Feature Specification - Migrating from CDAT

Target Release

TBD (v3.0.0?)

Task Timeline

End-2023

UPDATE 9/26/23 - We are far behind schedule due to limited staff and
resource constraints. We are extending the timeline for this task to the
end of 2024.

GitHub Issue(s)

https://github.com/E3SM-Project/e3sm_diags/discussions/607
https://github.com/E3SM-Project/e3sm diags/issues/626
https://github.com/E3SM-Project/e3sm_diags/issues/628

Document Status

Task In Progress

Document Owner

Tom Vo

Developers/Collaborators

Tom Vo, Jill Zhang, Ryan Forsyth, Chris Golaz

QA

This is the feature specification for refactoring CDAT code, which outlines its purpose, assumptions

and constraints, algorithm design, and test cases.

Objective

CDAT’s EOL is planned for December/2023, which means actively developed and used packages must
migrate away from CDAT to other libraries. For information, refer to:
B FY23 ISCP Proposal - Modernizing Open-Source LLNL Developed Tools for Robust Climate Data A...

Assumptions

Technical Constraints

e Limited FTEs and funding available to work on this task

o Many of us work on several efforts that take a significant portion of our time.

o We need to find ways to distribute refactoring work and squeeze in time efficiently.

This means having measurable progress through iterative development cycles

e Limited knowledge of codebase

o Thereisan overhead with learning large codebases

https://docs.google.com/document/d/1ydQqovX8CdLGvaMVALyhzMyDEpmv4Qt3l7JiAbUVQfc/edit
https://github.com/E3SM-Project/e3sm_diags/discussions/607
https://github.com/E3SM-Project/e3sm_diags/issues/626
https://github.com/E3SM-Project/e3sm_diags/issues/628

o Potential difficulties understanding code from past developers. One of the original
developers (Zeshawn) is no longer on the project and he developed a lot of the core
functionality which has since been duplicated or extended over the past 4 years.

e Adding new features using the legacy software architecture

o This will make refactoring difficult because we have to refactor new features too (adds

to the technical debt)

Software Architecture Challenges

e Each diagnostic has its own set of modules defined in driver/, parameter/, plot/, and viewer/,
which all vary in complexity
o Not a generally scalable practice as new diagnostics are added over time.
o This makes refactoring and unit testing challenging.
e Majority of the codebase is not covered by unit tests
o Refactoring without unit tests can easily introduce undesired regressions in outputs,
side-effects, and bugs
o Have to be extra careful while refactoring
e Nested subclassing of CDAT modules
o Forexample, CoreParameter subclasses CDPParameter and CoreParser subclasses
CDPParser.
o CoreParameter and CoreParser are then subclassed by diagnostic modules (e.g.,
area_mean_time_series_parser.py)

f Resolved by #632
e Downstream e3sm_diags functions operate on CDAT classes

o e.g., cdutil.tvariable.TransvientVariable, cdutil.fvariable.FileVariable

o These functions also require refactoring to operate on another data structure like the

xarray.DataArray or xarray.Dataset

Technical Overview

There are 3 phases for this refactoring effort: (1) Refactor how e3sm_diags is configured and run, (2)
Refactor diagnostics sets individually (modules, tests, docs), (3) Phase 3: Clean up and documentation

Phase 1: Refactor How Diagnostics Are Configured and Ran - Done
Refactoring can be done at the module level since it is not coupled to specific diagnostic runs.

https://github.com/E3SM-Project/e3sm_diags/issues/632
https://github.com/E3SM-Project/e3sm_diags/issues/633
https://github.com/E3SM-Project/e3sm_diags/pull/425#issuecomment-809575961
https://github.com/E3SM-Project/e3sm_diags/issues/426

Phase 2: Refactor Diagnostic Sets - In Progress

Overview for Refactoring

e We should dedicate one PR per diagnostic set to make the development cycle modular
and iterative.
o Run aregression on the master and development branch and compare changes
m Compare plots, “.nc" files, metric checker
o Write generalizable functions that can be shared between diagnostics
m Adopt these functions for other diagnostics.
o Write unit tests as we go
e Use this to help find alternative APIs to use: CDAT API Dependency Map

Components of a Set

1. Driver (driver/)
a. Utilities (driver/utilities/)
i. dataset.py - a centerpiece for reading in data as a class Dataset object
ii. climo.py - computes climatology for a variable for the given season (xCDAT
supports this)
iii. diurnal_cycle.py - Computes the composite diurnal cycle for var for the given
season
iv. general.py - stores general utilities such as getting variable names, years,
converting pressure coordinates to pressure levels, selecting regions, selecting
points, regridding to lower resolution, masking, and saving variables and files
to NetCDF.
b. Each setdriver hasa “run_diags" function with modifications based on need
c. Most set drivers have unique custom functionality which cannot be generalized (or
easily at least)
d. Some setdrivers have a " create_metrics()" function
2. Plotter (plot/)
a. Eachsetplot files hasa “plot()” function that might have similar composition between
one another, or not at all
b. Most of the plot functions extract variables such as longitude/latitude and the
associated data, which gets transformed into matplotlib plots
c. Ithink we can keep a large majority of the plotting code as is and we just refactor the
process of extracting the data needed for the plots. Plotting functions should work
without significant refactoring if they operate on “numpy" arrays (which can easily be
extracted from xarray objects).

https://github.com/E3SM-Project/e3sm_diags/issues/632
https://docs.google.com/spreadsheets/d/1CmD5FoBhH6NRO1m268utKirOPrY1Z6u5q4PCInWV888/edit

3. Viewer (viewer/cartopy)
a. Refactor cdp.viewer.OutputView(GitHub issue)
b. Thereis root " default_viewer.py" file with a generic " create_viewer()" function for
viewing sets
c. Other sets have their own specific viewer module with a custom " create_viewer()"
function
4. Utility functions used by diagnostic(s)
a. These will be identified as we work through refactoring
5. Integration Tests (tests/integration/)

How to Refactor a Set

1. Setupa run_e3sm_diags.py" script with a diagnostic run
a. We have example scripts that we can use
2. Setup breakpoints for areas of code we are trying to refactor (“What we need to Refactor”
above)
3. Execute the script with debugger
Use the Bubble Context mixed with Test-Driven Development to replace legacy code
a. Create a new bubble of clean code (a namespace, a package ...)
b. Write baseline unit tests for new functions (TDD)
i. https://philippe.bourgau.net/incremental-software-development-strategies-fo
r-large-scale-refactoring-number-2-baby-steps/#mikado-method
Rewrite a piece of legacy code in the bubble
From the legacy code, delegate to the bubble

o a o

Make unit tests pass
f. Repeat until the legacy code is not used anymore
5. Make sure integration tests pass for that specific set

Regression Testing

1. Run "run_e3sm_diags.py" scripton “main” and “dev" branches

2. Compare output plots and "“.nc" files to make sure they align

3. Ametrics checker is available to compare new results against a baseline, but this works only for
the lat-lon set.

4. Existing integration tests should also continue passing

Phase 3: Clean Up and Documentation

1. Update examples
a. Intheroot “examples/” directory, there are example run scripts that use the legacy
way of configuring and running E3SM diagnostics. They should all be refactored to
reflect the latest changes.

https://github.com/E3SM-Project/e3sm_diags/issues/628
https://philippe.bourgau.net/incremental-software-development-strategies-for-large-scale-refactoring-number-4-a-pattern-language/
https://philippe.bourgau.net/incremental-software-development-strategies-for-large-scale-refactoring-number-2-baby-steps/#mikado-method
https://philippe.bourgau.net/incremental-software-development-strategies-for-large-scale-refactoring-number-2-baby-steps/#mikado-method
https://github.com/E3SM-Project/e3sm_diags/blob/main/auxiliary_tools/metrics_checker.py

2. Update documentation

Overview of Sets

Set

Core Components

Complexity

Original Contributor(s)

lat lon driver
lat_lon_plot
default viewer

Hard - tackle this one first
since it is the most complete
set in terms of utilities it
touches

Jill, Zeshawn

lat lon land

lat_lon land driver
=) on ang! o] (0]

default viewer

Trivial - subclasses lat_lon

Jill, Tom (reviewer)

lat_lon river driver
lat lon river plot

default viewer

Trivial - subclasses lat_lon

Jill

polar

polar driver
polar plot

default viewer

Easy - driver is short, reuse
logic from lat_lon set

Jill, Zeshawn

rea _mean tim ri

area_mean_time_series_plot
area _mean_time series viewer

Easy - driver is short, reuse
logic from lat_lon set

Jill, Zeshawn

cosp_histogram cosp_histogram driver Easy - driver is short, reuse Jill, Zeshawn
cosp _histogram plot logic from lat_lon set
default viewer

zonal_mean xy zonal mean xy driver Easy - reuse logic from Jill, Zeshawn

zonal mean xy plot
default viewer

lat_lon set

annual _cycle zonal mean

annual_cycle zonal_mean_driver

annual cycle zonal mean viewer

Easy - Driver is pretty short
and has unique

* _create_annual_cycle®
function

Jill

zonal mean_2d

zonal mean 2d driver

zonal mean 2d plot
mean 2d_viewer

Medium - reuse logic from
lat_lon set

Jill, Zeshawn

https://github.com/E3SM-Project/e3sm_diags/issues/658
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/driver/lat_lon_driver.py
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/plot/cartopy/lat_lon_plot.py
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/viewer/default_viewer.py
https://github.com/E3SM-Project/e3sm_diags/issues/670
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/driver/lat_lon_land_driver.py
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/plot/cartopy/lat_lon_land_plot.py
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/viewer/default_viewer.py
https://github.com/E3SM-Project/e3sm_diags/issues/671
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/driver/lat_lon_river_driver.py
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/plot/cartopy/lat_lon_river_plot.py
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/viewer/default_viewer.py
https://github.com/E3SM-Project/e3sm_diags/issues/659
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/driver/polar_driver.py
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/plot/cartopy/polar_plot.py
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/viewer/default_viewer.py
https://github.com/E3SM-Project/e3sm_diags/issues/662
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/driver/area_mean_time_series_driver.py
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/plot/cartopy/area_mean_time_series_plot.py
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/viewer/area_mean_time_series_viewer.py
https://github.com/E3SM-Project/e3sm_diags/issues/660
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/driver/cosp_histogram_driver.py
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/plot/cartopy/cosp_histogram_plot.py
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/viewer/default_viewer.py
https://github.com/E3SM-Project/e3sm_diags/issues/654
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/driver/zonal_mean_xy_driver.py
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/plot/cartopy/zonal_mean_xy_plot.py
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/viewer/default_viewer.py
https://github.com/E3SM-Project/e3sm_diags/issues/669
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/driver/annual_cycle_zonal_mean_driver.py
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/plot/cartopy/annual_cycle_plot.py
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/viewer/annual_cycle_zonal_mean_viewer.py
https://github.com/E3SM-Project/e3sm_diags/issues/655
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/driver/zonal_mean_2d_driver.py
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/plot/cartopy/zonal_mean_2d_plot.py
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/viewer/mean_2d_viewer.py

10 zonal mean 2d stratosphere | zonal mean 2d stratosphere drive Trival - subclasses Jill, Tom (reviewer)
zonal mean 2d stratosphere plot zonal_mean_2d
mean_2d viewer

11 meridional mean 2d meridional mean 2d driver Medium Jill, Zeshawn
meridional mean 2d plot
nean_2d viewer

12 enso_diags enso_diags driver Hard - Driver has unique nino Ryan
enso diags plot and regression calculation
enso diags viewer functions

13 gbo gbo driver Hard - Driver has many unique | Ryan
gbo_plot functions
gbo viewer

14 streamflow streamflow driver Hard - Driver has many unique | Ryan
streamflow plot functions
streamflow_viewer

15 diurnal cycle diurnal cycle driver Medium - Driver uses unique Jill
diurnal_cycle plot “diurnal_cycle.py" functions
default viewer

16 arm_diags arm diags driver Hard - Driver has many unique | Jill
arm diags plot functions
arm_diags viewer

17 tc_analysis tc_analysis driver Hard - Driver has many unique | Jill
tc_analysis plot functions

.

18 r ron r ron river Easy - Driver is pretty short Jill
aerosol aeronet plot and has unique
default viewer “interpolate_model_output_t

obs_site"
19 aerosol_budget aerosol budget driver Medium - Driver uses unique Jill, Tom

aerosol budget plot
aerosol budget viewer

*calc_column_integral® and
*global_integral® functions

Legend for “Complexity” column:

e Trivial - The code for the set is straightforward to refactor using other APIs, mainly just drop in
replacements of CDAT code

https://github.com/E3SM-Project/e3sm_diags/issues/656
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/driver/zonal_mean_2d_stratosphere_driver.py
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/plot/cartopy/zonal_mean_2d_stratosphere_plot.py
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/viewer/mean_2d_viewer.py
https://github.com/E3SM-Project/e3sm_diags/issues/657
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/driver/meridional_mean_2d_driver.py
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/plot/cartopy/meridional_mean_2d_plot.py
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/viewer/mean_2d_viewer.py
https://github.com/E3SM-Project/e3sm_diags/issues/663
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/driver/enso_diags_driver.py
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/plot/cartopy/enso_diags_plot.py
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/viewer/enso_diags_viewer.py
https://github.com/E3SM-Project/e3sm_diags/issues/664
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/driver/qbo_driver.py
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/plot/cartopy/qbo_plot.py
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/viewer/qbo_viewer.py
https://github.com/E3SM-Project/e3sm_diags/issues/665
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/driver/streamflow_driver.py
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/plot/cartopy/streamflow_plot.py
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/viewer/streamflow_viewer.py
https://github.com/E3SM-Project/e3sm_diags/issues/666
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/driver/diurnal_cycle_driver.py
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/plot/cartopy/diurnal_cycle_plot.py
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/viewer/default_viewer.py
https://github.com/E3SM-Project/e3sm_diags/issues/667
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/driver/arms_diags_driver.py
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/plot/cartopy/arm_diags_plot.py.py
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/viewer/arm_diags_viewer.py
https://github.com/E3SM-Project/e3sm_diags/issues/668
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/driver/tc_analysis_driver.py
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/plot/cartopy/tc_analysis_plot.py
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/viewer/tc_analysis_viewer.py
https://github.com/E3SM-Project/e3sm_diags/issues/672
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/driver/aerosol_aeronet_driver.py
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/plot/cartopy/aersol_aeronet_plot.py
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/viewer/default_viewer.py
https://github.com/E3SM-Project/e3sm_diags/issues/673
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/driver/aerosol_budget_driver.py
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/plot/cartopy/aerosol_budget_plot.py
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/viewer/aerosol_budget_viewer.py

e FEasy - The set has a low amount of unique logic and has a minimal level of dependency on
CDAT, mostly uses generalized utilities

e Medium - The set has a moderate amount of unique logic and has a moderate level of
dependency on CDAT (e.g., utilities to manipulate CDAT objects like TransientVariables)

e Hard - The set has significant unique logic and significant level of dependency on CDAT (e.g.,
utilities to manipulate CDAT objects like TransientVariables

Progress and Milestones

e USE THIS Project Kanban Board

Open Questions

Question Answer Date Answered

Can we extend CDAT dependency maintenance
specifically for E3SM Unified for FY24? We don’t
need to advertise this to users.

cdat_info
cdms2
cdtime
cdutil

e3sm_unified recipe

Will it require a lot of work to update these
CDAT packages to support Python 3.117

Out of Scope

List of functionalities or behaviors of this feature that have been discussed, but are out of scope or might
be revisited in a later release.

https://github.com/orgs/E3SM-Project/projects/6/workflows/12242984
https://github.com/E3SM-Project/e3sm-unified/blob/main/recipes/e3sm-unified/meta.yaml

Resources

e Incremental software development cycle

o Review progress bi-weekly

o https://phili rgau.net/incremen
-scale-refactorings/#the-real-problems

o https://www.reddit.com/r/Python/comments/pzscwb/whats your strategy on refact

oring/

o https://github.com/97-things/97-things-every-programmer-should-know/blob/master
en/thing 06/README.md

e https://realpython.com/python-refactorin

https://philippe.bourgau.net/incremental-software-development-techniques-for-large-scale-refactorings/#the-real-problems
https://philippe.bourgau.net/incremental-software-development-techniques-for-large-scale-refactorings/#the-real-problems
https://www.reddit.com/r/Python/comments/pzscwb/whats_your_strategy_on_refactoring/
https://www.reddit.com/r/Python/comments/pzscwb/whats_your_strategy_on_refactoring/
https://github.com/97-things/97-things-every-programmer-should-know/blob/master/en/thing_06/README.md
https://github.com/97-things/97-things-every-programmer-should-know/blob/master/en/thing_06/README.md
https://realpython.com/python-refactoring/

	 Feature Specification - Migrating from CDAT
	Objective
	Assumptions
	Technical Constraints
	Software Architecture Challenges

	Technical Overview
	Phase 1: Refactor How Diagnostics Are Configured and Ran – Done
	Phase 2: Refactor Diagnostic Sets – In Progress
	Overview for Refactoring
	Components of a Set
	How to Refactor a Set
	Regression Testing

	Phase 3: Clean Up and Documentation

	Overview of Sets
	Progress and Milestones
	●​USE THIS Project Kanban Board

	Open Questions
	Out of Scope
	Resources

