chris Green, Graeme Stewart, Martin Ritter,
Serhan Mete, Marco Clemencic, Benedikt Hegner, Geri Ganis, Ivan , Dmitri, Pere, Attila,
Richard? (SFT TS), Akanksha?

Introduction (Ben)
●​ Packaging WG merging with tools - to decide on topics
●​ Please send suggestions for Best Practice to Ben/Graeme

○​ Can we relate this to the HSF project template?
○​ Attila noted that project template for ATLAS tools was not that successful
○​ To be discussed offline

●​ Lund registration will open in January

CHEP 2019 Report (Graeme)
●​ Four talks in Track 5, clearly packaging is still a topic of interest

○​ Maybe goal of this group is to make packaging boring (i.e. simple!)
●​ Caveat emptor: views are own!
●​ Spack and SpackDev

○​ Update from Sofia 2018 appreciated to illustrate complexity of problem
○​ Graeme covered active work in FCC, SFT, SuperNEMO
○​ Bonus: FAIR experiments moving to Spack

●​ SpackDev
○​ Commitment to Spack in Exascale Computing Project underlined - reinforcing

benefits of working with larger community
●​ Gentoo Prefix

○​ From Benda Xu (Guilherme co-author)
○​ Good to see tools covered/know by WG
○​ Advantages of its deep build to libc/ld (almost container-like)
○​ Discussion: can have lots of prefixes, but each only containers only one

version at one time. Nix/Spack are more views on a set of variants
○​ Graeme: powerful too, but not best fit to all HEP use cases

●​ Conda
○​ From Chris Burr (also looked at in this WG)
○​ Graeme: like that its widely used by users, as opposed by librarians/package

managers
■​ Ergonomics excellent

https://indico.cern.ch/event/869507/

■​ Fit could be in delivery of flexible/up to date system to analysis users,
without weight of whole production stack

○​ Attila/Patrick: How to use conda to package e.g. ATLAS software? Patrick:
example of this earlier this year for CMS FWlite

○​ Pere: benefit over pip? Can get more than Python packages
●​ Missing slide!

○​ On overview of track from Martin: Lots of interest in Spack

Spack at Supercomputing (Chris)
●​ Many Spack related events, inc. two round tables, tutorial

○​ Had long one-to-one with core developer Peter Scheibel
●​ Concretizer was main news

○​ New implementation based on constraint solver due in March
○​ Much faster than current Python implementation
○​ Very important for FNAL’s use cases, but likely highly useful elsewhere
○​ Preview available on a feature branch on GitHub

●​ Key concreatizer improvements
○​ Install of packages from older recipe versions (with hash change)
○​ Explicit compiler dependence (inc. no compiler)
○​ Language standard as a virtual dependency
○​ Use of pre-built older versions over building latest with no version spec
○​ Better reconciliation of compatible variant specs down dependency tree
○​ Better handling of build/link/run/test time dependencies

●​ Developer discussions
○​ Integration of SpackDev into Spack
○​ Automatic detection/use of system packages
○​ Spack environments in SpackDev
○​ Expand concept of Spack extension commands (e.e.g add new

subcommands to an existing spack command, extensions for build/module
systems without needing upstreaming.

●​ Other highlights
○​ FNAL contributions to Spack core noted in BoF
○​ E4S (Extreme-Scale Scientific Software Stack): base stack of spack

built/managed scientific software. Integration with Gitlab CI build pipelines to
enable quick build of new software and/or new platforms/architectures.

■​ Contents will evolve, should evaluate integration of HEP-centric
software here, as would lose some fine control on version

■​ Ben has experience with GitLab CI
■​ Conceptually like LCG releases, but for a different community
■​ Attila: ATLAS will be moving to GitLab CI in 2020, so need good

integration here
■​ Marco: Is Spack is a moving target in development? Chris: under

active development, new concretizer should solve many of the issues

(e.g. hash changes). There is a regular release schedule (tags) to help
with stability.

■​ Hope that automatic detection of system packages can be turned off!
Chris: “automatic: refers to option to generate packages.yaml file
rather than hand-managing. Would be a spack command, so opt-in.

○​ Post-SC Spack article in HPC Wire (referenced SpackDev talk from CHEP
2018)

Spack Plans in SPI Project (Ivan)
●​ Interest across HEP community
●​ First step: use to build equivalent of LCG_96b
●​ LCG model:

○​ Take as much from underlying OS as possible
○​ Pre-built compilers

■​ Will SPI provide compilers in a binary form?
●​ Not yet decided how to do this, but need noted

■​ Patrick: possible to build relocatable binary packages for compilers
○​ Build and test entire stack (~460) every day (reusing previous ones if they

match)
●​ Good:

○​ Easier (python) syntax, but core code complicated
○​ Already implements what are “hacks” in lcgcmake
○​ Only missing a few package recipes (ML, Jupyter, GRID), not difficult to add,

just need time
○​ Attila: can you use the recipes as is? Yes, detailed comparison in slide link

●​ Not-so-good
○​ Only one package built at a time
○​ Some differences in recipes/style between lcgcmake/spack

■​ Attila: how to handle differences in how we build Geant4 etc? Yes, if
we supply/activate variants

■​ Chris encourages common recipe, even if different experiments need
to use different specific builds

○​ Concretizer
■​ Sometimes need to explicitly set versions
■​ Some issues in resolving virtual packages

●​ Bad:
○​ Hashes are very sensitive to changes

■​ Chris: will be largely fixed by the new concretizer!
■​ Patrick: some might say it’s a good thing! Comes down to what you

treat as a significant change (and can identify that).
●​ Questions:

○​ Views concept vs that in lcgcmake
○​ Variants for Instruction sets. Chris: develop has support for microarchitecture

builds

○​ RPATH/RUNPATH/LD_LIBRARY_PATH
○​ Use of environment: modules vs views

●​ Next steps:
○​ Dedicated spack fork on HSF GitHub
○​ EOS area for sources/binaries
○​ CVMFS test build (sw.hsf.org?)
○​ Documentation under LCGDocs
○​ SPI-JIRA Epic to track evolution and issues/wishes

●​ Attila: do we have enough FTEs to maintain? Chris: several from LLNL, rest unsure.
●​ RPMs not supported everywhere, e.g. OS X
●​ ATLAS looking forward to test the outcomes early next year
●​ LHCb would like to use the recipes and do the rebuild themselves

AOB
●​ Patrick: Current work on relocating buildcaches into non-default directory layout:

○​ https://github.com/spack/spack/pull/13797

https://github.com/spack/spack/pull/13797

	HSF Packaging Meeting Notes
	We can hear you...
	Agenda​
	Introduction (Ben)
	CHEP 2019 Report (Graeme)
	Spack at Supercomputing (Chris)
	Spack Plans in SPI Project (Ivan)
	AOB

