

CMR INSTITUTE OF TECHNOLOGY ACADEMIC YEAR 2024-2025 Flipped Classroom REPORT DEPARTMENT OF CSE

Subject code	BCS601	Course Name	Cloud Computing
Semester / Section	6/B	Prepared By	Dr. Preethi Sheba Hepsiba
Curriculum Gap Identified:			

Summary of Flipped Classes conducted:

Sl No.	Торіс	Date	Flipped class / Video Session(Choose from dropdown)	Total number of students
1	Performance in Cloud Computing	21.02.2025	Group Based	67
2	Virtualization Architecture	11.03.2025	Discussion Oriented	71
3	Architectural Challenges in the Cloud	05.05.2025	Discussion Oriented	55
4	XOAR Architecture	05.05.2025	Discussion Oriented	56
5	Cloud Architecture (Google, AWS, Azure)	13.05.2025	Standard Inverted Classroom Model	57

Detailed Report

1 Topic:
Performance in
Cloud computing

Date:21.0 2.2025

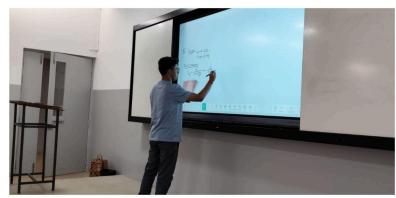
Discussion Oriented

No. of students:72

Flipped Classroom -Performance & Efficiency

Reading: PDF

Workbook (May be worked out as a team): Google docs


Materials Shared Before class

FlippedClass-Reading Material_21Feb.pdf
Conduction of Flipped Classroom

Students may form groups and discuss to solve some activity questions. Some students explained their answers.

■ In class Activity- fp 2- BCS601 - CC

Evaluation:

Question #1: L4

- a. Distinguish virtual cores from physical cores and discuss the mapping technique in Wells's paper on upgrading resource utilization and fault tolerance in using virtualized multicore processors.
- b. Study the cache coherence protocol presented in the Marty and Hill paper and discuss its feasibility and advantages to implement on many-core CMP in the future.

Question #3: Amdahl's Law L3

- Consider parallel execution of an MPI-coded C program in SPMD (single program and multiple data streams) mode on a server cluster consisting of n identical Linux servers. SPMD mode means the same MPI program is running simultaneously on all servers but over different data sets of identical workloads.
- Assume that 25 percent of the program execution is attributed to the execution of MPI commands. For simplicity, assume that all MPI commands take the same amount of execution time.
- Note: MPI commands execute **sequentially** within each process, just like any other function call. They are not inherently parallel but help set up or manage parallel execution.
- Answer the following questions using Amdahl's law:
- a. Given that the total execution time of the MPI program on a four-server cluster is T minutes, what is the speedup factor of executing the same MPI program on a 256-server cluster, compared with using the four-server cluster? Assume that the program execution is deadlockfree and ignore all other runtime execution overheads in the calculation.
- b. Suppose that all MPI commands are now enhanced by a factor of 2 by using active messages executed by message handlers at the user space. The enhancement can reduce the execution time of all MPI commands by half. What is the speedup of the 256-server cluster installed with this MPI enhancement, computed with the old 256-server cluster without MPI enhancement?

Outcome:

Outcome: Students explored supercomputers. They understood the impact of sequential and parallel workloads on performance. They understood the impact of multiple cores on performance.

They will be able to evaluate performance of an HPC system.

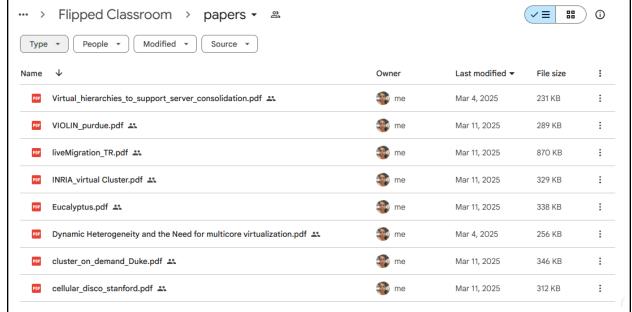
PO/PSO Addressed:

PO1 Engineering knowledge

PO2 Problem analysis

PO9 Individual and team work

PSO2 Design and develop secure, parallel, distributed, networked, and digital systems


2	Торіс	Date	Standard Inverted Classroom Model	No. of students:
---	-------	------	--------------------------------------	------------------

Materials Shared Before class

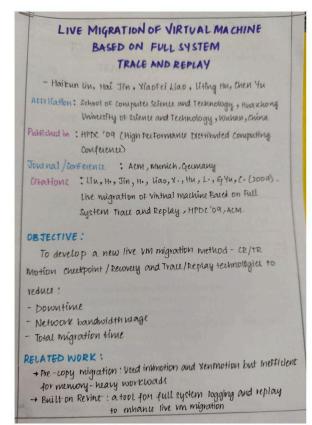
Conduction of Flipped Classroom

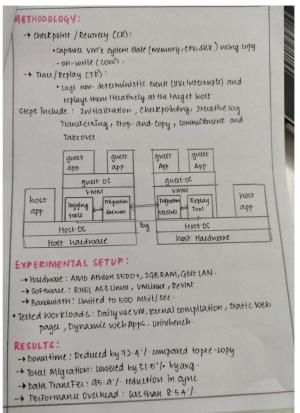
Students were split into groups. They were assigned various papers

They were given an outline:

■ In class Activity- fp 2- BCS601 - CC

They could be creative and paraphrase and write about important aspects from the paper. A quiz was conducted in quizziz which tested their basic understanding of the virtualization concepts





Evaluation:
The students had to analyze and read the paper (L4)

Virtualization-CC _ Quizizz.pdf

Outcome:

The students understood the virtualization architecture in several research based virtual clusters that is the core technology in commercial virtualization technologies.

Quiz results: Virtualization-CC-2025-03-11T15 53 50 836420-fdc19a.xlsx

PO's and PSO's addressed:

PO1 Engineering knowledge

PO2 Problem analysis

PO3 Design/development of solutions

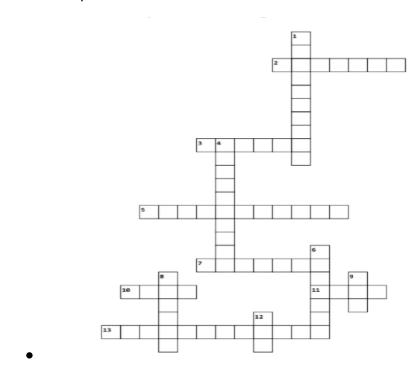
PO9 Individual and team work

PO10 Communication

PSO2 Design and develop secure, parallel, distributed, networked, and digital systems

3	Topic: Architectural	Date:07.0 4.2025	Standard Inverted Model	No. of students: 55
	Challenges in the cloud	7.2023		students. 33

Materials Shared Before class


Conduction of Flipped Classroom

■ Open Challenges - Reading

The students were asked to read the various challenges in the class for 15 to 20 minutes. They were asked to highlight important points

Evaluation: Crossword: L4

Complete a crossword

Across

- **2.** type of malware that provides complete administrator level access
- 3. disguises as legitimate software
- **5.** The ability to increse and decrease resources according to demand
- 7. to convert to ciphertext
- **10.** A type of attack where attacker floods a server with internet traffic
- $\textbf{11.} \ \mathsf{A} \ \mathsf{type} \ \mathsf{of} \ \mathsf{migration} \ \mathsf{of} \ \mathsf{VM} \ \mathsf{without} \ \mathsf{service} \\ \mathsf{interuption}$
- **13.** Can increase if multiple service providers are used

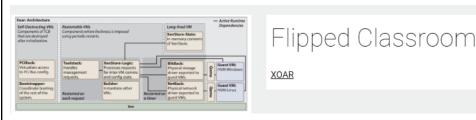
Down

- x1. Amazon's CloudFront Service
- **4.** One customer's bad behavior can affect the of the entire cloud
- **6.** ____ computing offers various computing resources on an on-demand basis like gas and electricity
- **8.** vendor _____ when customers are forced to continue a service because cost of switching is high
- **9.** A standard format for packaging and distributing virtual appliances
- **12.** Defines the level of services expected from customer

Question #2:

Write the architectural challenges briefly

Outcome:

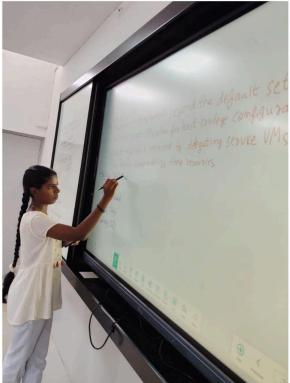

Outcome: Students were able to identify and remember key points in the architectural challenges in cloud

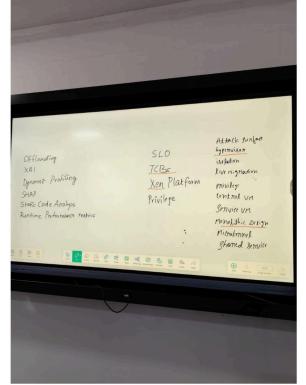
PO/PSO Addressed:

- PO1 Engineering knowledge
- PO2 Problem analysis
- PO9 Individual and team work
- PSO2 Design and develop secure, parallel, distributed, networked, and digital systems

4	Topic: XOAR	Date:	Standard Inverted Model	No. of
		05.05.2025		students:56

Materials Shared Before class


Conduction of Flipped Classroom


Paper Reading:

xoar.pdf

The students were asked to read the first 3 sections of the XOAR architecture for 20 minutes. Certain question were posed which students had to understand and deduce from the paper. Some were asked to come write on the board.

Evaluation:

Question 1

Write any 10 concepts pertaining to XOAR and discussion of the monolithic Xen hypervisor and modular XOAR architecture

Question 2

In 2 or 3 lines, explain the monolithic design of TCB in Xen hypervisor

Question 3

Write the 3 major design goals and the means to achieve them in sub points. (found in Section 4)

Question 4

Draw neatly the architecture of XOAR

Question 5

Briefly discuss the 4 types of components of XOAR (found in Section 3)

- 1. Permanent (found in long-lived VMs)
- 2. Components to boot system (found in Self-destructing VMs
- 3. Restartable (found under Restarted on each request)
- 4. Restarted on a timer(found near arrow for restarted on timer)

Outcome:

Outcome: Students understood the shortcomings of the monolithic architecture of TCB in Xen hypervisor and the design goals and modular architecture of XOAR, a modified version of Xen that is more secure.

PO/PSO Addressed:

PO1 Engineering knowledge

PO2 Problem analysis

PO9 Individual and team work

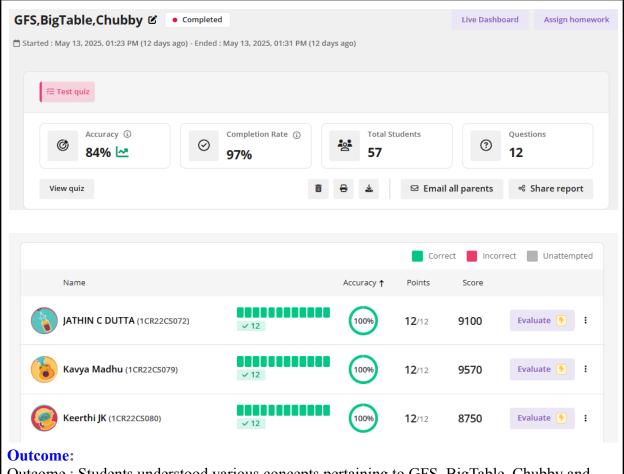
PSO2 Design and develop secure, parallel, distributed, networked, and digital systems

5	Topic : Cloud Architecture (Google, AWS, Azure)	Date: 13.05.2025	Standard Inverted Classroom Model	No. of students:57
---	--	------------------	--------------------------------------	--------------------

Materials Shared Before class

Conduction of Flipped Classroom

The students who were assigned to take seminar presented their topics. The rest of the class took down notes and listened to the seminar



Evaluation:

3 sets of quizzes were conducted in quizziz platform to assess the understanding level of students.

1. MULTIPLE CHOICE	30 sec • 1 pt
What is the main design goal of the Google File System	(GFS)?
Real-time analytics	Efficient storage of small files
 Fault tolerance and high throughput for large data sets 	O Support for relational databases
Bigtable stores data in:	
 A sparse, distributed, multidimensional sommap 	rted
\bigcirc Rows and columns like traditional RDBMS	Key-value pairs only
Chubby is implemented using which consensus a	lgorithm?
Raft	○ Two-Phase Commit
Paxos	ZAB (Zookeeper Atomic Broadcast)

Outcome: Students understood various concepts pertaining to GFS, BigTable, Chubby and AWS and Azure Cloud.

PO/PSO Addressed:

- PO1 Engineering knowledge
- PO2 Problem analysis
- PO9 Individual and team work
- PSO2 Design and develop secure, parallel, distributed, networked, and digital systems