
 Feature Specification - Migrating from CDAT

Target Release TBD (v3.0.0?)

Task Timeline End 2023
UPDATE 9/26/23 - We are far behind schedule due to limited staff and
resource constraints. We are extending the timeline for this task to the
end of 2024.

GitHub Issue(s) https://github.com/E3SM-Project/e3sm_diags/discussions/607
https://github.com/E3SM-Project/e3sm_diags/issues/626
https://github.com/E3SM-Project/e3sm_diags/issues/628

Document Status Task In Progress

Document Owner Tom Vo

Developers/Collaborators Tom Vo, Jill Zhang, Ryan Forsyth, Chris Golaz

QA

This is the feature specification for refactoring CDAT code, which outlines its purpose, assumptions

and constraints, algorithm design, and test cases.

Objective
CDAT’s EOL is planned for December/2023, which means actively developed and used packages must
migrate away from CDAT to other libraries. For information, refer to:

 FY23 ISCP Proposal - Modernizing Open-Source LLNL Developed Tools for Robust Climate Data A…

Assumptions

Technical Constraints
●​ Limited FTEs and funding available to work on this task

○​ Many of us work on several efforts that take a significant portion of our time.
○​ We need to find ways to distribute refactoring work and squeeze in time efficiently.

This means having measurable progress through iterative development cycles
●​ Limited knowledge of codebase

○​ There is an overhead with learning large codebases

https://docs.google.com/document/d/1ydQqovX8CdLGvaMVALyhzMyDEpmv4Qt3l7JiAbUVQfc/edit
https://github.com/E3SM-Project/e3sm_diags/discussions/607
https://github.com/E3SM-Project/e3sm_diags/issues/626
https://github.com/E3SM-Project/e3sm_diags/issues/628

○​ Potential difficulties understanding code from past developers. One of the original
developers (Zeshawn) is no longer on the project and he developed a lot of the core
functionality which has since been duplicated or extended over the past 4 years.

●​ Adding new features using the legacy software architecture
○​ This will make refactoring difficult because we have to refactor new features too (adds

to the technical debt)

Software Architecture Challenges
●​ Each diagnostic has its own set of modules defined in driver/, parameter/, plot/, and viewer/,

which all vary in complexity
○​ Not a generally scalable practice as new diagnostics are added over time.
○​ This makes refactoring and unit testing challenging.

●​ Majority of the codebase is not covered by unit tests
○​ Refactoring without unit tests can easily introduce undesired regressions in outputs,

side-effects, and bugs
○​ Have to be extra careful while refactoring

●​ Nested subclassing of CDAT modules
○​ For example, CoreParameter subclasses CDPParameter and CoreParser subclasses

CDPParser.
○​ CoreParameter and CoreParser are then subclassed by diagnostic modules (e.g.,

area_mean_time_series_parser.py)
●​ Can’t step through the code using iPython debugger at the moment when using

CDPParameter/CDParser bug – which is required for more efficient debugging and refactoring
○​ These CDAT classes subclass the Python standard lib `argparse`, which can easily

introduce unexpected bugs Resolved by #632
●​ Downstream e3sm_diags functions operate on CDAT classes

○​ e.g., cdutil.tvariable.TransvientVariable, cdutil.fvariable.FileVariable
○​ These functions also require refactoring to operate on another data structure like the

xarray.DataArray or xarray.Dataset

Technical Overview
There are 3 phases for this refactoring effort: (1) Refactor how e3sm_diags is configured and run, (2)
Refactor diagnostics sets individually (modules, tests, docs), (3) Phase 3: Clean up and documentation

Phase 1: Refactor How Diagnostics Are Configured and Ran – Done
Refactoring can be done at the module level since it is not coupled to specific diagnostic runs.

​ Replace cdp.cdp_parameter.CDPParameter (GitHub Issue)
​ Replace cdp.multiprocessing (GitHub comment and Issue)

https://github.com/E3SM-Project/e3sm_diags/issues/632
https://github.com/E3SM-Project/e3sm_diags/issues/633
https://github.com/E3SM-Project/e3sm_diags/pull/425#issuecomment-809575961
https://github.com/E3SM-Project/e3sm_diags/issues/426

​ Replace cdp.cdp_parser.CDPParser (GitHub Issue)

Phase 2: Refactor Diagnostic Sets – In Progress

Overview for Refactoring

●​ We should dedicate one PR per diagnostic set to make the development cycle modular
and iterative.

○​ Run a regression on the master and development branch and compare changes
■​ Compare plots, `.nc` files, metric checker

○​ Write generalizable functions that can be shared between diagnostics
■​ Adopt these functions for other diagnostics.

○​ Write unit tests as we go
●​ Use this to help find alternative APIs to use: CDAT API Dependency Map

Components of a Set

1.​ Driver (driver/)
a.​ Utilities (driver/utilities/)

i.​ dataset.py – a centerpiece for reading in data as a class Dataset object
ii.​ climo.py – computes climatology for a variable for the given season (xCDAT

supports this)
iii.​ diurnal_cycle.py – Computes the composite diurnal cycle for var for the given

season
iv.​ general.py – stores general utilities such as getting variable names, years,

converting pressure coordinates to pressure levels, selecting regions, selecting
points, regridding to lower resolution, masking, and saving variables and files
to NetCDF.

b.​ Each set driver has a `run_diags` function with modifications based on need
c.​ Most set drivers have unique custom functionality which cannot be generalized (or

easily at least)
d.​ Some set drivers have a `create_metrics()` function

2.​ Plotter (plot/)
a.​ Each set plot files has a `plot()` function that might have similar composition between

one another, or not at all
b.​ Most of the plot functions extract variables such as longitude/latitude and the

associated data, which gets transformed into matplotlib plots
c.​ I think we can keep a large majority of the plotting code as is and we just refactor the

process of extracting the data needed for the plots. Plotting functions should work
without significant refactoring if they operate on `numpy` arrays (which can easily be
extracted from xarray objects).

https://github.com/E3SM-Project/e3sm_diags/issues/632
https://docs.google.com/spreadsheets/d/1CmD5FoBhH6NRO1m268utKirOPrY1Z6u5q4PCInWV888/edit

3.​ Viewer (viewer/cartopy)
a.​ Refactor cdp.viewer.OutputView(GitHub issue)
b.​ There is root `default_viewer.py` file with a generic `create_viewer()` function for

viewing sets
c.​ Other sets have their own specific viewer module with a custom `create_viewer()`

function
4.​ Utility functions used by diagnostic(s)

a.​ These will be identified as we work through refactoring
5.​ Integration Tests (tests/integration/)

How to Refactor a Set

1.​ Setup a `run_e3sm_diags.py` script with a diagnostic run
a.​ We have example scripts that we can use

2.​ Setup breakpoints for areas of code we are trying to refactor (“What we need to Refactor”
above)

3.​ Execute the script with debugger
4.​ Use the Bubble Context mixed with Test-Driven Development to replace legacy code

a.​ Create a new bubble of clean code (a namespace, a package …)
b.​ Write baseline unit tests for new functions (TDD)

i.​ https://philippe.bourgau.net/incremental-software-development-strategies-fo
r-large-scale-refactoring-number-2-baby-steps/#mikado-method

c.​ Rewrite a piece of legacy code in the bubble
d.​ From the legacy code, delegate to the bubble
e.​ Make unit tests pass
f.​ Repeat until the legacy code is not used anymore

5.​ Make sure integration tests pass for that specific set

Regression Testing

1.​ Run `run_e3sm_diags.py` script on `main` and `dev` branches
2.​ Compare output plots and `.nc` files to make sure they align
3.​ A metrics checker is available to compare new results against a baseline, but this works only for

the lat-lon set.
4.​ Existing integration tests should also continue passing

Phase 3: Clean Up and Documentation
1.​ Update examples

a.​ In the root `examples/` directory, there are example run scripts that use the legacy
way of configuring and running E3SM diagnostics. They should all be refactored to
reflect the latest changes.

https://github.com/E3SM-Project/e3sm_diags/issues/628
https://philippe.bourgau.net/incremental-software-development-strategies-for-large-scale-refactoring-number-4-a-pattern-language/
https://philippe.bourgau.net/incremental-software-development-strategies-for-large-scale-refactoring-number-2-baby-steps/#mikado-method
https://philippe.bourgau.net/incremental-software-development-strategies-for-large-scale-refactoring-number-2-baby-steps/#mikado-method
https://github.com/E3SM-Project/e3sm_diags/blob/main/auxiliary_tools/metrics_checker.py

2.​ Update documentation

Overview of Sets

 Set Core Components Complexity Original Contributor(s)

1 lat_lon

lat_lon_driver
lat_lon_plot
default_viewer

Hard – tackle this one first
since it is the most complete
set in terms of utilities it
touches

Jill, Zeshawn

2 lat_lon_land

lat_lon_land_driver
lat_lon_land_plot
default_viewer

Trivial - subclasses lat_lon Jill, Tom (reviewer)

3 lat_lon_river

lat_lon_river_driver
lat_lon_river_plot
default_viewer

Trivial - subclasses lat_lon Jill

4 polar polar_driver
polar_plot
default_viewer

Easy - driver is short, reuse
logic from lat_lon set

Jill, Zeshawn

5 area_mean_time_series area_mean_time_series_driver
area_mean_time_series_plot
area_mean_time_series_viewer

Easy - driver is short, reuse
logic from lat_lon set

Jill, Zeshawn

6 cosp_histogram cosp_histogram_driver
cosp_histogram_plot
default_viewer

Easy - driver is short, reuse
logic from lat_lon set

Jill, Zeshawn

7 zonal_mean_xy zonal_mean_xy_driver
zonal_mean_xy_plot
default_viewer

Easy – reuse logic from
lat_lon set

Jill, Zeshawn

8 annual_cycle_zonal_mean annual_cycle_zonal_mean_driver
annual_cycle_zonal_plot
annual_cycle_zonal_mean_viewer

Easy - Driver is pretty short
and has unique
`_create_annual_cycle`
function

Jill

9 zonal_mean_2d zonal_mean_2d_driver
zonal_mean_2d_plot
mean_2d_viewer

Medium - reuse logic from
lat_lon set

Jill, Zeshawn

https://github.com/E3SM-Project/e3sm_diags/issues/658
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/driver/lat_lon_driver.py
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/plot/cartopy/lat_lon_plot.py
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/viewer/default_viewer.py
https://github.com/E3SM-Project/e3sm_diags/issues/670
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/driver/lat_lon_land_driver.py
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/plot/cartopy/lat_lon_land_plot.py
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/viewer/default_viewer.py
https://github.com/E3SM-Project/e3sm_diags/issues/671
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/driver/lat_lon_river_driver.py
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/plot/cartopy/lat_lon_river_plot.py
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/viewer/default_viewer.py
https://github.com/E3SM-Project/e3sm_diags/issues/659
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/driver/polar_driver.py
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/plot/cartopy/polar_plot.py
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/viewer/default_viewer.py
https://github.com/E3SM-Project/e3sm_diags/issues/662
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/driver/area_mean_time_series_driver.py
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/plot/cartopy/area_mean_time_series_plot.py
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/viewer/area_mean_time_series_viewer.py
https://github.com/E3SM-Project/e3sm_diags/issues/660
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/driver/cosp_histogram_driver.py
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/plot/cartopy/cosp_histogram_plot.py
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/viewer/default_viewer.py
https://github.com/E3SM-Project/e3sm_diags/issues/654
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/driver/zonal_mean_xy_driver.py
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/plot/cartopy/zonal_mean_xy_plot.py
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/viewer/default_viewer.py
https://github.com/E3SM-Project/e3sm_diags/issues/669
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/driver/annual_cycle_zonal_mean_driver.py
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/plot/cartopy/annual_cycle_plot.py
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/viewer/annual_cycle_zonal_mean_viewer.py
https://github.com/E3SM-Project/e3sm_diags/issues/655
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/driver/zonal_mean_2d_driver.py
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/plot/cartopy/zonal_mean_2d_plot.py
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/viewer/mean_2d_viewer.py

10 zonal_mean_2d_stratosphere

zonal_mean_2d_stratosphere_drive
zonal_mean_2d_stratosphere_plot
mean_2d_viewer

Trival - subclasses
zonal_mean_2d

Jill, Tom (reviewer)

11 meridional_mean_2d meridional_mean_2d_driver
meridional_mean_2d_plot
mean_2d_viewer

Medium Jill, Zeshawn

12 enso_diags enso_diags_driver
enso_diags_plot
enso_diags_viewer

Hard - Driver has unique nino
and regression calculation
functions

Ryan

13 qbo qbo_driver
qbo_plot
qbo_viewer

Hard - Driver has many unique
functions

Ryan

14 streamflow streamflow_driver
streamflow_plot
streamflow_viewer

Hard - Driver has many unique
functions

Ryan

15 diurnal_cycle diurnal_cycle_driver
diurnal_cycle_plot
default_viewer

Medium - Driver uses unique
`diurnal_cycle.py` functions

Jill

16 arm_diags arm_diags_driver
arm_diags_plot
arm_diags_viewer

Hard - Driver has many unique
functions

Jill

17 tc_analysis tc_analysis_driver
tc_analysis_plot
tc_analysis_viewer

Hard - Driver has many unique
functions

Jill

18 aerosol_aeronet aerosol_aeronet_driver
aerosol_aeronet_plot
default_viewer

Easy - Driver is pretty short
and has unique
`interpolate_model_output_t
obs_site`

Jill

19 aerosol_budget aerosol_budget_driver
aerosol_budget_plot
aerosol_budget_viewer

Medium - Driver uses unique
`calc_column_integral` and
`global_integral` functions

Jill, Tom

Legend for “Complexity” column:

●​ Trivial – The code for the set is straightforward to refactor using other APIs, mainly just drop in
replacements of CDAT code

https://github.com/E3SM-Project/e3sm_diags/issues/656
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/driver/zonal_mean_2d_stratosphere_driver.py
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/plot/cartopy/zonal_mean_2d_stratosphere_plot.py
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/viewer/mean_2d_viewer.py
https://github.com/E3SM-Project/e3sm_diags/issues/657
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/driver/meridional_mean_2d_driver.py
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/plot/cartopy/meridional_mean_2d_plot.py
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/viewer/mean_2d_viewer.py
https://github.com/E3SM-Project/e3sm_diags/issues/663
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/driver/enso_diags_driver.py
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/plot/cartopy/enso_diags_plot.py
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/viewer/enso_diags_viewer.py
https://github.com/E3SM-Project/e3sm_diags/issues/664
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/driver/qbo_driver.py
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/plot/cartopy/qbo_plot.py
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/viewer/qbo_viewer.py
https://github.com/E3SM-Project/e3sm_diags/issues/665
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/driver/streamflow_driver.py
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/plot/cartopy/streamflow_plot.py
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/viewer/streamflow_viewer.py
https://github.com/E3SM-Project/e3sm_diags/issues/666
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/driver/diurnal_cycle_driver.py
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/plot/cartopy/diurnal_cycle_plot.py
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/viewer/default_viewer.py
https://github.com/E3SM-Project/e3sm_diags/issues/667
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/driver/arms_diags_driver.py
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/plot/cartopy/arm_diags_plot.py.py
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/viewer/arm_diags_viewer.py
https://github.com/E3SM-Project/e3sm_diags/issues/668
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/driver/tc_analysis_driver.py
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/plot/cartopy/tc_analysis_plot.py
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/viewer/tc_analysis_viewer.py
https://github.com/E3SM-Project/e3sm_diags/issues/672
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/driver/aerosol_aeronet_driver.py
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/plot/cartopy/aersol_aeronet_plot.py
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/viewer/default_viewer.py
https://github.com/E3SM-Project/e3sm_diags/issues/673
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/driver/aerosol_budget_driver.py
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/plot/cartopy/aerosol_budget_plot.py
https://github.com/E3SM-Project/e3sm_diags/blob/main/e3sm_diags/viewer/aerosol_budget_viewer.py

●​ Easy – The set has a low amount of unique logic and has a minimal level of dependency on
CDAT, mostly uses generalized utilities

●​ Medium – The set has a moderate amount of unique logic and has a moderate level of
dependency on CDAT (e.g., utilities to manipulate CDAT objects like TransientVariables)

●​ Hard – The set has significant unique logic and significant level of dependency on CDAT (e.g.,
utilities to manipulate CDAT objects like TransientVariables

Progress and Milestones

●​ USE THIS Project Kanban Board

Open Questions

Question Answer Date Answered

Can we extend CDAT dependency maintenance
specifically for E3SM Unified for FY24? We don’t
need to advertise this to users.

cdat_info
cdms2
cdtime
cdutil

e3sm_unified recipe

Will it require a lot of work to update these
CDAT packages to support Python 3.11?

Out of Scope

List of functionalities or behaviors of this feature that have been discussed, but are out of scope or might
be revisited in a later release.

●​

https://github.com/orgs/E3SM-Project/projects/6/workflows/12242984
https://github.com/E3SM-Project/e3sm-unified/blob/main/recipes/e3sm-unified/meta.yaml

Resources
●​ Incremental software development cycle

○​ Review progress bi-weekly
○​ https://philippe.bourgau.net/incremental-software-development-techniques-for-large

-scale-refactorings/#the-real-problems
○​ https://www.reddit.com/r/Python/comments/pzscwb/whats_your_strategy_on_refact

oring/
○​ https://github.com/97-things/97-things-every-programmer-should-know/blob/master

/en/thing_06/README.md
●​ https://realpython.com/python-refactoring/

https://philippe.bourgau.net/incremental-software-development-techniques-for-large-scale-refactorings/#the-real-problems
https://philippe.bourgau.net/incremental-software-development-techniques-for-large-scale-refactorings/#the-real-problems
https://www.reddit.com/r/Python/comments/pzscwb/whats_your_strategy_on_refactoring/
https://www.reddit.com/r/Python/comments/pzscwb/whats_your_strategy_on_refactoring/
https://github.com/97-things/97-things-every-programmer-should-know/blob/master/en/thing_06/README.md
https://github.com/97-things/97-things-every-programmer-should-know/blob/master/en/thing_06/README.md
https://realpython.com/python-refactoring/

	 Feature Specification - Migrating from CDAT
	Objective
	Assumptions
	Technical Constraints
	Software Architecture Challenges

	Technical Overview
	Phase 1: Refactor How Diagnostics Are Configured and Ran – Done
	Phase 2: Refactor Diagnostic Sets – In Progress
	Overview for Refactoring
	Components of a Set
	How to Refactor a Set
	Regression Testing

	Phase 3: Clean Up and Documentation

	Overview of Sets
	Progress and Milestones
	●​USE THIS Project Kanban Board

	Open Questions
	Out of Scope
	Resources

