NAAHAR PUBLIC SCHOOL (CBSE) SENIOR SECONDARY, VILLUPURAM ACADEMIC YEAR (2022-2023) HALF-YEARLY EXAMINATION

	XI ATHEMATICS ACHER: Mr.RAM	HALF-YEAR	LI EAAIV		MARKS: 70 DUR: 3 Hrs DATE: 16.12.2022	
1. L	et set A = {2, 4, 6, 8}	and set B = {2, 2, 4, 6,	8, 6} then s	sets A and B are		1
	a)equal sets	b)unequal set	ts c	c)(a) and (b) both	d)none of the	se
2. Th	ne number of subse	ts of a set containing r	n elements	is		1
(a) 2 ⁿ	(b) 2 ⁿ - 1	(c) 2 ⁿ – 1	(d) n ⁿ	
3. If	$\frac{1}{2}$ tan A = $\frac{1}{2}$ and tar	$n B = \frac{1}{3}$, then $tan(2A +$	+ B) is equa	al to		1
(a) 1	(b) 2	(c) 3		(d) 4	
4. G	General solution of th	ne equation sin 3x = 0 i	is			1
•	a) $n\pi$, $n \in Z$ c) $(2n-1)\frac{\pi}{2}$, $n \in Z$	(b) $3n\pi, n \in \mathbb{Z}$ (d) $\frac{n\pi}{3}, n \in \mathbb{Z}$				
5. If	a + ib = c + id, then					1
(a)	$a^2 + c^2 = 0$	(b) $b^2 + c^2 = 0$	(c) $b^2 + c$	$d^2 = 0$	(d) $a^2 + b^2 = c^2 + d^2$	
6. A	argument of comple	x number – 1 – i is				1
(4	a) $\frac{\pi}{4}$	(b) $\frac{3\pi}{4}$	$(c) -\frac{3\pi}{4}$	$(d) - \frac{\pi}{4}$		
	Solution of a linear in $S x \in [-2, Y)$.	nequality in variable x, r	represented	d on the number lin	e -2	1
8. S	Solution set of $x \ge 0$	and y ≤ 1 is				1
					A Y	
					X' 0	×
St	ate true or false.					
		s formed from the lette 00. State true or false.		ord LAUGHTER, so	that the vowels are	1
10. If	^{r n} C12 = ⁿ C8, then n	is equal to				1
11. Tr) 20 B) 12 one number of ways in $\frac{(4n)!}{n!}$		an be distri	buted equally amount $(d) \frac{(4n)!}{4(n)!}$	ng 4 sections is given by	1
12. E		g binomial theorem.	(11:)	4(11:)		1
13. T	he last 2-digits of th	ne numbers 3 ⁴⁰⁰ are 0 ⁻	1. State tru	e or false.		1
		uidistant from the beg			ual to	1
		tic means between two	_			1
	(a) $n \times (AM \text{ between})$ (b) $\frac{n}{2}[2a + (n-1)d]$	-	(c) $\frac{b}{n}$	- <u>a</u> + 1 ne of these		
16. If	x, 2y, 3z are in AP,	where the distinct num	nbers x, y, z	are in GP, then co	mmon difference of the	1

(c) 2

(b) $\frac{1}{3}$

GP is

(a) 3

- 18. Find domain of the function $f(x) = \frac{x^2 + 2x + 1}{x^2 8x + 12}$.
- 19. If $f(x) = x^2$ and g(x) = 2x + 1 are two real functions. Find (f + g)(x).
- $\frac{31\pi}{3}$ 20. What is the value of sin $\frac{3}{3}$.
- 21.Express the following angle in sexagesimal system (i.e. in degrees, minutes, seconds): $\frac{\pi^c}{5}$
- 22. Express $\frac{4}{i^3}$ in the form (a + ib).
- 23. Find the magnitude of the following : 12i 5
- 24. Express the following number in polar form : $\sin 60^{\circ} + i \cos 60^{\circ}$ 1
- 25. Solve the inequality, 3x 5 < x + 7, when x is an integer 1
- 26. Let A and B be two sets such that n(A) = 20, $n(A \cup B) = 42$ and $n(A \cap B) = 4$. Find n(B)
- 27. The relation f is defined by

$$f(x) = \begin{cases} x^2, \ 0 \le x \le 3\\ 3x, \ 3 \le x \le 10 \end{cases}$$

The relation g is defined by $g(x) = \begin{cases} x^2, & 0 \le x \le 2\\ 3x, & 2 \le x \le 10 \end{cases}$

- 28. Find the value of the following : $\sin \frac{5\pi}{3}$
- 29. Prove the following: $\frac{\sin A + \sin 3A}{\cos A + \cos 3A} = \tan 2A$
- 30. Find the magnitude of the following : $\frac{1+i}{2+3i}$
- Solve the inequality $x + \frac{x}{2} + \frac{x}{3} < 11$
 - 32. How many three digit numbers are there with all distinct digits?
 - 33. Calculate: 3rd term from the end in the expansion of $(2x + 3y)^8$.

1

- 34. Find the value of k so that 2k + 1, 2k 1, 3k + 4 are in A.P.
- 35. Prove that : $9^{1/3}$. $9^{1/9}$. $9^{1/27}$ = 3
- 36. In a school there are 20 teachers who teach mathematics or physics. Of these 12 teach 3 mathematics and 4 teach both physics and mathematics. How many teach physics?
- 37. Prove that, $\cos 20^\circ \cos 40^\circ \cos 60^\circ \cos 80^\circ = \frac{1}{16}$
- 38. If z = 2 3i, prove that $z^2 4z + 13 = 0$.
- 39. The longest side of a triangle is three times the shortest side and the third side is 2 cm shorter 3 than the longest side. If the perimeter of the triangle is at least 61 cm, find the minimum length of the shortest side.
- 40. Find the number of permutations of *n* different things taken *r* at a time such that two specific 3 things occur together.

41. Find
$$(a + b)^4 - (a - b)^4$$
. Hence, evaluate $(\sqrt{3} + \sqrt{2})^4 - (\sqrt{3} - \sqrt{2})^4$.

- 42. If $a+b+c \neq 0$ and $\frac{b+c}{a}$, $\frac{c+a}{b}$, $\frac{a+b}{c}$ are in A.P., then prove that $\frac{1}{a}$, $\frac{1}{b}$, $\frac{1}{c}$ are also in A.P.
- 43. If $\tan x = \frac{3}{4}$ and x lies in the third quadrant, find the values of $\sin \frac{x}{2}$, $\cos \frac{x}{2}$ and $\tan \frac{x}{2}$.
- 44. A mathematics paper consists of 10 questions divided into two parts I and II, each part 5 containing 5 questions. A student is required to attempt 6 questions in all, taking at least 2 questions from each part. In how many ways the student select the questions 2
- 45. Between 1 and 31, *m* numbers have been inserted in such a way that the resulting sequence is

 an A.P. and the ratio of 7th and (*m* 1)th numbers is 5 : 9. Find the value of *m*.