
Rajan Vivek

Tensorflow_ros_train: Accelerating ROS-based Model Development and Lowering

the Barrier to Entry for Newcomers

​ After a year of diving into autonomous navigation research, I’ve realized that this
world can be pretty unfriendly to newcomers. The learning curve is steep. It’s very easy
to get bogged down in the details of complex ROS infrastructure and data
synchronization and waste a lot of time just debugging data collection instead of
learning from it. Also, while machine learning as a whole is quickly becoming
democratized, the barrier to entry for newcomers in autonomous navigation seems
disproportionately higher.

In my personal exploration of online autonomous navigation tutorials, I’ve
realized that they often simply demonstrate the suite of implemented motion planners
and pretrained models without providing much flexibility for the user to change them.
Also, while much real-world data is available online for learning various machine
learning techniques (such as labeled handwriting samples and housing market prices),
the available data for sensor-based navigation is much more limited.

I aimed to create seamless integration of Tensorflow and ROS to help

newcomers and experienced researchers alike take full advantage of what both have to
offer. My project promotes:

Human-Centered Design: The wrapper classes and methods are designed to

be as intuitive and convenient as possible. The open-source nature and lower learning
curve will promote inclusivity in the field, as users can easily gather their own data,
make modifications to the codebase, and benefit from community-generated data
repositories online.

Robust Model Development: Easier data collection means more data and more

rapid prototyping and testing, leading to greater robustness. The lower barrier to entry
means more diverse minds being put to work.

Multiple Metrics: ROS provides incredible customizability in simulated sensor

design and robot geometries. This varied data means versatile models can be
designed and pitted against one another.

My future plans for this project include optimizing it for the soon-to-be-released
ROS Noetic, which will solve the Python compatibility issues, releasing it to the
open-source community for feedback and further development, and creating a tutorial
based on the package to allow newcomers to quickly learn both ROS and Tensorflow
and start making their own impact.

