

A CPE 407 TERM PAPER

TOPIC:

PARALLEL COMPUTING

presented by

GROUP 10

LECTURER: DR OLANIYAN

2021/2022 Session

NAME MATRIC NUMBER

Adekola Boluwaji Emmanuel(GROUP LEADER) CPE/2018/1012

Dada Olalekan CPE/2018/1050

Adeyemi Sunday Oluwaseyi CPE/2018/1019

Adebayo Emmanuel Iyanuoluwa CPE/2018/1004

Hamzat Utman Ayomide CPE/2018/1116

Olatunji Olayide Nelson CPE/2018/1089

Daodu Jude Ayomide CPE/2018/1051

Onyemenam Miriam Uchechukwu CPE/2018/1102

IBIYEMI ADEDAYO PRAISE CPE/2018/1062

IGE JEREMIAH AYOMIPOSI CPE/2018/1063

Introduction

Parallel computing is a method of computation in which many
calculations or the execution of processes are carried out
simultaneously. The goal of parallel computing is to increase the
computational power and efficiency of a system by utilizing multiple
processors or cores to perform tasks simultaneously. The concept of
parallel computing has been around for decades, but it has only
recently become more prevalent due to the advancement of
technology and the increasing need for powerful computing systems in
various fields such as scientific research, data analysis, machine
learning, and gaming.The goal of parallel computing is to increase the
speed and efficiency of computation, by taking advantage of the
increased processing power available in modern computers. The
working principle behind parallel computing is to divide a large
computational task into smaller sub-tasks and to perform these
sub-tasks simultaneously, on multiple processors or computers, to
obtain results faster than if the task was performed on a single
processor. The multiple processors work together, in parallel, to
perform the overall computational task. Parallel computing enables
faster processing times by allowing multiple processors to work on
different parts of the task at the same time. This results in improved
performance, as each processor can contribute its processing power
to the overall task.

The history of parallel computing dates back to the early days of
computing when scientists and engineers first realized the potential of
using multiple processors to solve complex computational problems.
In the 1950s, early parallel computers, such as the Illiac I, were
developed for scientific and military applications. These machines
were limited in their capabilities and were expensive to build and

maintain, making them accessible only to government and research
institutions.

In the 1970s, the development of minicomputers, such as the PDP-11,
and the introduction of the concept of time-sharing systems paved the
way for the use of parallel computing in more general-purpose
applications. In the following decades, the development of computer
networks and the growth of the Internet increased the availability and
accessibility of parallel computing. The rise of parallel computing in
the scientific and engineering communities was fueled by the
increasing demand for more computing power for simulations and
modeling.

In the 1990s and early 2000s, parallel computing became more
mainstream with the advent of high-performance computing (HPC)
clusters and the introduction of parallel programming models and
libraries, such as MPI and OpenMP. The development of multi-core
processors and the growth of GPU computing further increased the
importance of parallel computing in solving complex computational
problems.

Today, parallel computing is a critical component of modern
computing, providing the computing power and performance required
for many scientific, engineering, and commercial applications. The
growth of parallel computing has been driven by the increasing
demand for more computing power, the growth of data-intensive
applications, and the need for faster and more accurate solutions to
complex computational problems. As the demand for more computing
power continues to grow, parallel computing will play an increasingly
important role in the future of computing.

Types of Parallel Computing

There are three main types of parallel computing:

●​ Bit-level parallelism: The form of parallel computing in which

every task is dependent on processor word size. In terms of

performing a task on large-sized data, it reduces the number of

instructions the processor must execute. There is a need to split

the operation into series of instructions

●​ Instruction-level parallelism: In a single CPU clock cycle, the

processor decides in instruction-level parallelism how many

instructions are implemented at the same time. For each clock

cycle phase, a processor in instruction-level parallelism can have

the ability to address that is less than one instruction.

●​ Task Parallelism: Task parallelism is the form of parallelism in

which the tasks are decomposed into subtasks. Then, each

subtask is allocated for execution. And, the execution of

subtasks is performed concurrently by processors.

Each type of parallel computing has its own advantages and
disadvantages, and the choice of architecture depends on the specific
requirements of the application being developed.

Hardware for Parallel Computing

The hardware for parallel computing typically consists of the following
components:

●​ Multi-Core Processors: Multi-core processors are the most
common hardware components used in parallel computing. They
contain multiple processing cores on a single chip, allowing for
parallel processing of multiple tasks.

●​ Graphics Processing Units (GPUs): GPUs are specialized
processors designed for parallel processing of large amounts of
data, typically used for graphics rendering and scientific
simulations.

●​ High-Performance Computing Clusters: High-performance
computing clusters are groups of interconnected computers
working together to solve complex problems. Clusters can range
from a few interconnected computers to large-scale
supercomputers consisting of thousands of nodes.

●​ Interconnects: Interconnects are the communication networks
that connect the processing nodes in a parallel computing
system. They are responsible for transmitting data between the
processing nodes and allowing communication between
processors.

●​ Storage Systems: Storage systems are used to store the large
amounts of data generated by parallel computing applications.
They can range from local storage on individual nodes to
large-scale distributed storage systems.

●​ Input/Output Devices: Input/output devices are used to transfer
data to and from the parallel computing system. They can range
from simple disk drives to high-speed network interfaces.

The choice of hardware for a parallel computing system depends on
the specific requirements of the application, including the amount of
data to be processed, the number of processing nodes required, and
the level of performance needed.

Programming Model for Parallel computing

Programming models are abstractions that simplify the process of
developing parallel programs. Some of the commonly used
programming models for parallel computing include:

●​ Message Passing Interface (MPI): MPI is a standardized and

portable programming model for distributed memory parallel
computing. It provides a set of functions for inter-process
communication, data movement, and synchronization.

●​ OpenMP: OpenMP is a shared memory parallel programming
model that supports multi-threaded programming on shared
memory systems. It provides a set of compiler directives and
library functions for specifying parallelism and synchronizing
parallel tasks.

●​ Threading Building Blocks (TBB): TBB is a C++ template
library for writing efficient, concurrent, and scalable parallel
applications. It provides a high-level abstractions for task
parallelism, data parallelism, and concurrent containers.

●​ CUDA: CUDA is a parallel computing platform and programming
model developed by NVIDIA for programming GPUs. It provides
a C-based programming language and a set of libraries for
developing high-performance parallel applications on GPUs.

●​ OpenCL: OpenCL is a cross-platform parallel computing
framework for developing applications that run on CPUs, GPUs,
and other heterogeneous systems. It provides a C-based
programming language and a set of libraries for specifying
parallelism and communication.

The choice of programming model depends on the specific
requirements of the application, including the type of parallel
computing system being used, the level of parallelism desired, and the
complexity of the application.

Applications of Parallel Computing

Parallel computing has a wide range of applications in various fields,
including:

Scientific and Engineering Applications: Parallel computing is
widely used in scientific and engineering applications, such as
weather forecasting, molecular dynamics, fluid dynamics, and
structural mechanics.

Machine Learning and Artificial Intelligence: Parallel computing is
used in many machine learning and AI applications, such as deep
learning, image and video processing, and natural language
processing.

Financial Modeling: Parallel computing is used in financial modeling,
such as risk management, portfolio optimization, and pricing of
financial instruments.

Gaming: Parallel computing is used in gaming to improve graphics
and physics simulation, as well as to provide a more immersive
gaming experience.

Healthcare: Parallel computing is used in healthcare, such as medical
imaging, genomic sequencing, and drug discovery.

Big Data Analytics: Parallel computing is used in big data analytics,
such as large-scale data processing and storage, data mining, and
predictive analytics.

Weather and Climate Modeling: Parallel computing is used in
weather and climate modeling, such as global climate simulations and
regional weather forecasting.

Supply Chain Optimization: Parallel computing is used in supply
chain optimization, such as logistics, inventory management, and
transportation scheduling.

The use of parallel computing can significantly improve the
performance of these applications, enabling faster and more accurate
solutions to complex problems.

Advantages of Parallel Computing

Parallel computing provides several advantages over traditional serial
computing, including:

●​ Increased Processing Power: Parallel computing allows for the
simultaneous processing of multiple tasks, leading to increased
processing power and faster problem-solving times.

●​ Improved Scalability: Parallel computing systems can be easily
scaled by adding additional processing nodes, allowing for
improved performance as the size of the problem increases.

●​ Increased Throughput: Parallel computing can increase the
overall throughput of an application by processing multiple tasks
simultaneously, reducing the total time to complete a given set of
tasks.

●​ Better Resource Utilization: Parallel computing systems can
make better use of available computing resources, such as CPU
cycles and memory, leading to improved performance and
reduced costs.

●​ Improved Accuracy: Parallel computing can provide improved
accuracy in some applications, such as weather forecasting,
scientific simulations, and financial modeling, by processing a
larger amount of data in a shorter amount of time.

●​ Greater Flexibility: Parallel computing systems can be easily
adapted to changing requirements, making them well suited for a
wide range of applications.

●​ Increased Reliability: Parallel computing systems can provide
increased reliability by allowing for the parallel processing of
multiple tasks, reducing the impact of a single processing node
failure.

Overall, parallel computing provides significant advantages over
traditional serial computing, making it an essential tool for solving
complex problems in a wide range of fields.

Challenges and Limitations of Parallel computing with
Solutions

While parallel computing provides many benefits, it also comes with
several challenges and limitations, including:

●​ Programming Complexity: Parallel programming can be

complex and time-consuming, requiring a different mindset and
skill set than traditional serial programming.
Solution: High-level parallel programming models, such as
OpenMP and MPI, can simplify the process of developing
parallel programs by providing abstractions for inter-process
communication and synchronization.

●​ Debugging and Testing: Debugging and testing parallel
programs can be difficult due to the complexity of parallel
systems and the interactions between parallel tasks.Solution:
Debugging and testing tools, such as parallel debugger and
performance analysis tools, can help simplify the process of
identifying and fixing bugs in parallel programs.

●​ Data Dependencies: Parallel programs can be limited by data
dependencies, which arise when the outcome of one task
depends on the outcome of another task
Solution: Algorithmic techniques, such as data decomposition
and data parallelism, can be used to reduce data dependencies
and improve parallel performance.

●​ Load Imbalance: Load imbalance can arise when some

processing nodes have more work to do than others, leading to
poor performance and reduced scalability.
Solution: Load balancing algorithms and techniques can be used
to distribute work evenly across processing nodes, improving
performance and scalability.

●​ Network Communication: Network communication can be a
bottleneck in parallel systems, affecting performance and
scalability.
Solution: High-speed interconnects, such as Infiniband and 10
Gb Ethernet, can be used to improve network communication
performance, while message-passing libraries, such as MPI, can
be used to optimize communication between processing nodes.

●​ Scalability: As the number of processing nodes increases, the
difficulty of parallel programming, debugging, and testing also
increases.
Solution: Scalability techniques, such as domain decomposition
and hierarchical parallelism, can be used to simplify parallel
programming and improve scalability.

Overall, parallel computing presents several challenges and
limitations, but with the use of appropriate tools and techniques, these
can be effectively addressed, leading to improved performance and
scalability

Conclusion
In conclusion, parallel computing is a powerful tool for solving complex
problems in a wide range of fields, from scientific and engineering
applications to financial modeling and big data analytics. By

leveraging the processing power of multiple processing nodes, parallel
computing can significantly improve performance, increase accuracy,
and provide greater scalability. As the demand for computational
power continues to increase, parallel computing will play an
increasingly important role in solving complex problems and driving
innovation in a wide range of fields. With continued advances in
hardware and software, the future of parallel computing looks bright,
offering the potential for even greater performance, scalability, and
efficiency.

REFERENCE

●​ Ananth Grama, Anshul Gupta, George Karypis, Vipin Kumar.
Introduction to Parallel Computing, 2nd edition, Addison-Wesley,
2003.

●​ William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI:
Portable Parallel Programming with the Message-Passing
Interface, 2nd edition, MIT Press, 1999.

●​ https://parallel.org/

●​ https://www.openmp.org/

●​ https://www.computer.org/web/computingnow/parallel

https://www.openmp.org/

