Published using Google Docs
FULL CODE FOR CANCER Tumor Prediction Benign Vs Malignant Tumors - Colab.Research.Google
Updated automatically every 5 minutes

SUMMARY:

Guide for building a machine learning model to predict whether a tumor is benign or malignant based on a dataset (cancer.csv). The process uses Google Colab and involves following 37 steps to load the dataset, preprocess it, build a neural network model using TensorFlow/Keras, and train the model on the data.

CODE FOR CANCER Tumor PURPOSE: Predict Benign Vs. Malignant Tumors Model

www.colab.research.google.com

https://www.youtube.com/watch?v=z1PGJ9quPV8 Video

https://gist.github.com/adameubanks/35a6beea49e5b9ba62797e595a9626c0 Dataset

FIRST LOAD DATASET IN NEW NOTEBOOK  (Cancer.csv)

COPY AND PASTE THE FOLLOWING CODE SNIPPETS ONE BY ONE AND RUN THEM TO TRAIN THE MODEL.

CODE SNIPPETS:

1.

import pandas as pd

dataset = pd.read_csv('cancer.csv')

2.

x = dataset.drop(columns=["diagnosis(1=m, 0=b)"])

3.

y = dataset["diagnosis(1=m, 0=b)"]

4.

from sklearn.model_selection import train_test_split

5.

x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2)

6.

import tensorflow as tf

model = tf.keras.models.Sequential()

7.

model.add(tf.keras.layers.Dense(256, input_shape=(x_train.shape[1],), activation='relu'))

model.add(tf.keras.layers.Dense(256, activation='relu'))

model.add(tf.keras.layers.Dense(1, activation='sigmoid'))

8.

model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])

9.

model.fit(x_train, y_train, epochs=10, batch_size=32)

10.

# prompt: predictions = model.predict(x_test)

predictions = model.predict(x_test)

11.

predictions = model.predict(x_test)

print(predictions)

12.

predictions = model.predict(x_test)

predicted_labels = (predictions > 0.5).astype(int)

13.

# Iterate over y_test and predicted_labels, and print them

for actual, predicted in zip(y_test, predicted_labels):

    print(f'Actual: {actual}, Predicted: {predicted[0]}')

14.

from sklearn.metrics import accuracy_score

# Calculate accuracy

accuracy = accuracy_score(y_test, predicted_labels)

print(f'Accuracy: {accuracy}')

15.

from sklearn.metrics import confusion_matrix

# Generate the confusion matrix

cm = confusion_matrix(y_test, predicted_labels)

print('Confusion Matrix:')

print(cm)

16.

from sklearn.metrics import classification_report

# Generate a classification report

report = classification_report(y_test, predicted_labels)

print('Classification Report:')

print(report)

17.

print(y_train.unique())

18.

print(type(y_train))

19.

y_train = y_train.squeeze()

20.

import numpy as np

x_train = np.array(x_train)

y_train = np.array(y_train)

21.

class_weight = {0: 1, 1: 2}

model.fit(x_train, y_train, epochs=100, batch_size=32, class_weight=class_weight)

22.

# Evaluate the model on the test data

test_loss, test_accuracy = model.evaluate(x_test, y_test)

print(f'Test Loss: {test_loss}')

print(f'Test Accuracy: {test_accuracy}')

23.

model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.001), loss='binary_crossentropy', metrics=['accuracy'])

24.

model.add(tf.keras.layers.Dense(512, activation='relu'))

model.add(tf.keras.layers.Dense(256, activation='relu'))

25.

model.add(tf.keras.layers.Dropout(0.5))

26.

# Add the output layer with 1 neuron and sigmoid activation

model.add(tf.keras.layers.Dense(1, activation='sigmoid'))  # Binary classification

27.

# Save the entire model to a file

model.save('my_model.h5')

28.

!pip install imbalanced-learn

29.

from imblearn.over_sampling import SMOTE

smote = SMOTE()

x_train_resampled, y_train_resampled = smote.fit_resample(x_train, y_train)

30.

model = tf.keras.models.Sequential()

# Add more neurons to layers and more layers to improve complexity

model.add(tf.keras.layers.Dense(512, activation='relu', input_shape=(x_train.shape[1],)))

model.add(tf.keras.layers.Dense(256, activation='relu'))

model.add(tf.keras.layers.Dense(128, activation='relu'))

model.add(tf.keras.layers.Dense(1, activation='sigmoid'))  # Output layer for binary classification

model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])

31.

model = tf.keras.models.Sequential()

model.add(tf.keras.layers.Dense(512, activation='relu', input_shape=(x_train.shape[1],)))

model.add(tf.keras.layers.Dropout(0.5))  # Drop 50% of neurons randomly

model.add(tf.keras.layers.Dense(256, activation='relu'))

model.add(tf.keras.layers.Dropout(0.5))

model.add(tf.keras.layers.Dense(128, activation='relu'))

model.add(tf.keras.layers.Dense(1, activation='sigmoid'))

model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])

32.

model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.0001), loss='binary_crossentropy', metrics=['accuracy'])

33.

from tensorflow.keras.callbacks import EarlyStopping

early_stopping = EarlyStopping(monitor='val_loss', patience=10)

model.fit(x_train, y_train, epochs=100, batch_size=32, validation_data=(x_test, y_test), callbacks=[early_stopping])

34.

model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['accuracy'])

35.

model.fit(x_train, y_train, epochs=200, batch_size=64)

36.

!pip install tensorflow scikit-learn

37.

from sklearn.model_selection import KFold

import numpy as np

# Define the number of splits for K-Fold Cross-Validation

kf = KFold(n_splits=5, shuffle=True, random_state=42)

# Create a list to store accuracy scores

accuracy_scores = []

# Define a function to create your model

def create_model():

    model = tf.keras.models.Sequential()

    model.add(tf.keras.layers.Dense(256, activation='relu', input_shape=(x_train.shape[1],)))

    model.add(tf.keras.layers.Dense(128, activation='relu'))

    model.add(tf.keras.layers.Dense(1, activation='sigmoid'))

    model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])

    return model

# Perform manual cross-validation

for train_index, test_index in kf.split(x_train):

    # Split data into train and validation sets for the current fold

    x_train_fold, x_val_fold = x_train[train_index], x_train[test_index]

    y_train_fold, y_val_fold = y_train[train_index], y_train[test_index]

    # Create a new model for each fold

    model = create_model()

    # Train the model

    model.fit(x_train_fold, y_train_fold, epochs=10, batch_size=32, verbose=0)

    # Evaluate the model on the validation set

    val_loss, val_accuracy = model.evaluate(x_val_fold, y_val_fold, verbose=0)

    # Append the accuracy of the current fold to the list

    accuracy_scores.append(val_accuracy)

# Print the average accuracy across folds

print(f'Cross-validation accuracy: {np.mean(accuracy_scores)}')

—---------------------------------------------------------------------------------------------------------------------------

 RESULTS SHOULD SAY 89% ACCURACY  

How to Train Ai Guide

This will train the AI w/ (google colab) to predict within 89% accuracy

 benign vs cancerous tumors

------------------------------------------------------------------------------------------------------------------------

www.colab.research.google.com 

COPY AND PASTE EACH CODE SECTION INDIVIDUALLY

FOLLOWING THESE 37 steps copy and paste code upload cancer.csv to database results in a 89% accuracy

How To Guide Video:  https://www.youtube.com/watch?v=z1PGJ9quPV8 

Use Cancer.csv file from Github Repo here: https://gist.github.com/adameubanks/35a6beea49e5b9ba62797e595a9626c0 

Explanation of what is happening:

This is a guide for building a machine learning model to predict whether a tumor is benign or malignant based on a dataset (`cancer.csv`). The process uses **Google Colab** and involves following 37 steps after you download and load the dataset into a new notebook on https://colab.research.google.com/ , preprocess it, build a neural network model using **TensorFlow/Keras**, and train the model on the data and this is how it's done.

Here’s a breakdown of what's happening:

1. **Data Loading**:

   - The dataset (`cancer.csv`) is loaded using `pandas`.

   

2. **Feature Selection and Target Variable**:

   - The features (`x`) are selected by dropping the diagnosis column, and the target variable (`y`) is the diagnosis column that determines whether the tumor is benign (0) or malignant (1).

   

3. **Data Split**:

   - The dataset is split into training and test sets using `train_test_split` from `sklearn`.

   

4. **Model Construction**:

   - A neural network model is created using `Sequential` in **TensorFlow/Keras** with three layers (two hidden layers with 256 neurons and ReLU activation, and one output layer with a sigmoid activation for binary classification).

   

5. **Model Compilation**:

   - The model is compiled using the `Adam` optimizer and `binary_crossentropy` loss function, commonly used for binary classification tasks.

   

6. **Model Training**:

   - The model is trained on the training data (`x_train` and `y_train`) using the `fit()` function.

   

7. **Prediction**:

   - After training, predictions are made on the test set using `model.predict()`.

   

8. **Evaluation**:

   - The model's performance is evaluated by printing predicted values, calculating accuracy, generating confusion matrices, and creating a classification report.

   

9. **Advanced Steps**:

   - Some advanced steps include handling class imbalances using `SMOTE` (Synthetic Minority Over-sampling Technique), adding more layers or dropout layers for regularization, experimenting with different optimizers, and performing K-fold cross-validation to evaluate model performance more robustly.

10. **Saving and Exporting**:

    - You save the trained model to a file (`my_model.h5`), which can be loaded later for predictions.

### Key Elements:

- **Machine Learning**: You are using a **neural network** for binary classification (benign vs malignant).

- **TensorFlow/Keras**: The model is built using **TensorFlow**'s **Keras API**.

- **Model Optimization**: Techniques like adding layers, tuning learning rates, and using early stopping are introduced to improve the model's accuracy.

- **Data Resampling**: **SMOTE** is applied to balance the dataset if needed.

- **Cross-Validation**: K-Fold Cross-Validation is used to assess the model's generalization on unseen data.

By following these steps in Google Colab, the model should be able to predict tumor malignancy with about **89% accuracy** after training. The **YouTube video** link and **GitHub dataset** are resources to help understand the process.

You can use these code snippets sequentially in a new Google Colab notebook, ensure the `cancer.csv` dataset is uploaded, and work through the steps for a hands-on experience.