
DataCue MSE Integration for DASH Event
Message Boxes

ISO BMFF and CMAF

Optional Boxes includes:

●​ Segment Type Box (‘styp’)
●​ Producer Reference Time Box (‘prft’)
●​ Event Message Box (‘emsg’)

Architecture

HTMLMediaElement and Media Source Extensions APIs

Media Source Extensions
https://w3c.github.io/media-source/

1. Introduction
1.2 Definitions
Active Track Buffers

The track buffers that provide coded frames for the enabled audioTracks, the selected
videoTracks, and the "showing" or "hidden" textTracks. All these tracks are associated with
SourceBuffer objects in the activeSourceBuffers list.

Append Window

https://w3c.github.io/media-source/
https://w3c.github.io/media-source/#introduction
https://w3c.github.io/media-source/#definitions
https://w3c.github.io/media-source/#track-buffer
https://w3c.github.io/media-source/#coded-frame
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-audiotrack-enabled
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-htmlmediaelement-audiotracks
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-videotrack-selected
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-htmlmediaelement-videotracks
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-texttrackmode-showing
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-texttrackmode-hidden
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-htmlmediaelement-texttracks
https://w3c.github.io/media-source/#dom-sourcebuffer
https://w3c.github.io/media-source/#dom-mediasource-activesourcebuffers

A presentation timestamp range used to filter out coded frames while appending. The append
window represents a single continuous time range with a single start time and end time. Coded
frames with presentation timestamp within this range are allowed to be appended to the
SourceBuffer while coded frames outside this range are filtered out. The append window start and
end times are controlled by the appendWindowStart and appendWindowEnd attributes respectively.

Coded Frame
A unit of media data that has a presentation timestamp, a decode timestamp, and a coded frame
duration.

Coded Frame Duration
The duration of a coded frame. For video and text, the duration indicates how long the video frame
or text SHOULD be displayed. For audio, the duration represents the sum of all the samples
contained within the coded frame. For example, if an audio frame contained 441 samples
@44100Hz the frame duration would be 10 milliseconds.

Coded Frame End Timestamp
The sum of a coded frame presentation timestamp and its coded frame duration. It represents the
presentation timestamp that immediately follows the coded frame.

Coded Frame Group
A group of coded frames that are adjacent and have monotonically increasing decode timestamps
without any gaps. Discontinuities detected by the coded frame processing algorithm and abort()
calls trigger the start of a new coded frame group.

Decode Timestamp
The decode timestamp indicates the latest time at which the frame needs to be decoded assuming
instantaneous decoding and rendering of this and any dependant frames (this is equal to the
presentation timestamp of the earliest frame, in presentation order, that is dependant on this frame).
If frames can be decoded out of presentation order, then the decode timestamp MUST be present in
or derivable from the byte stream. The user agent MUST run the append error algorithm if this is not
the case. If frames cannot be decoded out of presentation order and a decode timestamp is not
present in the byte stream, then the decode timestamp is equal to the presentation timestamp.

Initialization Segment
A sequence of bytes that contain all of the initialization information required to decode a sequence of
media segments. This includes codec initialization data, Track ID mappings for multiplexed
segments, and timestamp offsets (e.g., edit lists).

NOTE: The byte stream format specifications in the byte stream format registry [MSE-REGISTRY]
contain format specific examples.

Media Segment
A sequence of bytes that contain packetized & timestamped media data for a portion of the media
timeline. Media segments are always associated with the most recently appended initialization
segment.

NOTE: The byte stream format specifications in the byte stream format registry [MSE-REGISTRY]
contain format specific examples.

https://w3c.github.io/media-source/#presentation-timestamp
https://w3c.github.io/media-source/#coded-frame
https://w3c.github.io/media-source/#presentation-timestamp
https://w3c.github.io/media-source/#dom-sourcebuffer
https://w3c.github.io/media-source/#dom-sourcebuffer-appendwindowstart
https://w3c.github.io/media-source/#dom-sourcebuffer-appendwindowend
https://w3c.github.io/media-source/#presentation-timestamp
https://w3c.github.io/media-source/#decode-timestamp
https://w3c.github.io/media-source/#coded-frame-duration
https://w3c.github.io/media-source/#coded-frame-duration
https://w3c.github.io/media-source/#coded-frame
https://w3c.github.io/media-source/#coded-frame
https://w3c.github.io/media-source/#presentation-timestamp
https://w3c.github.io/media-source/#coded-frame-duration
https://w3c.github.io/media-source/#presentation-timestamp
https://w3c.github.io/media-source/#coded-frame
https://w3c.github.io/media-source/#decode-timestamp
https://w3c.github.io/media-source/#sourcebuffer-coded-frame-processing
https://w3c.github.io/media-source/#dom-sourcebuffer-abort
https://w3c.github.io/media-source/#presentation-timestamp
https://w3c.github.io/media-source/#presentation-order
https://w3c.github.io/media-source/#presentation-order
https://w3c.github.io/media-source/#sourcebuffer-append-error
https://w3c.github.io/media-source/#presentation-order
https://w3c.github.io/media-source/#presentation-timestamp
https://w3c.github.io/media-source/#media-segment
https://w3c.github.io/media-source/#track-id
https://w3c.github.io/media-source/#byte-stream-format-specs
https://w3c.github.io/media-source/#bib-mse-registry
https://www.w3.org/TR/html51/semantics-embedded-content.html#media-timeline
https://www.w3.org/TR/html51/semantics-embedded-content.html#media-timeline
https://w3c.github.io/media-source/#init-segment
https://w3c.github.io/media-source/#init-segment
https://w3c.github.io/media-source/#byte-stream-format-specs
https://w3c.github.io/media-source/#bib-mse-registry

MediaSource object URL
A MediaSource object URL is a unique Blob URI [FILE-API] created by createObjectURL(). It is
used to attach a MediaSource object to an HTMLMediaElement.

These URLs are the same as a Blob URI, except that anything in the definition of that feature that
refers to File and Blob objects is hereby extended to also apply to MediaSource objects.

The origin of the MediaSource object URL is the relevant settings object of this during the call to
createObjectURL().

NOTE: For example, the origin of the MediaSource object URL affects the way that the media
element is consumed by canvas.

Parent Media Source
The parent media source of a SourceBuffer object is the MediaSource object that created it.

Presentation Start Time
The presentation start time is the earliest time point in the presentation and specifies the initial
playback position and earliest possible position. All presentations created using this specification
have a presentation start time of 0.

NOTE: For the purposes of determining if HTMLMediaElement.buffered contains a TimeRange that
includes the current playback position, implementations MAY choose to allow a current playback
position at or after presentation start time and before the first TimeRange to play the first TimeRange
if that TimeRange starts within a reasonably short time, like 1 second, after presentation start time.
This allowance accommodates the reality that muxed streams commonly do not begin all tracks
precisely at presentation start time. Implementations MUST report the actual buffered range,
regardless of this allowance.

Presentation Interval
The presentation interval of a coded frame is the time interval from its presentation timestamp to the
presentation timestamp plus the coded frame's duration. For example, if a coded frame has a
presentation timestamp of 10 seconds and a coded frame duration of 100 milliseconds, then the
presentation interval would be [10-10.1). Note that the start of the range is inclusive, but the end of
the range is exclusive.

Presentation Order
The order that coded frames are rendered in the presentation. The presentation order is achieved by
ordering coded frames in monotonically increasing order by their presentation timestamps.

Presentation Timestamp
A reference to a specific time in the presentation. The presentation timestamp in a coded frame
indicates when the frame SHOULD be rendered.

Random Access Point
A position in a media segment where decoding and continuous playback can begin without relying
on any previous data in the segment. For video this tends to be the location of I-frames. In the case
of audio, most audio frames can be treated as a random access point. Since video tracks tend to

https://www.w3.org/TR/FileAPI/#url
https://w3c.github.io/media-source/#bib-file-api
https://w3c.github.io/media-source/#dom-url-createobjecturl
https://w3c.github.io/media-source/#dom-mediasource
https://www.w3.org/TR/FileAPI/#url
https://www.w3.org/TR/FileAPI/#dfn-file
https://www.w3.org/TR/FileAPI/#dfn-Blob
https://w3c.github.io/media-source/#dom-mediasource
https://www.w3.org/TR/html51/browsers.html#section-origin
https://www.w3.org/TR/html51/webappapis.html#relevant-settings-object
https://w3c.github.io/media-source/#dom-url-createobjecturl
https://www.w3.org/TR/html51/browsers.html#section-origin
https://html.spec.whatwg.org/multipage/canvas.html#security-with-canvas-elements
https://w3c.github.io/media-source/#dom-sourcebuffer
https://w3c.github.io/media-source/#dom-mediasource
https://www.w3.org/TR/html51/semantics-embedded-content.html#initial-playback-position
https://www.w3.org/TR/html51/semantics-embedded-content.html#initial-playback-position
https://www.w3.org/TR/html51/semantics-embedded-content.html#earliest-possible-position
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-htmlmediaelement-buffered
https://www.w3.org/TR/html51/semantics-embedded-content.html#timeranges-timeranges
https://w3c.github.io/media-source/#presentation-start-time
https://www.w3.org/TR/html51/semantics-embedded-content.html#timeranges-timeranges
https://www.w3.org/TR/html51/semantics-embedded-content.html#timeranges-timeranges
https://www.w3.org/TR/html51/semantics-embedded-content.html#timeranges-timeranges
https://w3c.github.io/media-source/#presentation-start-time
https://w3c.github.io/media-source/#presentation-start-time
https://w3c.github.io/media-source/#coded-frame
https://w3c.github.io/media-source/#presentation-timestamp
https://w3c.github.io/media-source/#presentation-timestamp
https://w3c.github.io/media-source/#coded-frame-duration
https://w3c.github.io/media-source/#coded-frame-duration
https://w3c.github.io/media-source/#coded-frame
https://w3c.github.io/media-source/#coded-frame
https://w3c.github.io/media-source/#presentation-timestamp
https://w3c.github.io/media-source/#coded-frame
https://w3c.github.io/media-source/#media-segment

have a more sparse distribution of random access points, the location of these points are usually
considered the random access points for multiplexed streams.

SourceBuffer byte stream format specification
The specific byte stream format specification that describes the format of the byte stream accepted
by a SourceBuffer instance. The byte stream format specification, for a SourceBuffer object, is
selected based on the type passed to the addSourceBuffer() call that created the object.

SourceBuffer configuration
A specific set of tracks distributed across one or more SourceBuffer objects owned by a single
MediaSource instance.

Implementations MUST support at least 1 MediaSource object with the following configurations:

●​ A single SourceBuffer with 1 audio track and/or 1 video track.
●​ Two SourceBuffers with one handling a single audio track and the other handling a single

video track.

MediaSource objects MUST support each of the configurations above, but they are only required to
support one configuration at a time. Supporting multiple configurations at once or additional
configurations is a quality of implementation issue.

Track Description
A byte stream format specific structure that provides the Track ID, codec configuration, and other
metadata for a single track. Each track description inside a single initialization segment has a unique
Track ID. The user agent MUST run the append error algorithm if the Track ID is not unique within
the initialization segment.

Track ID
A Track ID is a byte stream format specific identifier that marks sections of the byte stream as being
part of a specific track. The Track ID in a track description identifies which sections of a media
segment belong to that track.

2. MediaSource Object
2.4 Algorithms
2.4.1 Attaching to a media element

A MediaSource object can be attached to a media element by assigning a MediaSource object URL to
the media element src attribute or the src attribute of a <source> inside a media element. A
MediaSource object URL is created by passing a MediaSource object to createObjectURL().

If the resource fetch algorithm was invoked with a media provider object that is a MediaSource object or
a URL record whose object is a MediaSource object, then let mode be local, skip the first step in the
resource fetch algorithm (which may otherwise set mode to remote) and add the steps and clarifications
below to the "Otherwise (mode is local)" section of the resource fetch algorithm.

https://w3c.github.io/media-source/#byte-stream-format-specs
https://w3c.github.io/media-source/#dom-sourcebuffer
https://w3c.github.io/media-source/#byte-stream-format-specs
https://w3c.github.io/media-source/#dom-sourcebuffer
https://w3c.github.io/media-source/#dom-mediasource-addsourcebuffer
https://w3c.github.io/media-source/#dom-sourcebuffer
https://w3c.github.io/media-source/#dom-mediasource
https://w3c.github.io/media-source/#dom-mediasource
https://w3c.github.io/media-source/#track-id
https://w3c.github.io/media-source/#init-segment
https://w3c.github.io/media-source/#track-id
https://w3c.github.io/media-source/#sourcebuffer-append-error
https://w3c.github.io/media-source/#track-id
https://w3c.github.io/media-source/#init-segment
https://w3c.github.io/media-source/#track-description
https://w3c.github.io/media-source/#media-segment
https://w3c.github.io/media-source/#media-segment
https://w3c.github.io/media-source/#mediasource-algorithms
https://w3c.github.io/media-source/#mediasource-attach
https://w3c.github.io/media-source/#dom-mediasource
https://w3c.github.io/media-source/#mediasource-object-url
https://www.w3.org/TR/html51/semantics-embedded-content.html#element-attrdef-media-src
https://w3c.github.io/media-source/#mediasource-object-url
https://w3c.github.io/media-source/#dom-url-createobjecturl
https://www.w3.org/TR/html51/semantics-embedded-content.html#resource-fetch-algorithm
https://www.w3.org/TR/html51/semantics-embedded-content.html#resource-fetch-algorithm
https://www.w3.org/TR/html51/semantics-embedded-content.html#resource-fetch-algorithm

NOTE: The resource fetch algorithm's first step is expected to eventually align with selecting local mode
for URL records whose objects are media provider objects. The intent is that if the HTMLMediaElement's
src attribute or selected child <source>'s src attribute is a blob: URL matching a MediaSource object
URL when the respective src attribute was last changed, then that MediaSource object is used as the
media provider object and current media resource in the local mode logic in the resource fetch algorithm.
This also means that the remote mode logic that includes observance of any preload attribute is skipped
when a MediaSource object is attached. Even with that eventual change to [HTML], the execution of the
following steps at the beginning of the local mode logic is still required when the current media resource
is a MediaSource object.

NOTE: Relative to the action which triggered the media element's resource selection algorithm, these
steps are asynchronous. The resource fetch algorithm is run after the task that invoked the resource
selection algorithm is allowed to continue and a stable state is reached. Implementations may delay the
steps in the "Otherwise" clause, below, until the MediaSource object is ready for use.

If readyState is NOT set to "closed"
Run the "If the media data cannot be fetched at all, due to network errors, causing the user agent to
give up trying to fetch the resource" steps of the resource fetch algorithm's media data processing
steps list.

Otherwise

1.​ Set the media element's delaying-the-load-event-flag to false.
2.​ Set the readyState attribute to "open".
3.​ Queue a task to fire a simple event named sourceopen at the MediaSource.
4.​ Continue the resource fetch algorithm by running the remaining "Otherwise (mode is local)"

steps, with these clarifications:
1.​ Text in the resource fetch algorithm or the media data processing steps list that refers

to "the download", "bytes received", or "whenever new data for the current media
resource becomes available" refers to data passed in via appendBuffer().

2.​ References to HTTP in the resource fetch algorithm and the media data processing
steps list do not apply because the HTMLMediaElement does not fetch media data
via HTTP when a MediaSource is attached.

NOTE: An attached MediaSource does not use the remote mode steps in the resource fetch algorithm,
so the media element will not fire "suspend" events. Though future versions of this specification will likely
remove "progress" and "stalled" events from a media element with an attached MediaSource, user
agents conforming to this version of the specification may still fire these two events as these [HTML]
references changed after implementations of this specification stabilized.

2.4.2 Detaching from a media element

The following steps are run in any case where the media element is going to transition to
NETWORK_EMPTY and queue a task to fire a simple event named emptied at the media element.
These steps SHOULD be run right before the transition.

1.​ Set the readyState attribute to "closed".
2.​ Update duration to NaN.
3.​ Remove all the SourceBuffer objects from activeSourceBuffers.

https://www.w3.org/TR/html51/semantics-embedded-content.html#resource-fetch-algorithm
https://w3c.github.io/media-source/#mediasource-object-url
https://w3c.github.io/media-source/#mediasource-object-url
https://www.w3.org/TR/html51/semantics-embedded-content.html#resource-fetch-algorithm
https://w3c.github.io/media-source/#bib-html
https://w3c.github.io/media-source/#dom-mediasource-readystate
https://w3c.github.io/media-source/#dom-readystate-closed
https://www.w3.org/TR/html51/semantics-embedded-content.html#resource-fetch-algorithm
https://www.w3.org/TR/html51/semantics-embedded-content.html#media-data-processing-steps-list
https://www.w3.org/TR/html51/semantics-embedded-content.html#media-data-processing-steps-list
https://www.w3.org/TR/html51/semantics-embedded-content.html#delaying-the-load-event-flag
https://w3c.github.io/media-source/#dom-mediasource-readystate
https://w3c.github.io/media-source/#dom-readystate-open
https://www.w3.org/TR/html51/webappapis.html#queuing
https://www.w3.org/TR/html51/infrastructure.html#fire
https://w3c.github.io/media-source/#dom-evt-sourceopen
https://w3c.github.io/media-source/#dom-mediasource
https://www.w3.org/TR/html51/semantics-embedded-content.html#resource-fetch-algorithm
https://www.w3.org/TR/html51/semantics-embedded-content.html#resource-fetch-algorithm
https://www.w3.org/TR/html51/semantics-embedded-content.html#media-data-processing-steps-list
https://w3c.github.io/media-source/#dom-sourcebuffer-appendbuffer
https://www.w3.org/TR/html51/semantics-embedded-content.html#resource-fetch-algorithm
https://www.w3.org/TR/html51/semantics-embedded-content.html#media-data-processing-steps-list
https://www.w3.org/TR/html51/semantics-embedded-content.html#media-data-processing-steps-list
https://w3c.github.io/media-source/#dom-mediasource
https://www.w3.org/TR/html51/semantics-embedded-content.html#resource-fetch-algorithm
https://w3c.github.io/media-source/#bib-html
https://w3c.github.io/media-source/#mediasource-detach
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-htmlmediaelement-network_empty
https://www.w3.org/TR/html51/webappapis.html#queuing
https://www.w3.org/TR/html51/infrastructure.html#fire
https://www.w3.org/TR/html51/semantics-embedded-content.html#eventdef-media-emptied
https://w3c.github.io/media-source/#dom-mediasource-readystate
https://w3c.github.io/media-source/#dom-readystate-closed
https://w3c.github.io/media-source/#dom-mediasource-duration
https://w3c.github.io/media-source/#dom-sourcebuffer
https://w3c.github.io/media-source/#dom-mediasource-activesourcebuffers

4.​ Queue a task to fire a simple event named removesourcebuffer at activeSourceBuffers.
5.​ Remove all the SourceBuffer objects from sourceBuffers.
6.​ Queue a task to fire a simple event named removesourcebuffer at sourceBuffers.
7.​ Queue a task to fire a simple event named sourceclose at the MediaSource.

NOTE: Going forward, this algorithm is intended to be externally called and run in any case where the
attached MediaSource, if any, must be detached from the media element. It MAY be called on
HTMLMediaElement [HTML] operations like load() and resource fetch algorithm failures in addition to, or
in place of, when the media element transitions to NETWORK_EMPTY. Resource fetch algorithm
failures are those which abort either the resource fetch algorithm or the resource selection algorithm,
with the exception that the "Final step" [HTML] is not considered a failure that triggers detachment.

2.4.3 Seeking

Run the following steps as part of the "Wait until the user agent has established whether or not the media
data for the new playback position is available, and, if it is, until it has decoded enough data to play back
that position" step of the seek algorithm:

1.​ NOTE​
The media element looks for media segments containing the new playback position in each
SourceBuffer object in activeSourceBuffers. Any position within a TimeRange in the
current value of the HTMLMediaElement.buffered attribute has all necessary media
segments buffered for that position.​
If new playback position is not in any TimeRange of
HTMLMediaElement.buffered

1.​ If the HTMLMediaElement.readyState attribute is greater than HAVE_METADATA, then
set the HTMLMediaElement.readyState attribute to HAVE_METADATA.​
NOTE​
Per HTMLMediaElement ready states [HTML] logic,
HTMLMediaElement.readyState changes may trigger events on the
HTMLMediaElement.

2.​ The media element waits until an appendBuffer() call causes the coded frame
processing algorithm to set the HTMLMediaElement.readyState attribute to a value
greater than HAVE_METADATA.​
NOTE​
The web application can use buffered and HTMLMediaElement.buffered to
determine what the media element needs to resume playback.

2.​ Otherwise​
Continue​
NOTE​
If the readyState attribute is "ended" and the new playback position is within a TimeRange
currently in HTMLMediaElement.buffered, then the seek operation must continue to completion
here even if one or more currently selected or enabled track buffers' largest range end timestamp
is less than new playback position. This condition should only occur due to logic in buffered
when readyState is "ended".

3.​ The media element resets all decoders and initializes each one with data from the appropriate
initialization segment.

4.​ The media element feeds coded frames from the active track buffers into the decoders starting
with the closest random access point before the new playback position.

5.​ Resume the seek algorithm at the "Await a stable state" step.

https://www.w3.org/TR/html51/webappapis.html#queuing
https://www.w3.org/TR/html51/infrastructure.html#fire
https://w3c.github.io/media-source/#dom-evt-removesourcebuffer
https://w3c.github.io/media-source/#dom-mediasource-activesourcebuffers
https://w3c.github.io/media-source/#dom-sourcebuffer
https://w3c.github.io/media-source/#dom-mediasource-sourcebuffers
https://www.w3.org/TR/html51/webappapis.html#queuing
https://www.w3.org/TR/html51/infrastructure.html#fire
https://w3c.github.io/media-source/#dom-evt-removesourcebuffer
https://w3c.github.io/media-source/#dom-mediasource-sourcebuffers
https://www.w3.org/TR/html51/webappapis.html#queuing
https://www.w3.org/TR/html51/infrastructure.html#fire
https://w3c.github.io/media-source/#dom-evt-sourceclose
https://w3c.github.io/media-source/#dom-mediasource
https://w3c.github.io/media-source/#dom-mediasource
https://w3c.github.io/media-source/#bib-html
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-htmlmediaelement-network_empty
https://w3c.github.io/media-source/#bib-html
https://w3c.github.io/media-source/#mediasource-seeking
https://www.w3.org/TR/html51/semantics-embedded-content.html#seek
https://w3c.github.io/media-source/#media-segment
https://w3c.github.io/media-source/#dom-sourcebuffer
https://w3c.github.io/media-source/#dom-mediasource-activesourcebuffers
https://www.w3.org/TR/html51/semantics-embedded-content.html#timeranges-timeranges
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-htmlmediaelement-buffered
https://www.w3.org/TR/html51/semantics-embedded-content.html#timeranges-timeranges
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-htmlmediaelement-buffered
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-htmlmediaelement-readystate
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-htmlmediaelement-have_metadata
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-htmlmediaelement-readystate
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-htmlmediaelement-have_metadata
https://www.w3.org/TR/html51/semantics-embedded-content.html#ready-states
https://w3c.github.io/media-source/#bib-html
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-htmlmediaelement-readystate
https://w3c.github.io/media-source/#dom-sourcebuffer-appendbuffer
https://w3c.github.io/media-source/#sourcebuffer-coded-frame-processing
https://w3c.github.io/media-source/#sourcebuffer-coded-frame-processing
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-htmlmediaelement-readystate
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-htmlmediaelement-have_metadata
https://w3c.github.io/media-source/#dom-sourcebuffer-buffered
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-htmlmediaelement-buffered
https://w3c.github.io/media-source/#dom-mediasource-readystate
https://w3c.github.io/media-source/#dom-readystate-ended
https://www.w3.org/TR/html51/semantics-embedded-content.html#timeranges-timeranges
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-htmlmediaelement-buffered
https://w3c.github.io/media-source/#dom-sourcebuffer-buffered
https://w3c.github.io/media-source/#dom-mediasource-readystate
https://w3c.github.io/media-source/#dom-readystate-ended
https://w3c.github.io/media-source/#init-segment
https://w3c.github.io/media-source/#coded-frame
https://w3c.github.io/media-source/#active-track-buffers
https://w3c.github.io/media-source/#random-access-point
https://www.w3.org/TR/html51/semantics-embedded-content.html#seek

2.4.4 SourceBuffer Monitoring

The following steps are periodically run during playback to make sure that all of the SourceBuffer
objects in activeSourceBuffers have enough data to ensure uninterrupted playback. Changes to
activeSourceBuffers also cause these steps to run because they affect the conditions that trigger state
transitions.

Having enough data to ensure uninterrupted playback is an implementation specific condition where the
user agent determines that it currently has enough data to play the presentation without stalling for a
meaningful period of time. This condition is constantly evaluated to determine when to transition the
media element into and out of the HAVE_ENOUGH_DATA ready state. These transitions indicate when the
user agent believes it has enough data buffered or it needs more data respectively.

NOTE: An implementation MAY choose to use bytes buffered, time buffered, the append rate, or any
other metric it sees fit to determine when it has enough data. The metrics used MAY change during
playback so web applications SHOULD only rely on the value of HTMLMediaElement.readyState to
determine whether more data is needed or not.

NOTE: When the media element needs more data, the user agent SHOULD transition it from
HAVE_ENOUGH_DATA to HAVE_FUTURE_DATA early enough for a web application to be able to respond
without causing an interruption in playback. For example, transitioning when the current playback
position is 500ms before the end of the buffered data gives the application roughly 500ms to append
more data before playback stalls.

If the the HTMLMediaElement.readyState attribute equals HAVE_NOTHING:

1.​ Abort these steps.

If HTMLMediaElement.buffered does not contain a TimeRange for the current playback
position:

1.​ Set the HTMLMediaElement.readyState attribute to HAVE_METADATA.​
NOTE​
Per HTMLMediaElement ready states [HTML] logic, HTMLMediaElement.readyState
changes may trigger events on the HTMLMediaElement.

2.​ Abort these steps.

If HTMLMediaElement.buffered contains a TimeRange that includes the current playback
position and enough data to ensure uninterrupted playback:

1.​ Set the HTMLMediaElement.readyState attribute to HAVE_ENOUGH_DATA.​
NOTE​
Per HTMLMediaElement ready states [HTML] logic, HTMLMediaElement.readyState
changes may trigger events on the HTMLMediaElement.

2.​ Playback may resume at this point if it was previously suspended by a transition to
HAVE_CURRENT_DATA.

3.​ Abort these steps.

https://w3c.github.io/media-source/#buffer-monitoring
https://w3c.github.io/media-source/#dom-sourcebuffer
https://w3c.github.io/media-source/#dom-mediasource-activesourcebuffers
https://w3c.github.io/media-source/#enough-data
https://w3c.github.io/media-source/#dom-mediasource-activesourcebuffers
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-htmlmediaelement-have_enough_data
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-htmlmediaelement-readystate
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-htmlmediaelement-have_enough_data
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-htmlmediaelement-have_future_data
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-htmlmediaelement-readystate
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-htmlmediaelement-have_nothing
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-htmlmediaelement-buffered
https://www.w3.org/TR/html51/semantics-embedded-content.html#timeranges-timeranges
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-htmlmediaelement-readystate
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-htmlmediaelement-have_metadata
https://www.w3.org/TR/html51/semantics-embedded-content.html#ready-states
https://w3c.github.io/media-source/#bib-html
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-htmlmediaelement-readystate
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-htmlmediaelement-buffered
https://www.w3.org/TR/html51/semantics-embedded-content.html#timeranges-timeranges
https://w3c.github.io/media-source/#enough-data
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-htmlmediaelement-readystate
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-htmlmediaelement-have_enough_data
https://www.w3.org/TR/html51/semantics-embedded-content.html#ready-states
https://w3c.github.io/media-source/#bib-html
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-htmlmediaelement-readystate
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-htmlmediaelement-have_current_data

If HTMLMediaElement.buffered contains a TimeRange that includes the current playback
position and some time beyond the current playback position, then run the following
steps:

1.​ Set the HTMLMediaElement.readyState attribute to HAVE_FUTURE_DATA.​
NOTE​
Per HTMLMediaElement ready states [HTML] logic, HTMLMediaElement.readyState
changes may trigger events on the HTMLMediaElement.

2.​ Playback may resume at this point if it was previously suspended by a transition to
HAVE_CURRENT_DATA.

3.​ Abort these steps.

If HTMLMediaElement.buffered contains a TimeRange that ends at the current playback
position and does not have a range covering the time immediately after the current
position:

1.​ Set the HTMLMediaElement.readyState attribute to HAVE_CURRENT_DATA.​
NOTE​
Per HTMLMediaElement ready states [HTML] logic, HTMLMediaElement.readyState
changes may trigger events on the HTMLMediaElement.

2.​ Playback is suspended at this point since the media element doesn't have enough data to
advance the media timeline.

3.​ Abort these steps.

2.4.5 Changes to selected/enabled track state

During playback activeSourceBuffers needs to be updated if the selected video track, the enabled
audio track(s), or a text track mode changes. When one or more of these changes occur the following
steps need to be followed.

If the selected video track changes, then run the following steps:

1.​ If the SourceBuffer associated with the previously selected video track is not associated
with any other enabled tracks, run the following steps:

1.​ Remove the SourceBuffer from activeSourceBuffers.
2.​ Queue a task to fire a simple event named removesourcebuffer at

activeSourceBuffers

2.​ If the SourceBuffer associated with the newly selected video track is not already in
activeSourceBuffers, run the following steps:

1.​ Add the SourceBuffer to activeSourceBuffers.
2.​ Queue a task to fire a simple event named addsourcebuffer at

activeSourceBuffers

If an audio track becomes disabled and the SourceBuffer associated with this track is
not associated with any other enabled or selected track, then run the following steps:

https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-htmlmediaelement-buffered
https://www.w3.org/TR/html51/semantics-embedded-content.html#timeranges-timeranges
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-htmlmediaelement-readystate
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-htmlmediaelement-have_future_data
https://www.w3.org/TR/html51/semantics-embedded-content.html#ready-states
https://w3c.github.io/media-source/#bib-html
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-htmlmediaelement-readystate
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-htmlmediaelement-have_current_data
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-htmlmediaelement-buffered
https://www.w3.org/TR/html51/semantics-embedded-content.html#timeranges-timeranges
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-htmlmediaelement-readystate
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-htmlmediaelement-have_current_data
https://www.w3.org/TR/html51/semantics-embedded-content.html#ready-states
https://w3c.github.io/media-source/#bib-html
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-htmlmediaelement-readystate
https://www.w3.org/TR/html51/semantics-embedded-content.html#media-timeline
https://w3c.github.io/media-source/#active-source-buffer-changes
https://w3c.github.io/media-source/#dom-mediasource-activesourcebuffers
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-videotrack-selected
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-audiotrack-enabled
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-audiotrack-enabled
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-texttrack-mode
https://w3c.github.io/media-source/#dom-sourcebuffer
https://w3c.github.io/media-source/#dom-sourcebuffer
https://w3c.github.io/media-source/#dom-mediasource-activesourcebuffers
https://www.w3.org/TR/html51/webappapis.html#queuing
https://www.w3.org/TR/html51/infrastructure.html#fire
https://w3c.github.io/media-source/#dom-evt-removesourcebuffer
https://w3c.github.io/media-source/#dom-mediasource-activesourcebuffers
https://w3c.github.io/media-source/#dom-sourcebuffer
https://w3c.github.io/media-source/#dom-mediasource-activesourcebuffers
https://w3c.github.io/media-source/#dom-sourcebuffer
https://w3c.github.io/media-source/#dom-mediasource-activesourcebuffers
https://www.w3.org/TR/html51/webappapis.html#queuing
https://www.w3.org/TR/html51/infrastructure.html#fire
https://w3c.github.io/media-source/#dom-evt-addsourcebuffer
https://w3c.github.io/media-source/#dom-mediasource-activesourcebuffers
https://w3c.github.io/media-source/#dom-sourcebuffer

1.​ Remove the SourceBuffer associated with the audio track from activeSourceBuffers
2.​ Queue a task to fire a simple event named removesourcebuffer at activeSourceBuffers

If an audio track becomes enabled and the SourceBuffer associated with this track is not
already in activeSourceBuffers, then run the following steps:

1.​ Add the SourceBuffer associated with the audio track to activeSourceBuffers
2.​ Queue a task to fire a simple event named addsourcebuffer at activeSourceBuffers

If a text track mode becomes "disabled" and the SourceBuffer associated with this
track is not associated with any other enabled or selected track, then run the following
steps:

1.​ Remove the SourceBuffer associated with the text track from activeSourceBuffers
2.​ Queue a task to fire a simple event named removesourcebuffer at activeSourceBuffers

If a text track mode becomes "showing" or "hidden" and the SourceBuffer associated
with this track is not already in activeSourceBuffers, then run the following steps:

1.​ Add the SourceBuffer associated with the text track to activeSourceBuffers
2.​ Queue a task to fire a simple event named addsourcebuffer at activeSourceBuffers

2.4.6 Duration change

Follow these steps when duration needs to change to a new duration.

1.​ If the current value of duration is equal to new duration, then return.
2.​ If new duration is less than the highest presentation timestamp of any buffered coded frames for

all SourceBuffer objects in sourceBuffers, then throw an InvalidStateError exception and
abort these steps.​
NOTE​
Duration reductions that would truncate currently buffered media are disallowed. When truncation
is necessary, use remove() to reduce the buffered range before updating duration.

3.​ Let highest end time be the largest track buffer ranges end time across all the track buffers across
all SourceBuffer objects in sourceBuffers.

4.​ If new duration is less than highest end time, then​
NOTE​
This condition can occur because the coded frame removal algorithm preserves coded frames
that start before the start of the removal range.

1.​ Update new duration to equal highest end time.
5.​ Update duration to new duration.
6.​ Update the media duration to new duration and run the HTMLMediaElement duration change

algorithm.

https://w3c.github.io/media-source/#dom-sourcebuffer
https://w3c.github.io/media-source/#dom-mediasource-activesourcebuffers
https://www.w3.org/TR/html51/webappapis.html#queuing
https://www.w3.org/TR/html51/infrastructure.html#fire
https://w3c.github.io/media-source/#dom-evt-removesourcebuffer
https://w3c.github.io/media-source/#dom-mediasource-activesourcebuffers
https://w3c.github.io/media-source/#dom-sourcebuffer
https://w3c.github.io/media-source/#dom-mediasource-activesourcebuffers
https://w3c.github.io/media-source/#dom-sourcebuffer
https://w3c.github.io/media-source/#dom-mediasource-activesourcebuffers
https://www.w3.org/TR/html51/webappapis.html#queuing
https://www.w3.org/TR/html51/infrastructure.html#fire
https://w3c.github.io/media-source/#dom-evt-addsourcebuffer
https://w3c.github.io/media-source/#dom-mediasource-activesourcebuffers
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-texttrack-mode
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-texttrackmode-disabled
https://w3c.github.io/media-source/#dom-sourcebuffer
https://w3c.github.io/media-source/#dom-sourcebuffer
https://w3c.github.io/media-source/#dom-mediasource-activesourcebuffers
https://www.w3.org/TR/html51/webappapis.html#queuing
https://www.w3.org/TR/html51/infrastructure.html#fire
https://w3c.github.io/media-source/#dom-evt-removesourcebuffer
https://w3c.github.io/media-source/#dom-mediasource-activesourcebuffers
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-texttrack-mode
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-texttrackmode-showing
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-texttrackmode-hidden
https://w3c.github.io/media-source/#dom-sourcebuffer
https://w3c.github.io/media-source/#dom-mediasource-activesourcebuffers
https://w3c.github.io/media-source/#dom-sourcebuffer
https://w3c.github.io/media-source/#dom-mediasource-activesourcebuffers
https://www.w3.org/TR/html51/webappapis.html#queuing
https://www.w3.org/TR/html51/infrastructure.html#fire
https://w3c.github.io/media-source/#dom-evt-addsourcebuffer
https://w3c.github.io/media-source/#dom-mediasource-activesourcebuffers
https://w3c.github.io/media-source/#duration-change-algorithm
https://w3c.github.io/media-source/#dom-mediasource-duration
https://w3c.github.io/media-source/#dom-mediasource-duration
https://w3c.github.io/media-source/#presentation-timestamp
https://w3c.github.io/media-source/#coded-frame
https://w3c.github.io/media-source/#dom-sourcebuffer
https://w3c.github.io/media-source/#dom-mediasource-sourcebuffers
https://www.w3.org/TR/WebIDL-1/#invalidstateerror
https://w3c.github.io/media-source/#dom-sourcebuffer-remove
https://w3c.github.io/media-source/#dom-mediasource-duration
https://w3c.github.io/media-source/#track-buffer-ranges
https://w3c.github.io/media-source/#track-buffer
https://w3c.github.io/media-source/#dom-sourcebuffer
https://w3c.github.io/media-source/#dom-mediasource-sourcebuffers
https://w3c.github.io/media-source/#sourcebuffer-coded-frame-removal
https://w3c.github.io/media-source/#dom-mediasource-duration
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-htmlmediaelement-duration
https://www.w3.org/TR/html51/semantics-embedded-content.html#durationChange
https://www.w3.org/TR/html51/semantics-embedded-content.html#durationChange

2.4.7 End of stream algorithm

This algorithm gets called when the application signals the end of stream via an endOfStream() call or
an algorithm needs to signal a decode error. This algorithm takes an error parameter that indicates
whether an error will be signalled.

1.​ Change the readyState attribute value to "ended".
2.​ Queue a task to fire a simple event named sourceended at the MediaSource.

3.​ If error is not set
1.​ Run the duration change algorithm with new duration set to the largest track buffer

ranges end time across all the track buffers across all SourceBuffer objects in
sourceBuffers.​
NOTE​
This allows the duration to properly reflect the end of the appended media segments.
For example, if the duration was explicitly set to 10 seconds and only media
segments for 0 to 5 seconds were appended before endOfStream() was called, then
the duration will get updated to 5 seconds.

2.​ Notify the media element that it now has all of the media data.
4.​ If error is set to "network"​

If the HTMLMediaElement.readyState attribute equals HAVE_NOTHING​
Run the "If the media data cannot be fetched at all, due to network errors, causing the user agent
to give up trying to fetch the resource" steps of the resource fetch algorithm's media data
processing steps list.​
If the HTMLMediaElement.readyState attribute is greater than HAVE_NOTHING​
Run the "If the connection is interrupted after some media data has been received, causing the
user agent to give up trying to fetch the resource" steps of the resource fetch algorithm's media
data processing steps list.​
If error is set to "decode"​
If the HTMLMediaElement.readyState attribute equals HAVE_NOTHING​
Run the "If the media data can be fetched but is found by inspection to be in an unsupported
format, or can otherwise not be rendered at all" steps of the resource fetch algorithm's media
data processing steps list.​
If the HTMLMediaElement.readyState attribute is greater than HAVE_NOTHING​
Run the media data is corrupted steps of the resource fetch algorithm's media data processing
steps list.

3. SourceBuffer Object
WebIDL

enum AppendMode {
 "segments",
 "sequence"

};

Enumeration description

https://w3c.github.io/media-source/#end-of-stream-algorithm
https://w3c.github.io/media-source/#dom-mediasource-endofstream
https://w3c.github.io/media-source/#dom-mediasource-readystate
https://w3c.github.io/media-source/#dom-readystate-ended
https://www.w3.org/TR/html51/webappapis.html#queuing
https://www.w3.org/TR/html51/infrastructure.html#fire
https://w3c.github.io/media-source/#dom-evt-sourceended
https://w3c.github.io/media-source/#dom-mediasource
https://w3c.github.io/media-source/#duration-change-algorithm
https://w3c.github.io/media-source/#track-buffer-ranges
https://w3c.github.io/media-source/#track-buffer-ranges
https://w3c.github.io/media-source/#track-buffer
https://w3c.github.io/media-source/#dom-sourcebuffer
https://w3c.github.io/media-source/#dom-mediasource-sourcebuffers
https://w3c.github.io/media-source/#dom-endofstreamerror-network
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-htmlmediaelement-readystate
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-htmlmediaelement-have_nothing
https://www.w3.org/TR/html51/semantics-embedded-content.html#resource-fetch-algorithm
https://www.w3.org/TR/html51/semantics-embedded-content.html#media-data-processing-steps-list
https://www.w3.org/TR/html51/semantics-embedded-content.html#media-data-processing-steps-list
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-htmlmediaelement-readystate
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-htmlmediaelement-have_nothing
https://www.w3.org/TR/html51/semantics-embedded-content.html#resource-fetch-algorithm
https://www.w3.org/TR/html51/semantics-embedded-content.html#media-data-processing-steps-list
https://www.w3.org/TR/html51/semantics-embedded-content.html#media-data-processing-steps-list
https://w3c.github.io/media-source/#dom-endofstreamerror-decode
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-htmlmediaelement-readystate
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-htmlmediaelement-have_nothing
https://www.w3.org/TR/html51/semantics-embedded-content.html#resource-fetch-algorithm
https://www.w3.org/TR/html51/semantics-embedded-content.html#media-data-processing-steps-list
https://www.w3.org/TR/html51/semantics-embedded-content.html#media-data-processing-steps-list
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-htmlmediaelement-readystate
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-htmlmediaelement-have_nothing
https://www.w3.org/TR/html51/semantics-embedded-content.html#fatal-decode-error
https://www.w3.org/TR/html51/semantics-embedded-content.html#resource-fetch-algorithm
https://www.w3.org/TR/html51/semantics-embedded-content.html#media-data-processing-steps-list
https://www.w3.org/TR/html51/semantics-embedded-content.html#media-data-processing-steps-list
https://w3c.github.io/media-source/#sourcebuffer
https://w3c.github.io/media-source/#webidl-723564574
https://w3c.github.io/media-source/#dom-appendmode-segments
https://w3c.github.io/media-source/#dom-appendmode-sequence

segments
The timestamps in the media segment determine where the coded frames are
placed in the presentation. Media segments can be appended in any order.

sequence
Media segments will be treated as adjacent in time independent of the timestamps
in the media segment. Coded frames in a new media segment will be placed
immediately after the coded frames in the previous media segment. The
timestampOffset attribute will be updated if a new offset is needed to make the
new media segments adjacent to the previous media segment. Setting the
timestampOffset attribute in "sequence" mode allows a media segment to be
placed at a specific position in the timeline without any knowledge of the
timestamps in the media segment.

3.1 Attributes
mode of type AppendMode

Controls how a sequence of media segments are handled. This attribute is initially set by
addSourceBuffer() after the object is created.

On getting, Return the initial value or the last value that was successfully set.

On setting, run the following steps:

1.​ If this object has been removed from the sourceBuffers attribute of the parent media
source, then throw an InvalidStateError exception and abort these steps.

2.​ If the updating attribute equals true, then throw an InvalidStateError exception and abort
these steps.

3.​ Let new mode equal the new value being assigned to this attribute.
4.​ If generate timestamps flag equals true and new mode equals "segments", then throw a

TypeError exception and abort these steps.
5.​ If the readyState attribute of the parent media source is in the "ended" state then run the

following steps:
1.​ Set the readyState attribute of the parent media source to "open"
2.​ Queue a task to fire a simple event named sourceopen at the parent media source.

6.​ If the append state equals PARSING_MEDIA_SEGMENT, then throw an
InvalidStateError and abort these steps.

7.​ If the new mode equals "sequence", then set the group start timestamp to the group end
timestamp.

8.​ Update the attribute to new mode.

updating of type boolean, readonly
Indicates whether the asynchronous continuation of an appendBuffer() or remove() operation is
still being processed. This attribute is initially set to false when the object is created.

buffered of type TimeRanges, readonly

https://w3c.github.io/media-source/#coded-frame
https://w3c.github.io/media-source/#dom-sourcebuffer-timestampoffset
https://w3c.github.io/media-source/#dom-sourcebuffer-timestampoffset
https://w3c.github.io/media-source/#dom-appendmode-sequence
https://w3c.github.io/media-source/#attributes-0
https://w3c.github.io/media-source/#dom-appendmode
https://w3c.github.io/media-source/#media-segment
https://w3c.github.io/media-source/#dom-mediasource-addsourcebuffer
https://w3c.github.io/media-source/#dom-mediasource-sourcebuffers
https://w3c.github.io/media-source/#parent-media-source
https://w3c.github.io/media-source/#parent-media-source
https://www.w3.org/TR/WebIDL-1/#invalidstateerror
https://w3c.github.io/media-source/#dom-sourcebuffer-updating
https://www.w3.org/TR/WebIDL-1/#invalidstateerror
https://w3c.github.io/media-source/#sourcebuffer-generate-timestamps-flag
https://w3c.github.io/media-source/#dom-appendmode-segments
https://w3c.github.io/media-source/#dom-mediasource-readystate
https://w3c.github.io/media-source/#parent-media-source
https://w3c.github.io/media-source/#dom-readystate-ended
https://w3c.github.io/media-source/#dom-mediasource-readystate
https://w3c.github.io/media-source/#parent-media-source
https://w3c.github.io/media-source/#dom-readystate-open
https://www.w3.org/TR/html51/webappapis.html#queuing
https://www.w3.org/TR/html51/infrastructure.html#fire
https://w3c.github.io/media-source/#dom-evt-sourceopen
https://w3c.github.io/media-source/#parent-media-source
https://w3c.github.io/media-source/#sourcebuffer-append-state
https://w3c.github.io/media-source/#sourcebuffer-parsing-media-segment
https://www.w3.org/TR/WebIDL-1/#invalidstateerror
https://w3c.github.io/media-source/#dom-appendmode-sequence
https://w3c.github.io/media-source/#sourcebuffer-group-start-timestamp
https://w3c.github.io/media-source/#sourcebuffer-group-end-timestamp
https://w3c.github.io/media-source/#sourcebuffer-group-end-timestamp
https://www.w3.org/TR/WebIDL-1/#idl-boolean
https://w3c.github.io/media-source/#dom-sourcebuffer-appendbuffer
https://w3c.github.io/media-source/#dom-sourcebuffer-remove
https://www.w3.org/TR/html51/semantics-embedded-content.html#timeranges-timeranges

Indicates what TimeRanges are buffered in the SourceBuffer. This attribute is initially set to an
empty TimeRanges object when the object is created.

When the attribute is read the following steps MUST occur:

1.​ If this object has been removed from the sourceBuffers attribute of the parent media source
then throw an InvalidStateError exception and abort these steps.

2.​ Let highest end time be the largest track buffer ranges end time across all the track buffers
managed by this SourceBuffer object.

3.​ Let intersection ranges equal a TimeRange object containing a single range from 0 to highest
end time.

4.​ For each audio and video track buffer managed by this SourceBuffer, run the following
steps:​
NOTE​
Text track-buffers are included in the calculation of highest end time, above, but excluded
from the buffered range calculation here. They are not necessarily continuous, nor should
any discontinuity within them trigger playback stall when the other media tracks are
continuous over the same time range.

1.​ Let track ranges equal the track buffer ranges for the current track buffer.
2.​ If readyState is "ended", then set the end time on the last range in track ranges to

highest end time.
3.​ Let new intersection ranges equal the intersection between the intersection ranges

and the track ranges.
4.​ Replace the ranges in intersection ranges with the new intersection ranges.

5.​ If intersection ranges does not contain the exact same range information as the current value
of this attribute, then update the current value of this attribute to intersection ranges.

6.​ Return the current value of this attribute.

timestampOffset of type double
Controls the offset applied to timestamps inside subsequent media segments that are appended to
this SourceBuffer. The timestampOffset is initially set to 0 which indicates that no offset is being
applied.

On getting, Return the initial value or the last value that was successfully set.

On setting, run the following steps:

1.​ Let new timestamp offset equal the new value being assigned to this attribute.
2.​ If this object has been removed from the sourceBuffers attribute of the parent media

source, then throw an InvalidStateError exception and abort these steps.
3.​ If the updating attribute equals true, then throw an InvalidStateError exception and abort

these steps.
4.​ If the readyState attribute of the parent media source is in the "ended" state then run the

following steps:
1.​ Set the readyState attribute of the parent media source to "open"
2.​ Queue a task to fire a simple event named sourceopen at the parent media source.

5.​ If the append state equals PARSING_MEDIA_SEGMENT, then throw an
InvalidStateError and abort these steps.

https://www.w3.org/TR/html51/semantics-embedded-content.html#timeranges-timeranges
https://w3c.github.io/media-source/#dom-sourcebuffer
https://www.w3.org/TR/html51/semantics-embedded-content.html#timeranges-timeranges
https://w3c.github.io/media-source/#dom-mediasource-sourcebuffers
https://w3c.github.io/media-source/#parent-media-source
https://www.w3.org/TR/WebIDL-1/#invalidstateerror
https://w3c.github.io/media-source/#track-buffer-ranges
https://w3c.github.io/media-source/#track-buffer
https://w3c.github.io/media-source/#dom-sourcebuffer
https://www.w3.org/TR/html51/semantics-embedded-content.html#timeranges-timeranges
https://w3c.github.io/media-source/#track-buffer
https://w3c.github.io/media-source/#dom-sourcebuffer
https://w3c.github.io/media-source/#track-buffer
https://w3c.github.io/media-source/#track-buffer-ranges
https://w3c.github.io/media-source/#track-buffer
https://w3c.github.io/media-source/#dom-mediasource-readystate
https://w3c.github.io/media-source/#dom-readystate-ended
https://www.w3.org/TR/WebIDL-1/#idl-double
https://w3c.github.io/media-source/#media-segment
https://w3c.github.io/media-source/#dom-sourcebuffer
https://w3c.github.io/media-source/#dom-sourcebuffer-timestampoffset
https://w3c.github.io/media-source/#dom-mediasource-sourcebuffers
https://w3c.github.io/media-source/#parent-media-source
https://w3c.github.io/media-source/#parent-media-source
https://www.w3.org/TR/WebIDL-1/#invalidstateerror
https://w3c.github.io/media-source/#dom-sourcebuffer-updating
https://www.w3.org/TR/WebIDL-1/#invalidstateerror
https://w3c.github.io/media-source/#dom-mediasource-readystate
https://w3c.github.io/media-source/#parent-media-source
https://w3c.github.io/media-source/#dom-readystate-ended
https://w3c.github.io/media-source/#dom-mediasource-readystate
https://w3c.github.io/media-source/#parent-media-source
https://w3c.github.io/media-source/#dom-readystate-open
https://www.w3.org/TR/html51/webappapis.html#queuing
https://www.w3.org/TR/html51/infrastructure.html#fire
https://w3c.github.io/media-source/#dom-evt-sourceopen
https://w3c.github.io/media-source/#parent-media-source
https://w3c.github.io/media-source/#sourcebuffer-append-state
https://w3c.github.io/media-source/#sourcebuffer-parsing-media-segment
https://www.w3.org/TR/WebIDL-1/#invalidstateerror

6.​ If the mode attribute equals "sequence", then set the group start timestamp to new
timestamp offset.

7.​ Update the attribute to new timestamp offset.

audioTracks of type AudioTrackList, readonly
The list of AudioTrack objects created by this object.

videoTracks of type VideoTrackList, readonly
The list of VideoTrack objects created by this object.

textTracks of type TextTrackList, readonly
The list of TextTrack objects created by this object.

appendWindowStart of type double
The presentation timestamp for the start of the append window. This attribute is initially set to the
presentation start time.

On getting, Return the initial value or the last value that was successfully set.

On setting, run the following steps:

1.​ If this object has been removed from the sourceBuffers attribute of the parent media
source, then throw an InvalidStateError exception and abort these steps.

2.​ If the updating attribute equals true, then throw an InvalidStateError exception and abort
these steps.

3.​ If the new value is less than 0 or greater than or equal to appendWindowEnd then throw a
TypeError exception and abort these steps.

4.​ Update the attribute to the new value.

appendWindowEnd of type unrestricted double
The presentation timestamp for the end of the append window. This attribute is initially set to positive
Infinity.

On getting, Return the initial value or the last value that was successfully set.

On setting, run the following steps:

1.​ If this object has been removed from the sourceBuffers attribute of the parent media
source, then throw an InvalidStateError exception and abort these steps.

2.​ If the updating attribute equals true, then throw an InvalidStateError exception and abort
these steps.

3.​ If the new value equals NaN, then throw a TypeError and abort these steps.
4.​ If the new value is less than or equal to appendWindowStart then throw a TypeError

exception and abort these steps.
5.​ Update the attribute to the new value.

https://w3c.github.io/media-source/#dom-sourcebuffer-mode
https://w3c.github.io/media-source/#dom-appendmode-sequence
https://w3c.github.io/media-source/#sourcebuffer-group-start-timestamp
https://www.w3.org/TR/html51/semantics-embedded-content.html#audiotracklist-audiotracklist
https://www.w3.org/TR/html51/semantics-embedded-content.html#audiotrack-audiotrack
https://www.w3.org/TR/html51/semantics-embedded-content.html#videotracklist-videotracklist
https://www.w3.org/TR/html51/semantics-embedded-content.html#videotrack-videotrack
https://www.w3.org/TR/html51/semantics-embedded-content.html#texttracklist-texttracklist
https://www.w3.org/TR/html51/semantics-embedded-content.html#texttrack-texttrack
https://www.w3.org/TR/WebIDL-1/#idl-double
https://w3c.github.io/media-source/#presentation-timestamp
https://w3c.github.io/media-source/#append-window
https://w3c.github.io/media-source/#presentation-start-time
https://w3c.github.io/media-source/#dom-mediasource-sourcebuffers
https://w3c.github.io/media-source/#parent-media-source
https://w3c.github.io/media-source/#parent-media-source
https://www.w3.org/TR/WebIDL-1/#invalidstateerror
https://w3c.github.io/media-source/#dom-sourcebuffer-updating
https://www.w3.org/TR/WebIDL-1/#invalidstateerror
https://w3c.github.io/media-source/#dom-sourcebuffer-appendwindowend
https://www.w3.org/TR/WebIDL-1/#idl-unrestricted-double
https://w3c.github.io/media-source/#presentation-timestamp
https://w3c.github.io/media-source/#append-window
https://w3c.github.io/media-source/#dom-mediasource-sourcebuffers
https://w3c.github.io/media-source/#parent-media-source
https://w3c.github.io/media-source/#parent-media-source
https://www.w3.org/TR/WebIDL-1/#invalidstateerror
https://w3c.github.io/media-source/#dom-sourcebuffer-updating
https://www.w3.org/TR/WebIDL-1/#invalidstateerror
https://w3c.github.io/media-source/#dom-sourcebuffer-appendwindowstart

onupdatestart of type EventHandler
The event handler for the updatestart event.

onupdate of type EventHandler
The event handler for the update event.

onupdateend of type EventHandler
The event handler for the updateend event.

onerror of type EventHandler
The event handler for the error event.

onabort of type EventHandler
The event handler for the abort event.

3.5 Algorithms
3.5.1 Segment Parser Loop

All SourceBuffer objects have an internal append state variable that keeps track of the high-level
segment parsing state. It is initially set to WAITING_FOR_SEGMENT and can transition to the following
states as data is appended.

Append state name Description

WAITING_FOR_SEGMENT Waiting for the start of an initialization segment or
media segment to be appended.

PARSING_INIT_SEGMENT Currently parsing an initialization segment.

PARSING_MEDIA_SEGMENT Currently parsing a media segment.

The input buffer is a byte buffer that is used to hold unparsed bytes across appendBuffer() calls. The
buffer is empty when the SourceBuffer object is created.

The buffer full flag keeps track of whether appendBuffer() is allowed to accept more bytes. It is set to
false when the SourceBuffer object is created and gets updated as data is appended and removed.

The group start timestamp variable keeps track of the starting timestamp for a new coded frame group in
the "sequence" mode. It is unset when the SourceBuffer object is created and gets updated when the
mode attribute equals "sequence" and the timestampOffset attribute is set, or the coded frame
processing algorithm runs.

The group end timestamp variable stores the highest coded frame end timestamp across all coded
frames in the current coded frame group. It is set to 0 when the SourceBuffer object is created and gets
updated by the coded frame processing algorithm.

NOTE: The group end timestamp stores the highest coded frame end timestamp across all track buffers
in a SourceBuffer. Therefore, care should be taken in setting the mode attribute when appending
multiplexed segments in which the timestamps are not aligned across tracks.

https://www.w3.org/TR/html51/webappapis.html#typedefdef-eventhandlernonnull-eventhandler
https://w3c.github.io/media-source/#dom-evt-updatestart
https://www.w3.org/TR/html51/webappapis.html#typedefdef-eventhandlernonnull-eventhandler
https://w3c.github.io/media-source/#dom-evt-update
https://www.w3.org/TR/html51/webappapis.html#typedefdef-eventhandlernonnull-eventhandler
https://w3c.github.io/media-source/#dom-evt-updateend
https://www.w3.org/TR/html51/webappapis.html#typedefdef-eventhandlernonnull-eventhandler
https://w3c.github.io/media-source/#dom-evt-error
https://www.w3.org/TR/html51/webappapis.html#typedefdef-eventhandlernonnull-eventhandler
https://w3c.github.io/media-source/#dom-evt-abort
https://w3c.github.io/media-source/#sourcebuffer-algorithms
https://w3c.github.io/media-source/#sourcebuffer-segment-parser-loop
https://w3c.github.io/media-source/#sourcebuffer-waiting-for-segment
https://w3c.github.io/media-source/#init-segment
https://w3c.github.io/media-source/#media-segment
https://w3c.github.io/media-source/#init-segment
https://w3c.github.io/media-source/#media-segment
https://w3c.github.io/media-source/#dom-sourcebuffer-appendbuffer
https://w3c.github.io/media-source/#dom-sourcebuffer-appendbuffer
https://w3c.github.io/media-source/#coded-frame-group
https://w3c.github.io/media-source/#dom-appendmode-sequence
https://w3c.github.io/media-source/#dom-sourcebuffer-mode
https://w3c.github.io/media-source/#dom-appendmode-sequence
https://w3c.github.io/media-source/#dom-sourcebuffer-timestampoffset
https://w3c.github.io/media-source/#sourcebuffer-coded-frame-processing
https://w3c.github.io/media-source/#sourcebuffer-coded-frame-processing
https://w3c.github.io/media-source/#coded-frame-end-timestamp
https://w3c.github.io/media-source/#coded-frame
https://w3c.github.io/media-source/#coded-frame
https://w3c.github.io/media-source/#coded-frame-group
https://w3c.github.io/media-source/#sourcebuffer-coded-frame-processing
https://w3c.github.io/media-source/#sourcebuffer-group-end-timestamp
https://w3c.github.io/media-source/#coded-frame-end-timestamp
https://w3c.github.io/media-source/#track-buffer
https://w3c.github.io/media-source/#dom-sourcebuffer
https://w3c.github.io/media-source/#dom-sourcebuffer-mode

The generate timestamps flag is a boolean variable that keeps track of whether timestamps need to be
generated for the coded frames passed to the coded frame processing algorithm. This flag is set by
addSourceBuffer() when the SourceBuffer object is created.

When the segment parser loop algorithm is invoked, run the following steps:

1.​ Loop Top: If the input buffer is empty, then jump to the need more data step below.
2.​ If the input buffer contains bytes that violate the SourceBuffer byte stream format specification,

then run the append error algorithm and abort this algorithm.
3.​ Remove any bytes that the byte stream format specifications say MUST be ignored from the start

of the input buffer.
4.​ If the append state equals WAITING_FOR_SEGMENT, then run the following steps:

1.​ If the beginning of the input buffer indicates the start of an initialization segment, set the
append state to PARSING_INIT_SEGMENT.

2.​ If the beginning of the input buffer indicates the start of a media segment, set append
state to PARSING_MEDIA_SEGMENT.

3.​ Jump to the loop top step above.
5.​ If the append state equals PARSING_INIT_SEGMENT, then run the following steps:

1.​ If the input buffer does not contain a complete initialization segment yet, then jump to the
need more data step below.

2.​ Run the initialization segment received algorithm.
3.​ Remove the initialization segment bytes from the beginning of the input buffer.
4.​ Set append state to WAITING_FOR_SEGMENT.
5.​ Jump to the loop top step above.

6.​ If the append state equals PARSING_MEDIA_SEGMENT, then run the following steps:
1.​ If the first initialization segment received flag is false, then run the append error algorithm

and abort this algorithm.
2.​ If the input buffer contains one or more event message boxes, run the event message box

processing algorithm
3.​ If the input buffer contains one or more complete coded frames, then run the coded frame

processing algorithm.
4.​ ​

NOTE: The frequency at which the coded frame processing algorithm is run is
implementation-specific. The coded frame processing algorithm MAY be called when the
input buffer contains the complete media segment or it MAY be called multiple times as
complete coded frames are added to the input buffer.

5.​ If this SourceBuffer is full and cannot accept more media data, then set the buffer full flag
to true.

6.​ If the input buffer does not contain a complete media segment, then jump to the need
more data step below.

7.​ Remove the media segment bytes from the beginning of the input buffer.
8.​ Set append state to WAITING_FOR_SEGMENT.
9.​ Jump to the loop top step above.

7.​ Need more data: Return control to the calling algorithm.

3.5.2 Reset Parser State

When the parser state needs to be reset, run the following steps:

https://w3c.github.io/media-source/#coded-frame
https://w3c.github.io/media-source/#sourcebuffer-coded-frame-processing
https://w3c.github.io/media-source/#dom-mediasource-addsourcebuffer
https://w3c.github.io/media-source/#sourcebuffer-input-buffer
https://w3c.github.io/media-source/#sourcebuffer-input-buffer
https://w3c.github.io/media-source/#sourcebuffer-byte-stream-format-spec
https://w3c.github.io/media-source/#sourcebuffer-append-error
https://w3c.github.io/media-source/#byte-stream-format-specs
https://w3c.github.io/media-source/#sourcebuffer-input-buffer
https://w3c.github.io/media-source/#sourcebuffer-append-state
https://w3c.github.io/media-source/#sourcebuffer-waiting-for-segment
https://w3c.github.io/media-source/#sourcebuffer-input-buffer
https://w3c.github.io/media-source/#init-segment
https://w3c.github.io/media-source/#sourcebuffer-append-state
https://w3c.github.io/media-source/#sourcebuffer-parsing-init-segment
https://w3c.github.io/media-source/#sourcebuffer-input-buffer
https://w3c.github.io/media-source/#media-segment
https://w3c.github.io/media-source/#sourcebuffer-append-state
https://w3c.github.io/media-source/#sourcebuffer-append-state
https://w3c.github.io/media-source/#sourcebuffer-parsing-media-segment
https://w3c.github.io/media-source/#sourcebuffer-append-state
https://w3c.github.io/media-source/#sourcebuffer-parsing-init-segment
https://w3c.github.io/media-source/#sourcebuffer-input-buffer
https://w3c.github.io/media-source/#init-segment
https://w3c.github.io/media-source/#sourcebuffer-init-segment-received
https://w3c.github.io/media-source/#init-segment
https://w3c.github.io/media-source/#sourcebuffer-input-buffer
https://w3c.github.io/media-source/#sourcebuffer-append-state
https://w3c.github.io/media-source/#sourcebuffer-waiting-for-segment
https://w3c.github.io/media-source/#sourcebuffer-append-state
https://w3c.github.io/media-source/#sourcebuffer-parsing-media-segment
https://w3c.github.io/media-source/#first-init-segment-received-flag
https://w3c.github.io/media-source/#sourcebuffer-append-error
https://w3c.github.io/media-source/#sourcebuffer-input-buffer
https://w3c.github.io/media-source/#coded-frame
https://w3c.github.io/media-source/#sourcebuffer-coded-frame-processing
https://w3c.github.io/media-source/#sourcebuffer-coded-frame-processing
https://w3c.github.io/media-source/#dom-sourcebuffer
https://w3c.github.io/media-source/#sourcebuffer-buffer-full-flag
https://w3c.github.io/media-source/#sourcebuffer-input-buffer
https://w3c.github.io/media-source/#media-segment
https://w3c.github.io/media-source/#media-segment
https://w3c.github.io/media-source/#sourcebuffer-input-buffer
https://w3c.github.io/media-source/#sourcebuffer-append-state
https://w3c.github.io/media-source/#sourcebuffer-waiting-for-segment
https://w3c.github.io/media-source/#sourcebuffer-reset-parser-state

1.​ If the append state equals PARSING_MEDIA_SEGMENT and the input buffer contains some
complete coded frames, then run the coded frame processing algorithm until all of these complete
coded frames have been processed.

2.​ Unset the last decode timestamp on all track buffers.
3.​ Unset the last frame duration on all track buffers.
4.​ Unset the highest end timestamp on all track buffers.
5.​ Set the need random access point flag on all track buffers to true.
6.​ If the mode attribute equals "sequence", then set the group start timestamp to the group end

timestamp
7.​ Remove all bytes from the input buffer.
8.​ Set append state to WAITING_FOR_SEGMENT.

3.5.3 Append Error Algorithm

This algorithm is called when an error occurs during an append.

1.​ Run the reset parser state algorithm.
2.​ Set the updating attribute to false.
3.​ Queue a task to fire a simple event named error at this SourceBuffer object.
4.​ Queue a task to fire a simple event named updateend at this SourceBuffer object.
5.​ Run the end of stream algorithm with the error parameter set to "decode".

3.5.4 Prepare Append Algorithm

When an append operation begins, the follow steps are run to validate and prepare the SourceBuffer.

1.​ If the SourceBuffer has been removed from the sourceBuffers attribute of the parent media
source then throw an InvalidStateError exception and abort these steps.

2.​ If the updating attribute equals true, then throw an InvalidStateError exception and abort
these steps.

3.​ If the HTMLMediaElement.error attribute is not null, then throw an InvalidStateError exception
and abort these steps.

4.​ If the readyState attribute of the parent media source is in the "ended" state then run the
following steps:

1.​ Set the readyState attribute of the parent media source to "open"
2.​ Queue a task to fire a simple event named sourceopen at the parent media source.

5.​ Run the coded frame eviction algorithm.
6.​ If the buffer full flag equals true, then throw a QuotaExceededError exception and abort these

step.​
NOTE: This is the signal that the implementation was unable to evict enough data to
accommodate the append or the append is too big. The web application SHOULD use remove()
to explicitly free up space and/or reduce the size of the append.

3.5.5 Buffer Append Algorithm

When appendBuffer() is called, the following steps are run to process the appended data.

1.​ Run the segment parser loop algorithm.

https://w3c.github.io/media-source/#sourcebuffer-append-state
https://w3c.github.io/media-source/#sourcebuffer-parsing-media-segment
https://w3c.github.io/media-source/#sourcebuffer-input-buffer
https://w3c.github.io/media-source/#coded-frame
https://w3c.github.io/media-source/#sourcebuffer-coded-frame-processing
https://w3c.github.io/media-source/#coded-frame
https://w3c.github.io/media-source/#last-decode-timestamp
https://w3c.github.io/media-source/#track-buffer
https://w3c.github.io/media-source/#last-frame-duration
https://w3c.github.io/media-source/#track-buffer
https://w3c.github.io/media-source/#highest-end-timestamp
https://w3c.github.io/media-source/#track-buffer
https://w3c.github.io/media-source/#need-RAP-flag
https://w3c.github.io/media-source/#track-buffer
https://w3c.github.io/media-source/#dom-sourcebuffer-mode
https://w3c.github.io/media-source/#dom-appendmode-sequence
https://w3c.github.io/media-source/#sourcebuffer-group-start-timestamp
https://w3c.github.io/media-source/#sourcebuffer-group-end-timestamp
https://w3c.github.io/media-source/#sourcebuffer-group-end-timestamp
https://w3c.github.io/media-source/#sourcebuffer-input-buffer
https://w3c.github.io/media-source/#sourcebuffer-append-state
https://w3c.github.io/media-source/#sourcebuffer-waiting-for-segment
https://w3c.github.io/media-source/#sourcebuffer-append-error
https://w3c.github.io/media-source/#sourcebuffer-reset-parser-state
https://w3c.github.io/media-source/#dom-sourcebuffer-updating
https://www.w3.org/TR/html51/webappapis.html#queuing
https://www.w3.org/TR/html51/infrastructure.html#fire
https://w3c.github.io/media-source/#dom-evt-error
https://w3c.github.io/media-source/#dom-sourcebuffer
https://www.w3.org/TR/html51/webappapis.html#queuing
https://www.w3.org/TR/html51/infrastructure.html#fire
https://w3c.github.io/media-source/#dom-evt-updateend
https://w3c.github.io/media-source/#dom-sourcebuffer
https://w3c.github.io/media-source/#end-of-stream-algorithm
https://w3c.github.io/media-source/#dom-endofstreamerror-decode
https://w3c.github.io/media-source/#sourcebuffer-prepare-append
https://w3c.github.io/media-source/#dom-sourcebuffer
https://w3c.github.io/media-source/#dom-sourcebuffer
https://w3c.github.io/media-source/#dom-mediasource-sourcebuffers
https://w3c.github.io/media-source/#parent-media-source
https://w3c.github.io/media-source/#parent-media-source
https://www.w3.org/TR/WebIDL-1/#invalidstateerror
https://w3c.github.io/media-source/#dom-sourcebuffer-updating
https://www.w3.org/TR/WebIDL-1/#invalidstateerror
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-htmlmediaelement-error
https://www.w3.org/TR/WebIDL-1/#invalidstateerror
https://w3c.github.io/media-source/#dom-mediasource-readystate
https://w3c.github.io/media-source/#parent-media-source
https://w3c.github.io/media-source/#dom-readystate-ended
https://w3c.github.io/media-source/#dom-mediasource-readystate
https://w3c.github.io/media-source/#parent-media-source
https://w3c.github.io/media-source/#dom-readystate-open
https://www.w3.org/TR/html51/webappapis.html#queuing
https://www.w3.org/TR/html51/infrastructure.html#fire
https://w3c.github.io/media-source/#dom-evt-sourceopen
https://w3c.github.io/media-source/#parent-media-source
https://w3c.github.io/media-source/#sourcebuffer-coded-frame-eviction
https://w3c.github.io/media-source/#sourcebuffer-buffer-full-flag
https://www.w3.org/TR/WebIDL-1/#quotaexceedederror
https://w3c.github.io/media-source/#dom-sourcebuffer-remove
https://w3c.github.io/media-source/#sourcebuffer-buffer-append
https://w3c.github.io/media-source/#dom-sourcebuffer-appendbuffer
https://w3c.github.io/media-source/#sourcebuffer-segment-parser-loop

2.​ If the segment parser loop algorithm in the previous step was aborted, then abort this algorithm.
3.​ Set the updating attribute to false.
4.​ Queue a task to fire a simple event named update at this SourceBuffer object.
5.​ Queue a task to fire a simple event named updateend at this SourceBuffer object.

3.5.6 Range Removal

Follow these steps when a caller needs to initiate a JavaScript visible range removal operation that
blocks other SourceBuffer updates:

1.​ Let start equal the starting presentation timestamp for the removal range, in seconds measured
from presentation start time.

2.​ Let end equal the end presentation timestamp for the removal range, in seconds measured from
presentation start time.

3.​ Set the updating attribute to true.
4.​ Queue a task to fire a simple event named updatestart at this SourceBuffer object.
5.​ Return control to the caller and run the rest of the steps asynchronously.
6.​ Run the coded frame removal algorithm with start and end as the start and end of the removal

range.
7.​ Set the updating attribute to false.
8.​ Queue a task to fire a simple event named update at this SourceBuffer object.
9.​ Queue a task to fire a simple event named updateend at this SourceBuffer object.

3.5.7 Initialization Segment Received

The following steps are run when the segment parser loop successfully parses a complete initialization
segment:

Each SourceBuffer object has an internal first initialization segment received flag that tracks whether the
first initialization segment has been appended and received by this algorithm. This flag is set to false
when the SourceBuffer is created and updated by the algorithm below.

1.​ Update the duration attribute if it currently equals NaN:​
If the initialization segment contains a duration:​
Run the duration change algorithm with new duration set to the duration in the initialization
segment.​
Otherwise:​
Run the duration change algorithm with new duration set to positive Infinity.

2.​ If the initialization segment has no audio, video, or text tracks, then run the append error
algorithm and abort these steps.

3.​ If the first initialization segment received flag is true, then run the following steps:
1.​ Verify the following properties. If any of the checks fail then run the append error algorithm

and abort these steps.
1.​ The number of audio, video, and text tracks match what was in the first

initialization segment.
2.​ The codecs for each track, match what was specified in the first initialization

segment.
3.​ If more than one track for a single type are present (e.g., 2 audio tracks), then the

Track IDs match the ones in the first initialization segment.

https://w3c.github.io/media-source/#sourcebuffer-segment-parser-loop
https://w3c.github.io/media-source/#dom-sourcebuffer-updating
https://www.w3.org/TR/html51/webappapis.html#queuing
https://www.w3.org/TR/html51/infrastructure.html#fire
https://w3c.github.io/media-source/#dom-evt-update
https://w3c.github.io/media-source/#dom-sourcebuffer
https://www.w3.org/TR/html51/webappapis.html#queuing
https://www.w3.org/TR/html51/infrastructure.html#fire
https://w3c.github.io/media-source/#dom-evt-updateend
https://w3c.github.io/media-source/#dom-sourcebuffer
https://w3c.github.io/media-source/#sourcebuffer-range-removal
https://w3c.github.io/media-source/#presentation-timestamp
https://w3c.github.io/media-source/#presentation-start-time
https://w3c.github.io/media-source/#presentation-timestamp
https://w3c.github.io/media-source/#presentation-start-time
https://w3c.github.io/media-source/#dom-sourcebuffer-updating
https://www.w3.org/TR/html51/webappapis.html#queuing
https://www.w3.org/TR/html51/infrastructure.html#fire
https://w3c.github.io/media-source/#dom-evt-updatestart
https://w3c.github.io/media-source/#dom-sourcebuffer
https://w3c.github.io/media-source/#sourcebuffer-coded-frame-removal
https://w3c.github.io/media-source/#dom-sourcebuffer-updating
https://www.w3.org/TR/html51/webappapis.html#queuing
https://www.w3.org/TR/html51/infrastructure.html#fire
https://w3c.github.io/media-source/#dom-evt-update
https://w3c.github.io/media-source/#dom-sourcebuffer
https://www.w3.org/TR/html51/webappapis.html#queuing
https://www.w3.org/TR/html51/infrastructure.html#fire
https://w3c.github.io/media-source/#dom-evt-updateend
https://w3c.github.io/media-source/#dom-sourcebuffer
https://w3c.github.io/media-source/#sourcebuffer-init-segment-received
https://w3c.github.io/media-source/#sourcebuffer-segment-parser-loop
https://w3c.github.io/media-source/#init-segment
https://w3c.github.io/media-source/#init-segment
https://w3c.github.io/media-source/#init-segment
https://w3c.github.io/media-source/#dom-mediasource-duration
https://w3c.github.io/media-source/#duration-change-algorithm
https://w3c.github.io/media-source/#duration-change-algorithm
https://w3c.github.io/media-source/#init-segment
https://w3c.github.io/media-source/#sourcebuffer-append-error
https://w3c.github.io/media-source/#sourcebuffer-append-error
https://w3c.github.io/media-source/#first-init-segment-received-flag
https://w3c.github.io/media-source/#sourcebuffer-append-error
https://w3c.github.io/media-source/#init-segment
https://w3c.github.io/media-source/#init-segment
https://w3c.github.io/media-source/#init-segment
https://w3c.github.io/media-source/#track-id
https://w3c.github.io/media-source/#init-segment

2.​ Add the appropriate track descriptions from this initialization segment to each of the track
buffers.

3.​ Set the need random access point flag on all track buffers to true.
4.​ Let active track flag equal false.
5.​ If the first initialization segment received flag is false, then run the following steps:

1.​ If the initialization segment contains tracks with codecs the user agent does not support,
then run the append error algorithm and abort these steps.​
NOTE: User agents MAY consider codecs, that would otherwise be supported, as "not
supported" here if the codecs were not specified in the type parameter passed to
addSourceBuffer().​
For example, MediaSource.isTypeSupported('video/webm;codecs="vp8,vorbis"') may
return true, but if addSourceBuffer() was called with 'video/webm;codecs="vp8"' and a
Vorbis track appears in the initialization segment, then the user agent MAY use this step to
trigger a decode error.

2.​ For each audio track in the initialization segment, run following steps:
1.​ Let audio byte stream track ID be the Track ID for the current track being

processed.
2.​ Let audio language be a BCP 47 language tag for the language specified in the

initialization segment for this track or an empty string if no language info is present.
3.​ If audio language equals the 'und' BCP 47 value, then assign an empty string to

audio language.
4.​ Let audio label be a label specified in the initialization segment for this track or an

empty string if no label info is present.
5.​ Let audio kinds be a sequence of kind strings specified in the initialization segment

for this track or a sequence with a single empty string element in it if no kind
information is provided.

6.​ For each value in audio kinds, run the following steps:
1.​ Let current audio kind equal the value from audio kinds for this iteration of

the loop.
2.​ Let new audio track be a new AudioTrack object.
3.​ Generate a unique ID and assign it to the id property on new audio track.
4.​ Assign audio language to the language property on new audio track.
5.​ Assign audio label to the label property on new audio track.
6.​ Assign current audio kind to the kind property on new audio track.
7.​ If audioTracks.length equals 0, then run the following steps:

1.​ Set the enabled property on new audio track to true.
2.​ Set active track flag to true.

8.​ Add new audio track to the audioTracks attribute on this SourceBuffer
object.​
NOTE​
This should trigger AudioTrackList [HTML] logic to queue a task to fire a
trusted event named addtrack, that does not bubble and is not cancelable,
and that uses the TrackEvent interface, with the track attribute initialized
to new audio track, at the AudioTrackList object referenced by the
audioTracks attribute on this SourceBuffer object.

9.​ Add new audio track to the audioTracks attribute on the
HTMLMediaElement.​
NOTE: This should trigger AudioTrackList [HTML] logic to queue a task
to fire a trusted event named addtrack, that does not bubble and is not
cancelable, and that uses the TrackEvent interface, with the track

https://w3c.github.io/media-source/#track-description
https://w3c.github.io/media-source/#init-segment
https://w3c.github.io/media-source/#track-buffer
https://w3c.github.io/media-source/#track-buffer
https://w3c.github.io/media-source/#need-RAP-flag
https://w3c.github.io/media-source/#first-init-segment-received-flag
https://w3c.github.io/media-source/#init-segment
https://w3c.github.io/media-source/#sourcebuffer-append-error
https://w3c.github.io/media-source/#dom-mediasource-addsourcebuffer
https://w3c.github.io/media-source/#dom-mediasource-addsourcebuffer
https://w3c.github.io/media-source/#init-segment
https://w3c.github.io/media-source/#init-segment
https://w3c.github.io/media-source/#track-id
https://w3c.github.io/media-source/#init-segment
https://w3c.github.io/media-source/#init-segment
https://w3c.github.io/media-source/#init-segment
https://www.w3.org/TR/html51/semantics-embedded-content.html#audiotrack-audiotrack
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-audiotrack-id
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-audiotrack-language
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-audiotrack-label
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-audiotrack-kind
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-htmlmediaelement-audiotracks
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-audiotracklist-length
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-audiotrack-enabled
https://w3c.github.io/media-source/#dom-sourcebuffer-audiotracks
https://w3c.github.io/media-source/#dom-sourcebuffer
https://www.w3.org/TR/html51/semantics-embedded-content.html#audiotracklist-audiotracklist
https://w3c.github.io/media-source/#bib-html
https://www.w3.org/TR/html51/webappapis.html#queuing
https://www.w3.org/TR/html51/infrastructure.html#trusted
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-mediatracklist-onaddtrack
https://www.w3.org/TR/html51/semantics-embedded-content.html#trackevent-trackevent
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-trackevent-track
https://www.w3.org/TR/html51/semantics-embedded-content.html#audiotracklist-audiotracklist
https://w3c.github.io/media-source/#dom-sourcebuffer-audiotracks
https://w3c.github.io/media-source/#dom-sourcebuffer
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-htmlmediaelement-audiotracks
https://www.w3.org/TR/html51/semantics-embedded-content.html#audiotracklist-audiotracklist
https://w3c.github.io/media-source/#bib-html
https://www.w3.org/TR/html51/webappapis.html#queuing
https://www.w3.org/TR/html51/infrastructure.html#trusted
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-mediatracklist-onaddtrack
https://www.w3.org/TR/html51/semantics-embedded-content.html#trackevent-trackevent
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-trackevent-track

attribute initialized to new audio track, at the AudioTrackList object
referenced by the audioTracks attribute on the HTMLMediaElement.

7.​ Create a new track buffer to store coded frames for this track.
8.​ Add the track description for this track to the track buffer.

3.​ For each video track in the initialization segment, run following steps:
1.​ Let video byte stream track ID be the Track ID for the current track being

processed.
2.​ Let video language be a BCP 47 language tag for the language specified in the

initialization segment for this track or an empty string if no language info is present.
3.​ If video language equals the 'und' BCP 47 value, then assign an empty string to

video language.
4.​ Let video label be a label specified in the initialization segment for this track or an

empty string if no label info is present.
5.​ Let video kinds be a sequence of kind strings specified in the initialization segment

for this track or a sequence with a single empty string element in it if no kind
information is provided.

6.​ For each value in video kinds, run the following steps:
1.​ Let current video kind equal the value from video kinds for this iteration of

the loop.
2.​ Let new video track be a new VideoTrack object.
3.​ Generate a unique ID and assign it to the id property on new video track.
4.​ Assign video language to the language property on new video track.
5.​ Assign video label to the label property on new video track.
6.​ Assign current video kind to the kind property on new video track.
7.​ If videoTracks.length equals 0, then run the following steps:

1.​ Set the selected property on new video track to true.
2.​ Set active track flag to true.

8.​ Add new video track to the videoTracks attribute on this SourceBuffer
object.​
NOTE: This should trigger VideoTrackList [HTML] logic to queue a task
to fire a trusted event named addtrack, that does not bubble and is not
cancelable, and that uses the TrackEvent interface, with the track
attribute initialized to new video track, at the VideoTrackList object
referenced by the videoTracks attribute on this SourceBuffer object.

9.​ Add new video track to the videoTracks attribute on the
HTMLMediaElement.​
NOTE: This should trigger VideoTrackList [HTML] logic to queue a task
to fire a trusted event named addtrack, that does not bubble and is not
cancelable, and that uses the TrackEvent interface, with the track
attribute initialized to new video track, at the VideoTrackList object
referenced by the videoTracks attribute on the HTMLMediaElement.

7.​ Create a new track buffer to store coded frames for this track.
8.​ Add the track description for this track to the track buffer.

4.​ For each text track in the initialization segment, run following steps:
1.​ Let text byte stream track ID be the Track ID for the current track being processed.
2.​ Let text language be a BCP 47 language tag for the language specified in the

initialization segment for this track or an empty string if no language info is present.
3.​ If text language equals the 'und' BCP 47 value, then assign an empty string to text

language.
4.​ Let text label be a label specified in the initialization segment for this track or an

empty string if no label info is present.

https://www.w3.org/TR/html51/semantics-embedded-content.html#audiotracklist-audiotracklist
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-htmlmediaelement-audiotracks
https://w3c.github.io/media-source/#track-buffer
https://w3c.github.io/media-source/#coded-frame
https://w3c.github.io/media-source/#track-description
https://w3c.github.io/media-source/#track-buffer
https://w3c.github.io/media-source/#init-segment
https://w3c.github.io/media-source/#track-id
https://w3c.github.io/media-source/#init-segment
https://w3c.github.io/media-source/#init-segment
https://w3c.github.io/media-source/#init-segment
https://www.w3.org/TR/html51/semantics-embedded-content.html#videotrack-videotrack
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-videotrack-id
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-videotrack-language
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-videotrack-label
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-videotrack-kind
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-htmlmediaelement-videotracks
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-videotracklist-length
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-videotrack-selected
https://w3c.github.io/media-source/#dom-sourcebuffer-videotracks
https://w3c.github.io/media-source/#dom-sourcebuffer
https://www.w3.org/TR/html51/semantics-embedded-content.html#videotracklist-videotracklist
https://w3c.github.io/media-source/#bib-html
https://www.w3.org/TR/html51/webappapis.html#queuing
https://www.w3.org/TR/html51/infrastructure.html#trusted
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-mediatracklist-onaddtrack
https://www.w3.org/TR/html51/semantics-embedded-content.html#trackevent-trackevent
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-trackevent-track
https://www.w3.org/TR/html51/semantics-embedded-content.html#videotracklist-videotracklist
https://w3c.github.io/media-source/#dom-sourcebuffer-videotracks
https://w3c.github.io/media-source/#dom-sourcebuffer
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-htmlmediaelement-videotracks
https://www.w3.org/TR/html51/semantics-embedded-content.html#videotracklist-videotracklist
https://w3c.github.io/media-source/#bib-html
https://www.w3.org/TR/html51/webappapis.html#queuing
https://www.w3.org/TR/html51/infrastructure.html#trusted
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-mediatracklist-onaddtrack
https://www.w3.org/TR/html51/semantics-embedded-content.html#trackevent-trackevent
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-trackevent-track
https://www.w3.org/TR/html51/semantics-embedded-content.html#videotracklist-videotracklist
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-htmlmediaelement-videotracks
https://w3c.github.io/media-source/#track-buffer
https://w3c.github.io/media-source/#coded-frame
https://w3c.github.io/media-source/#track-description
https://w3c.github.io/media-source/#track-buffer
https://w3c.github.io/media-source/#init-segment
https://w3c.github.io/media-source/#track-id
https://w3c.github.io/media-source/#init-segment
https://w3c.github.io/media-source/#init-segment

5.​ Let text kinds be a sequence of kind strings specified in the initialization segment
for this track or a sequence with a single empty string element in it if no kind
information is provided.

6.​ For each value in text kinds, run the following steps:
1.​ Let current text kind equal the value from text kinds for this iteration of the

loop.
2.​ Let new text track be a new TextTrack object.
3.​ Generate a unique ID and assign it to the id property on new text track.
4.​ Assign text language to the language property on new text track.
5.​ Assign text label to the label property on new text track.
6.​ Assign current text kind to the kind property on new text track.
7.​ Populate the remaining properties on new text track with the appropriate

information from the initialization segment.
8.​ If the mode property on new text track equals "showing" or "hidden", then

set active track flag to true.
9.​ Add new text track to the textTracks attribute on this SourceBuffer

object.​
NOTE​
This should trigger TextTrackList [HTML] logic to queue a task to fire a
trusted event named addtrack, that does not bubble and is not cancelable,
and that uses the TrackEvent interface, with the track attribute initialized
to new text track, at the TextTrackList object referenced by the
textTracks attribute on this SourceBuffer object.

10.​Add new text track to the textTracks attribute on the HTMLMediaElement.​
NOTE​
This should trigger TextTrackList [HTML] logic to queue a task to fire a
trusted event named addtrack, that does not bubble and is not
cancelable, and that uses the TrackEvent interface, with the track
attribute initialized to new text track, at the TextTrackList object
referenced by the textTracks attribute on the HTMLMediaElement.

7.​ Create a new track buffer to store coded frames for this track.
8.​ Add the track description for this track to the track buffer.

5.​ If active track flag equals true, then run the following steps:
1.​ Add this SourceBuffer to activeSourceBuffers.
2.​ Queue a task to fire a simple event named addsourcebuffer at

activeSourceBuffers

6.​ Set first initialization segment received flag to true.
6.​ If the HTMLMediaElement.readyState attribute is HAVE_NOTHING, then run the following steps:

1.​ If one or more objects in sourceBuffers have first initialization segment received flag set
to false, then abort these steps.

2.​ Set the HTMLMediaElement.readyState attribute to HAVE_METADATA.​
NOTE​
Per HTMLMediaElement ready states [HTML] logic, HTMLMediaElement.readyState
changes may trigger events on the HTMLMediaElement. This particular transition should
trigger HTMLMediaElement logic to queue a task to fire a simple event named
loadedmetadata at the media element.

7.​ If the active track flag equals true and the HTMLMediaElement.readyState attribute is greater
than HAVE_CURRENT_DATA, then set the HTMLMediaElement.readyState attribute to
HAVE_METADATA.​
NOTE​

https://w3c.github.io/media-source/#init-segment
https://www.w3.org/TR/html51/semantics-embedded-content.html#texttrack-texttrack
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-texttrack-id
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-texttrack-language
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-texttrack-label
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-texttrack-kind
https://w3c.github.io/media-source/#init-segment
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-texttrack-mode
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-texttrackmode-showing
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-texttrackmode-hidden
https://w3c.github.io/media-source/#dom-sourcebuffer-texttracks
https://w3c.github.io/media-source/#dom-sourcebuffer
https://www.w3.org/TR/html51/semantics-embedded-content.html#texttracklist-texttracklist
https://w3c.github.io/media-source/#bib-html
https://www.w3.org/TR/html51/webappapis.html#queuing
https://www.w3.org/TR/html51/infrastructure.html#trusted
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-texttracklist-onaddtrack
https://www.w3.org/TR/html51/semantics-embedded-content.html#trackevent-trackevent
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-trackevent-track
https://www.w3.org/TR/html51/semantics-embedded-content.html#texttracklist-texttracklist
https://w3c.github.io/media-source/#dom-sourcebuffer-texttracks
https://w3c.github.io/media-source/#dom-sourcebuffer
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-htmlmediaelement-texttracks
https://www.w3.org/TR/html51/semantics-embedded-content.html#texttracklist-texttracklist
https://w3c.github.io/media-source/#bib-html
https://www.w3.org/TR/html51/webappapis.html#queuing
https://www.w3.org/TR/html51/infrastructure.html#trusted
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-texttracklist-onaddtrack
https://www.w3.org/TR/html51/semantics-embedded-content.html#trackevent-trackevent
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-trackevent-track
https://www.w3.org/TR/html51/semantics-embedded-content.html#texttracklist-texttracklist
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-htmlmediaelement-texttracks
https://w3c.github.io/media-source/#track-buffer
https://w3c.github.io/media-source/#coded-frame
https://w3c.github.io/media-source/#track-description
https://w3c.github.io/media-source/#track-buffer
https://w3c.github.io/media-source/#dom-sourcebuffer
https://w3c.github.io/media-source/#dom-mediasource-activesourcebuffers
https://www.w3.org/TR/html51/webappapis.html#queuing
https://www.w3.org/TR/html51/infrastructure.html#fire
https://w3c.github.io/media-source/#dom-evt-addsourcebuffer
https://w3c.github.io/media-source/#dom-mediasource-activesourcebuffers
https://w3c.github.io/media-source/#first-init-segment-received-flag
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-htmlmediaelement-readystate
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-htmlmediaelement-have_nothing
https://w3c.github.io/media-source/#dom-mediasource-sourcebuffers
https://w3c.github.io/media-source/#first-init-segment-received-flag
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-htmlmediaelement-readystate
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-htmlmediaelement-have_metadata
https://www.w3.org/TR/html51/semantics-embedded-content.html#ready-states
https://w3c.github.io/media-source/#bib-html
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-htmlmediaelement-readystate
https://www.w3.org/TR/html51/webappapis.html#queuing
https://www.w3.org/TR/html51/infrastructure.html#fire
https://www.w3.org/TR/html51/semantics-embedded-content.html#eventdef-media-loadedmetadata
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-htmlmediaelement-readystate
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-htmlmediaelement-have_current_data
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-htmlmediaelement-readystate
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-htmlmediaelement-have_metadata

Per HTMLMediaElement ready states [HTML] logic, HTMLMediaElement.readyState changes
may trigger events on the HTMLMediaElement.

3.5.8 Event Message Box Processing

Refer to the DASH-IF Event Processing document
3.5.8 Coded Frame Processing

When complete coded frames have been parsed by the segment parser loop then the following steps are
run:

1.​ For each coded frame in the media segment run the following steps:
1.​ Loop Top:​

If generate timestamps flag equals true:
1.​ Let presentation timestamp equal 0.
2.​ Let decode timestamp equal 0.

2.​ Otherwise:
1.​ Let presentation timestamp be a double precision floating point representation

of the coded frame's presentation timestamp in seconds.​
NOTE: Special processing may be needed to determine the presentation and
decode timestamps for timed text frames since this information may not be
explicitly present in the underlying format or may be dependent on the order of
the frames. Some metadata text tracks, like MPEG2-TS PSI data, may only
have implied timestamps. Format specific rules for these situations SHOULD
be in the byte stream format specifications or in separate extension
specifications.

2.​ Let decode timestamp be a double precision floating point representation of
the coded frame's decode timestamp in seconds.​
NOTE: Implementations don't have to internally store timestamps in a double
precision floating point representation. This representation is used here
because it is the represention for timestamps in the HTML spec. The intention
here is to make the behavior clear without adding unnecessary complexity to
the algorithm to deal with the fact that adding a timestampOffset may cause a
timestamp rollover in the underlying timestamp representation used by the
byte stream format. Implementations can use any internal timestamp
representation they wish, but the addition of timestampOffset SHOULD
behave in a similar manner to what would happen if a double precision
floating point representation was used.

3.​ Let frame duration be a double precision floating point representation of the coded frame's
duration in seconds.

4.​ If mode equals "sequence" and group start timestamp is set, then run the following steps:
1.​ Set timestampOffset equal to group start timestamp - presentation timestamp.
2.​ Set group end timestamp equal to group start timestamp.
3.​ Set the need random access point flag on all track buffers to true.
4.​ Unset group start timestamp.

5.​ If timestampOffset is not 0, then run the following steps:
1.​ Add timestampOffset to the presentation timestamp.
2.​ Add timestampOffset to the decode timestamp.

6.​ Let track buffer equal the track buffer that the coded frame will be added to.

https://www.w3.org/TR/html51/semantics-embedded-content.html#ready-states
https://w3c.github.io/media-source/#bib-html
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-htmlmediaelement-readystate
https://w3c.github.io/media-source/#sourcebuffer-coded-frame-processing
https://w3c.github.io/media-source/#coded-frame
https://w3c.github.io/media-source/#sourcebuffer-segment-parser-loop
https://w3c.github.io/media-source/#coded-frame
https://w3c.github.io/media-source/#media-segment
https://w3c.github.io/media-source/#sourcebuffer-generate-timestamps-flag
https://w3c.github.io/media-source/#presentation-timestamp
https://w3c.github.io/media-source/#byte-stream-format-specs
https://w3c.github.io/media-source/#coded-frame-duration
https://w3c.github.io/media-source/#coded-frame-duration
https://w3c.github.io/media-source/#dom-sourcebuffer-mode
https://w3c.github.io/media-source/#dom-appendmode-sequence
https://w3c.github.io/media-source/#sourcebuffer-group-start-timestamp
https://w3c.github.io/media-source/#dom-sourcebuffer-timestampoffset
https://w3c.github.io/media-source/#sourcebuffer-group-start-timestamp
https://w3c.github.io/media-source/#sourcebuffer-group-end-timestamp
https://w3c.github.io/media-source/#sourcebuffer-group-start-timestamp
https://w3c.github.io/media-source/#need-RAP-flag
https://w3c.github.io/media-source/#track-buffer
https://w3c.github.io/media-source/#sourcebuffer-group-start-timestamp
https://w3c.github.io/media-source/#dom-sourcebuffer-timestampoffset
https://w3c.github.io/media-source/#dom-sourcebuffer-timestampoffset
https://w3c.github.io/media-source/#dom-sourcebuffer-timestampoffset
https://w3c.github.io/media-source/#track-buffer

7.​ If last decode timestamp for track buffer is set and decode timestamp is
less than last decode timestamp:​
OR​
If last decode timestamp for track buffer is set and the difference
between decode timestamp and last decode timestamp is greater than 2
times last frame duration:

1.​ If mode equals "segments":​
Set group end timestamp to presentation timestamp.​
If mode equals "sequence":​
Set group start timestamp equal to the group end timestamp.

2.​ Unset the last decode timestamp on all track buffers.
3.​ Unset the last frame duration on all track buffers.
4.​ Unset the highest end timestamp on all track buffers.
5.​ Set the need random access point flag on all track buffers to true.
6.​ Jump to the Loop Top step above to restart processing of the current coded

frame.
8.​ Otherwise:​

Continue.
9.​ Let frame end timestamp equal the sum of presentation timestamp and frame duration.
10.​If presentation timestamp is less than appendWindowStart, then set the need random

access point flag to true, drop the coded frame, and jump to the top of the loop to start
processing the next coded frame.​
NOTE: Some implementations MAY choose to collect some of these coded frames with
presentation timestamp less than appendWindowStart and use them to generate a splice
at the first coded frame that has a presentation timestamp greater than or equal to
appendWindowStart even if that frame is not a random access point. Supporting this
requires multiple decoders or faster than real-time decoding so for now this behavior will
not be a normative requirement.

11.​If frame end timestamp is greater than appendWindowEnd, then set the need random
access point flag to true, drop the coded frame, and jump to the top of the loop to start
processing the next coded frame.​
NOTE​
Some implementations MAY choose to collect coded frames with presentation timestamp
less than appendWindowEnd and frame end timestamp greater than appendWindowEnd
and use them to generate a splice across the portion of the collected coded frames within
the append window at time of collection, and the beginning portion of later processed
frames which only partially overlap the end of the collected coded frames. Supporting this
requires multiple decoders or faster than real-time decoding so for now this behavior will
not be a normative requirement. In conjunction with collecting coded frames that span
appendWindowStart, implementations MAY thus support gapless audio splicing.

12.​If the need random access point flag on track buffer equals true, then run the following
steps:

1.​ If the coded frame is not a random access point, then drop the coded frame and
jump to the top of the loop to start processing the next coded frame.

2.​ Set the need random access point flag on track buffer to false.
13.​Let spliced audio frame be an unset variable for holding audio splice information
14.​Let spliced timed text frame be an unset variable for holding timed text splice information
15.​If last decode timestamp for track buffer is unset and presentation timestamp falls within

the presentation interval of a coded frame in track buffer, then run the following steps:
1.​ Let overlapped frame be the coded frame in track buffer that matches the condition

above.

https://w3c.github.io/media-source/#last-decode-timestamp
https://w3c.github.io/media-source/#last-decode-timestamp
https://w3c.github.io/media-source/#last-decode-timestamp
https://w3c.github.io/media-source/#last-decode-timestamp
https://w3c.github.io/media-source/#last-frame-duration
https://w3c.github.io/media-source/#dom-sourcebuffer-mode
https://w3c.github.io/media-source/#dom-appendmode-segments
https://w3c.github.io/media-source/#sourcebuffer-group-end-timestamp
https://w3c.github.io/media-source/#dom-sourcebuffer-mode
https://w3c.github.io/media-source/#dom-appendmode-sequence
https://w3c.github.io/media-source/#sourcebuffer-group-start-timestamp
https://w3c.github.io/media-source/#sourcebuffer-group-end-timestamp
https://w3c.github.io/media-source/#last-decode-timestamp
https://w3c.github.io/media-source/#track-buffer
https://w3c.github.io/media-source/#last-frame-duration
https://w3c.github.io/media-source/#track-buffer
https://w3c.github.io/media-source/#highest-end-timestamp
https://w3c.github.io/media-source/#track-buffer
https://w3c.github.io/media-source/#need-RAP-flag
https://w3c.github.io/media-source/#track-buffer
https://w3c.github.io/media-source/#coded-frame
https://w3c.github.io/media-source/#coded-frame
https://w3c.github.io/media-source/#dom-sourcebuffer-appendwindowstart
https://w3c.github.io/media-source/#need-RAP-flag
https://w3c.github.io/media-source/#need-RAP-flag
https://w3c.github.io/media-source/#dom-sourcebuffer-appendwindowstart
https://w3c.github.io/media-source/#presentation-timestamp
https://w3c.github.io/media-source/#dom-sourcebuffer-appendwindowstart
https://w3c.github.io/media-source/#random-access-point
https://w3c.github.io/media-source/#dom-sourcebuffer-appendwindowend
https://w3c.github.io/media-source/#need-RAP-flag
https://w3c.github.io/media-source/#need-RAP-flag
https://w3c.github.io/media-source/#dom-sourcebuffer-appendwindowend
https://w3c.github.io/media-source/#dom-sourcebuffer-appendwindowend
https://w3c.github.io/media-source/#dom-sourcebuffer-appendwindowstart
https://w3c.github.io/media-source/#need-RAP-flag
https://w3c.github.io/media-source/#random-access-point
https://w3c.github.io/media-source/#need-RAP-flag
https://w3c.github.io/media-source/#last-decode-timestamp
https://w3c.github.io/media-source/#presentation-interval
https://w3c.github.io/media-source/#coded-frame
https://w3c.github.io/media-source/#coded-frame

2.​ If track buffer contains audio coded frames:​
Run the audio splice frame algorithm and if a splice frame is returned, assign
it to spliced audio frame.​
If track buffer contains video coded frames:

1.​ Let remove window timestamp equal the overlapped frame
presentation timestamp plus 1 microsecond.

2.​ If the presentation timestamp is less than the remove window
timestamp, then remove overlapped frame from track buffer.​
NOTE: This is to compensate for minor errors in frame timestamp
computations that can appear when converting back and forth
between double precision floating point numbers and rationals. This
tolerance allows a frame to replace an existing one as long as it is
within 1 microsecond of the existing frame's start time. Frames that
come slightly before an existing frame are handled by the removal
step below.

3.​ If track buffer contains timed text coded frames:​
Run the text splice frame algorithm and if a splice frame is returned, assign it to
spliced timed text frame.

16.​Remove existing coded frames in track buffer:​
If highest end timestamp for track buffer is not set:​
Remove all coded frames from track buffer that have a presentation timestamp greater
than or equal to presentation timestamp and less than frame end timestamp.​
If highest end timestamp for track buffer is set and less than or equal to
presentation timestamp:​
Remove all coded frames from track buffer that have a presentation timestamp greater
than or equal to highest end timestamp and less than frame end timestamp

17.​Remove all possible decoding dependencies on the coded frames removed in the
previous two steps by removing all coded frames from track buffer between those frames
removed in the previous two steps and the next random access point after those removed
frames.​
NOTE​
Removing all coded frames until the next random access point is a conservative estimate
of the decoding dependencies since it assumes all frames between the removed frames
and the next random access point depended on the frames that were removed.

18.​If spliced audio frame is set:​
Add spliced audio frame to the track buffer.​
If spliced timed text frame is set:​
Add spliced timed text frame to the track buffer.​
Otherwise:​
Add the coded frame with the presentation timestamp, decode timestamp, and frame
duration to the track buffer.

19.​Set last decode timestamp for track buffer to decode timestamp.
20.​Set last frame duration for track buffer to frame duration.
21.​If highest end timestamp for track buffer is unset or frame end timestamp is greater than

highest end timestamp, then set highest end timestamp for track buffer to frame end
timestamp.​
NOTE​
The greater than check is needed because bidirectional prediction between coded frames
can cause presentation timestamp to not be monotonically increasing even though the
decode timestamps are monotonically increasing.

https://w3c.github.io/media-source/#coded-frame
https://w3c.github.io/media-source/#sourcebuffer-audio-splice-frame-algorithm
https://w3c.github.io/media-source/#coded-frame
https://w3c.github.io/media-source/#presentation-timestamp
https://w3c.github.io/media-source/#coded-frame
https://w3c.github.io/media-source/#sourcebuffer-text-splice-frame-algorithm
https://w3c.github.io/media-source/#highest-end-timestamp
https://w3c.github.io/media-source/#coded-frame
https://w3c.github.io/media-source/#presentation-timestamp
https://w3c.github.io/media-source/#highest-end-timestamp
https://w3c.github.io/media-source/#coded-frame
https://w3c.github.io/media-source/#presentation-timestamp
https://w3c.github.io/media-source/#highest-end-timestamp
https://w3c.github.io/media-source/#coded-frame
https://w3c.github.io/media-source/#coded-frame
https://w3c.github.io/media-source/#random-access-point
https://w3c.github.io/media-source/#coded-frame
https://w3c.github.io/media-source/#random-access-point
https://w3c.github.io/media-source/#coded-frame
https://w3c.github.io/media-source/#last-decode-timestamp
https://w3c.github.io/media-source/#last-frame-duration
https://w3c.github.io/media-source/#highest-end-timestamp
https://w3c.github.io/media-source/#highest-end-timestamp
https://w3c.github.io/media-source/#highest-end-timestamp

22.​If frame end timestamp is greater than group end timestamp, then set group end
timestamp equal to frame end timestamp.

23.​If generate timestamps flag equals true, then set timestampOffset equal to frame end
timestamp.

2.​ If the HTMLMediaElement.readyState attribute is HAVE_METADATA and the new coded frames
cause HTMLMediaElement.buffered to have a TimeRange for the current playback position, then
set the HTMLMediaElement.readyState attribute to HAVE_CURRENT_DATA.​
NOTE​
Per HTMLMediaElement ready states [HTML] logic, HTMLMediaElement.readyState changes
may trigger events on the HTMLMediaElement.

3.​ If the HTMLMediaElement.readyState attribute is HAVE_CURRENT_DATA and the new coded
frames cause HTMLMediaElement.buffered to have a TimeRange that includes the current
playback position and some time beyond the current playback position, then set the
HTMLMediaElement.readyState attribute to HAVE_FUTURE_DATA.​
NOTE​
Per HTMLMediaElement ready states [HTML] logic, HTMLMediaElement.readyState changes
may trigger events on the HTMLMediaElement.

4.​ If the HTMLMediaElement.readyState attribute is HAVE_FUTURE_DATA and the new coded frames
cause HTMLMediaElement.buffered to have a TimeRange that includes the current playback
position and enough data to ensure uninterrupted playback, then set the
HTMLMediaElement.readyState attribute to HAVE_ENOUGH_DATA.​
NOTE​
Per HTMLMediaElement ready states [HTML] logic, HTMLMediaElement.readyState changes
may trigger events on the HTMLMediaElement.

5.​ If the media segment contains data beyond the current duration, then run the duration change
algorithm with new duration set to the maximum of the current duration and the group end
timestamp.

3.5.9 Coded Frame Removal Algorithm

Follow these steps when coded frames for a specific time range need to be removed from the
SourceBuffer:

1.​ Let start be the starting presentation timestamp for the removal range.
2.​ Let end be the end presentation timestamp for the removal range.
3.​ For each track buffer in this source buffer, run the following steps:

1.​ Let remove end timestamp be the current value of duration
2.​ If this track buffer has a random access point timestamp that is greater than or equal to

end, then update remove end timestamp to that random access point timestamp.​
NOTE: Random access point timestamps can be different across tracks because the
dependencies between coded frames within a track are usually different than the
dependencies in another track.

3.​ Remove all media data, from this track buffer, that contain starting timestamps greater
than or equal to start and less than the remove end timestamp.

1.​ For each removed frame, if the frame has a decode timestamp equal to the last
decode timestamp for the frame's track, run the following steps:​
If mode equals "segments":​
Set group end timestamp to presentation timestamp.​
If mode equals "sequence":​
Set group start timestamp equal to the group end timestamp.

https://w3c.github.io/media-source/#sourcebuffer-group-end-timestamp
https://w3c.github.io/media-source/#sourcebuffer-group-end-timestamp
https://w3c.github.io/media-source/#sourcebuffer-group-end-timestamp
https://w3c.github.io/media-source/#sourcebuffer-generate-timestamps-flag
https://w3c.github.io/media-source/#dom-sourcebuffer-timestampoffset
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-htmlmediaelement-readystate
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-htmlmediaelement-have_metadata
https://w3c.github.io/media-source/#coded-frame
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-htmlmediaelement-buffered
https://www.w3.org/TR/html51/semantics-embedded-content.html#timeranges-timeranges
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-htmlmediaelement-readystate
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-htmlmediaelement-have_current_data
https://www.w3.org/TR/html51/semantics-embedded-content.html#ready-states
https://w3c.github.io/media-source/#bib-html
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-htmlmediaelement-readystate
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-htmlmediaelement-readystate
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-htmlmediaelement-have_current_data
https://w3c.github.io/media-source/#coded-frame
https://w3c.github.io/media-source/#coded-frame
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-htmlmediaelement-buffered
https://www.w3.org/TR/html51/semantics-embedded-content.html#timeranges-timeranges
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-htmlmediaelement-readystate
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-htmlmediaelement-have_future_data
https://www.w3.org/TR/html51/semantics-embedded-content.html#ready-states
https://w3c.github.io/media-source/#bib-html
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-htmlmediaelement-readystate
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-htmlmediaelement-readystate
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-htmlmediaelement-have_future_data
https://w3c.github.io/media-source/#coded-frame
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-htmlmediaelement-buffered
https://www.w3.org/TR/html51/semantics-embedded-content.html#timeranges-timeranges
https://w3c.github.io/media-source/#enough-data
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-htmlmediaelement-readystate
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-htmlmediaelement-have_enough_data
https://www.w3.org/TR/html51/semantics-embedded-content.html#ready-states
https://w3c.github.io/media-source/#bib-html
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-htmlmediaelement-readystate
https://w3c.github.io/media-source/#media-segment
https://w3c.github.io/media-source/#dom-mediasource-duration
https://w3c.github.io/media-source/#duration-change-algorithm
https://w3c.github.io/media-source/#duration-change-algorithm
https://w3c.github.io/media-source/#sourcebuffer-group-end-timestamp
https://w3c.github.io/media-source/#sourcebuffer-group-end-timestamp
https://w3c.github.io/media-source/#sourcebuffer-coded-frame-removal
https://w3c.github.io/media-source/#coded-frame
https://w3c.github.io/media-source/#presentation-timestamp
https://w3c.github.io/media-source/#presentation-timestamp
https://w3c.github.io/media-source/#track-buffer
https://w3c.github.io/media-source/#dom-mediasource-duration
https://w3c.github.io/media-source/#track-buffer
https://w3c.github.io/media-source/#random-access-point
https://w3c.github.io/media-source/#coded-frame
https://w3c.github.io/media-source/#track-buffer
https://w3c.github.io/media-source/#decode-timestamp
https://w3c.github.io/media-source/#last-decode-timestamp
https://w3c.github.io/media-source/#last-decode-timestamp
https://w3c.github.io/media-source/#dom-sourcebuffer-mode
https://w3c.github.io/media-source/#dom-appendmode-segments
https://w3c.github.io/media-source/#sourcebuffer-group-end-timestamp
https://w3c.github.io/media-source/#presentation-timestamp
https://w3c.github.io/media-source/#dom-sourcebuffer-mode
https://w3c.github.io/media-source/#dom-appendmode-sequence
https://w3c.github.io/media-source/#sourcebuffer-group-start-timestamp
https://w3c.github.io/media-source/#sourcebuffer-group-end-timestamp

2.​ Unset the last decode timestamp on all track buffers.
3.​ Unset the last frame duration on all track buffers.
4.​ Unset the highest end timestamp on all track buffers.
5.​ Set the need random access point flag on all track buffers to true.

4.​ Remove all possible decoding dependencies on the coded frames removed in the
previous step by removing all coded frames from this track buffer between those frames
removed in the previous step and the next random access point after those removed
frames.​
NOTE​
Removing all coded frames until the next random access point is a conservative estimate
of the decoding dependencies since it assumes all frames between the removed frames
and the next random access point depended on the frames that were removed.

5.​ If this object is in activeSourceBuffers, the current playback position is greater than or
equal to start and less than the remove end timestamp, and
HTMLMediaElement.readyState is greater than HAVE_METADATA, then set the
HTMLMediaElement.readyState attribute to HAVE_METADATA and stall playback.​
NOTE​
Per HTMLMediaElement ready states [HTML] logic, HTMLMediaElement.readyState
changes may trigger events on the HTMLMediaElement.​
NOTE​
This transition occurs because media data for the current position has been removed.
Playback cannot progress until media for the current playback position is appended or the
selected/enabled tracks change.

4.​ If buffer full flag equals true and this object is ready to accept more bytes, then set the buffer full
flag to false.

3.5.10 Coded Frame Eviction Algorithm

This algorithm is run to free up space in this source buffer when new data is appended.

1.​ Let new data equal the data that is about to be appended to this SourceBuffer.
2.​ If the buffer full flag equals false, then abort these steps.
3.​ Let removal ranges equal a list of presentation time ranges that can be evicted from the

presentation to make room for the new data.​
NOTE: Implementations MAY use different methods for selecting removal ranges so web
applications SHOULD NOT depend on a specific behavior. The web application can use the
buffered attribute to observe whether portions of the buffered data have been evicted.

4.​ For each range in removal ranges, run the coded frame removal algorithm with start and end
equal to the removal range start and end timestamp respectively.

3.5.11 Audio Splice Frame Algorithm

Follow these steps when the coded frame processing algorithm needs to generate a splice frame for two
overlapping audio coded frames:

1.​ Let track buffer be the track buffer that will contain the splice.
2.​ Let new coded frame be the new coded frame, that is being added to track buffer, which triggered

the need for a splice.
3.​ Let presentation timestamp be the presentation timestamp for new coded frame

https://w3c.github.io/media-source/#last-decode-timestamp
https://w3c.github.io/media-source/#track-buffer
https://w3c.github.io/media-source/#last-frame-duration
https://w3c.github.io/media-source/#track-buffer
https://w3c.github.io/media-source/#highest-end-timestamp
https://w3c.github.io/media-source/#track-buffer
https://w3c.github.io/media-source/#need-RAP-flag
https://w3c.github.io/media-source/#track-buffer
https://w3c.github.io/media-source/#coded-frame
https://w3c.github.io/media-source/#coded-frame
https://w3c.github.io/media-source/#track-buffer
https://w3c.github.io/media-source/#random-access-point
https://w3c.github.io/media-source/#coded-frame
https://w3c.github.io/media-source/#random-access-point
https://w3c.github.io/media-source/#dom-mediasource-activesourcebuffers
https://www.w3.org/TR/html51/semantics-embedded-content.html#current-position
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-htmlmediaelement-readystate
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-htmlmediaelement-have_metadata
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-htmlmediaelement-readystate
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-htmlmediaelement-have_metadata
https://www.w3.org/TR/html51/semantics-embedded-content.html#ready-states
https://w3c.github.io/media-source/#bib-html
https://www.w3.org/TR/html51/semantics-embedded-content.html#dom-htmlmediaelement-readystate
https://www.w3.org/TR/html51/semantics-embedded-content.html#current-position
https://w3c.github.io/media-source/#active-source-buffer-changes
https://w3c.github.io/media-source/#sourcebuffer-buffer-full-flag
https://w3c.github.io/media-source/#sourcebuffer-buffer-full-flag
https://w3c.github.io/media-source/#sourcebuffer-buffer-full-flag
https://w3c.github.io/media-source/#sourcebuffer-coded-frame-eviction
https://w3c.github.io/media-source/#sourcebuffer-buffer-full-flag
https://w3c.github.io/media-source/#dom-sourcebuffer-buffered
https://w3c.github.io/media-source/#sourcebuffer-coded-frame-removal
https://w3c.github.io/media-source/#sourcebuffer-audio-splice-frame-algorithm
https://w3c.github.io/media-source/#sourcebuffer-coded-frame-processing
https://w3c.github.io/media-source/#coded-frame
https://w3c.github.io/media-source/#track-buffer
https://w3c.github.io/media-source/#coded-frame
https://w3c.github.io/media-source/#presentation-timestamp

4.​ Let decode timestamp be the decode timestamp for new coded frame.
5.​ Let frame duration be the coded frame duration of new coded frame.
6.​ Let overlapped frame be the coded frame in track buffer with a presentation interval that contains

presentation timestamp.
7.​ Update presentation timestamp and decode timestamp to the nearest audio sample timestamp

based on sample rate of the audio in overlapped frame. If a timestamp is equidistant from both
audio sample timestamps, then use the higher timestamp (e.g., floor(x * sample_rate + 0.5)
/ sample_rate).​
NOTE: For example, given the following values:

○​ The presentation timestamp of overlapped frame equals 10.
○​ The sample rate of overlapped frame equals 8000 Hz
○​ presentation timestamp equals 10.01255
○​ decode timestamp equals 10.01255

8.​ presentation timestamp and decode timestamp are updated to 10.0125 since 10.01255 is closer
to 10 + 100/8000 (10.0125) than 10 + 101/8000 (10.012625)

9.​ If the user agent does not support crossfading then run the following steps:
○​ Remove overlapped frame from track buffer.
○​ Add a silence frame to track buffer with the following properties:

■​ The presentation timestamp set to the overlapped frame presentation timestamp.
■​ The decode timestamp set to the overlapped frame decode timestamp.
■​ The coded frame duration set to difference between presentation timestamp and

the overlapped frame presentation timestamp.
○​ NOTE: Some implementations MAY apply fades to/from silence to coded frames on either

side of the inserted silence to make the transition less jarring.
○​ Return to caller without providing a splice frame.​

NOTE: This is intended to allow new coded frame to be added to the track buffer as if
overlapped frame had not been in the track buffer to begin with.

10.​Let frame end timestamp equal the sum of presentation timestamp and frame duration.
11.​Let splice end timestamp equal the sum of presentation timestamp and the splice duration of 5

milliseconds.
12.​Let fade out coded frames equal overlapped frame as well as any additional frames in track buffer

that have a presentation timestamp greater than presentation timestamp and less than splice end
timestamp.

13.​Remove all the frames included in fade out coded frames from track buffer.
14.​Return a splice frame with the following properties:

○​ The presentation timestamp set to the overlapped frame presentation timestamp.
○​ The decode timestamp set to the overlapped frame decode timestamp.
○​ The coded frame duration set to difference between frame end timestamp and the

overlapped frame presentation timestamp.
○​ The fade out coded frames equals fade-out coded frames.
○​ The fade in coded frame equal new coded frame.​

NOTE: If the new coded frame is less than 5 milliseconds in duration, then coded frames
that are appended after the new coded frame will be needed to properly render the splice.

○​ The splice timestamp equals presentation timestamp.
15.​NOTE: See the audio splice rendering algorithm for details on how this splice frame is rendered.

3.5.12 Audio Splice Rendering Algorithm

The following steps are run when a spliced frame, generated by the audio splice frame algorithm, needs
to be rendered by the media element:

https://w3c.github.io/media-source/#coded-frame-duration
https://w3c.github.io/media-source/#coded-frame
https://w3c.github.io/media-source/#presentation-interval
https://w3c.github.io/media-source/#presentation-timestamp
https://w3c.github.io/media-source/#presentation-timestamp
https://w3c.github.io/media-source/#presentation-timestamp
https://w3c.github.io/media-source/#decode-timestamp
https://w3c.github.io/media-source/#decode-timestamp
https://w3c.github.io/media-source/#coded-frame-duration
https://w3c.github.io/media-source/#presentation-timestamp
https://w3c.github.io/media-source/#presentation-timestamp
https://w3c.github.io/media-source/#presentation-timestamp
https://w3c.github.io/media-source/#presentation-timestamp
https://w3c.github.io/media-source/#decode-timestamp
https://w3c.github.io/media-source/#decode-timestamp
https://w3c.github.io/media-source/#coded-frame-duration
https://w3c.github.io/media-source/#presentation-timestamp
https://w3c.github.io/media-source/#sourcebuffer-audio-splice-rendering-algorithm
https://w3c.github.io/media-source/#sourcebuffer-audio-splice-rendering-algorithm
https://w3c.github.io/media-source/#sourcebuffer-audio-splice-frame-algorithm

1.​ Let fade out coded frames be the coded frames that are faded out during the splice.
2.​ Let fade in coded frames be the coded frames that are faded in during the splice.
3.​ Let presentation timestamp be the presentation timestamp of the first coded frame in fade out

coded frames.
4.​ Let end timestamp be the sum of the presentation timestamp and the coded frame duration of the

last frame in fade in coded frames.
5.​ Let splice timestamp be the presentation timestamp where the splice starts. This corresponds

with the presentation timestamp of the first frame in fade in coded frames.
6.​ Let splice end timestamp equal splice timestamp plus five milliseconds.
7.​ Let fade out samples be the samples generated by decoding fade out coded frames.
8.​ Trim fade out samples so that it only contains samples between presentation timestamp and

splice end timestamp.
9.​ Let fade in samples be the samples generated by decoding fade in coded frames.
10.​If fade out samples and fade in samples do not have a common sample rate and channel layout,

then convert fade out samples and fade in samples to a common sample rate and channel layout.
11.​Let output samples be a buffer to hold the output samples.
12.​Apply a linear gain fade out with a starting gain of 1 and an ending gain of 0 to the samples

between splice timestamp and splice end timestamp in fade out samples.
13.​Apply a linear gain fade in with a starting gain of 0 and an ending gain of 1 to the samples

between splice timestamp and splice end timestamp in fade in samples.
14.​Copy samples between presentation timestamp to splice timestamp from fade out samples into

output samples.
15.​For each sample between splice timestamp and splice end timestamp, compute the sum of a

sample from fade out samples and the corresponding sample in fade in samples and store the
result in output samples.

16.​Copy samples between splice end timestamp to end timestamp from fade in samples into output
samples.

17.​Render output samples.

NOTE: Here is a graphical representation of this algorithm.

3.5.13 Text Splice Frame Algorithm

Follow these steps when the coded frame processing algorithm needs to generate a splice frame for two
overlapping timed text coded frames:

1.​ Let track buffer be the track buffer that will contain the splice.

https://w3c.github.io/media-source/#coded-frame
https://w3c.github.io/media-source/#coded-frame
https://w3c.github.io/media-source/#presentation-timestamp
https://w3c.github.io/media-source/#presentation-timestamp
https://w3c.github.io/media-source/#coded-frame-duration
https://w3c.github.io/media-source/#presentation-timestamp
https://w3c.github.io/media-source/#presentation-timestamp
https://w3c.github.io/media-source/#sourcebuffer-text-splice-frame-algorithm
https://w3c.github.io/media-source/#sourcebuffer-coded-frame-processing
https://w3c.github.io/media-source/#coded-frame
https://w3c.github.io/media-source/#track-buffer

2.​ Let new coded frame be the new coded frame, that is being added to track buffer, which triggered
the need for a splice.

3.​ Let presentation timestamp be the presentation timestamp for new coded frame
4.​ Let decode timestamp be the decode timestamp for new coded frame.
5.​ Let frame duration be the coded frame duration of new coded frame.
6.​ Let frame end timestamp equal the sum of presentation timestamp and frame duration.
7.​ Let first overlapped frame be the coded frame in track buffer with a presentation interval that

contains presentation timestamp.
8.​ Let overlapped presentation timestamp be the presentation timestamp of the first overlapped

frame.
9.​ Let overlapped frames equal first overlapped frame as well as any additional frames in track

buffer that have a presentation timestamp greater than presentation timestamp and less than
frame end timestamp.

10.​Remove all the frames included in overlapped frames from track buffer.
11.​Update the coded frame duration of the first overlapped frame to presentation timestamp -

overlapped presentation timestamp.
12.​Add first overlapped frame to the track buffer.
13.​Return to caller without providing a splice frame.​

NOTE: This is intended to allow new coded frame to be added to the track buffer as if it hadn't
overlapped any frames in track buffer to begin with.

MSE ISO BMFF Byte Stream Format
https://w3c.github.io/mse-byte-stream-format-isobmff/

3. Initialization Segments

An ISO BMFF initialization segment is defined in this specification as a single File Type Box (ftyp)
followed by a single Movie Box (moov).

The user agent MUST run the append error algorithm if any of the following conditions are met:

1.​ A File Type Box contains a major_brand or compatible_brand that the user agent does not
support.

2.​ A box or field in the Movie Box is encountered that violates the requirements mandated by the
major_brand or one of the compatible_brands in the File Type Box.

3.​ The tracks in the Movie Box contain samples (i.e., the entry_count in the stts, stsc or stco boxes
are not set to zero).

4.​ A Movie Extends (mvex) box is not contained in the Movie (moov) box to indicate that Movie
Fragments are to be expected.

The user agent MUST support setting the offset from media composition time to movie presentation time
by handling an Edit Box (edts) containing a single Edit List Box (elst) that contains a single edit with
media rate one. This edit MAY have a duration of 0 (indicating that it spans all subsequent media) or
MAY have a non-zero duration (indicating the total duration of the movie including fragments).

https://w3c.github.io/media-source/#coded-frame
https://w3c.github.io/media-source/#presentation-timestamp
https://w3c.github.io/media-source/#coded-frame-duration
https://w3c.github.io/media-source/#coded-frame
https://w3c.github.io/media-source/#presentation-interval
https://w3c.github.io/media-source/#presentation-timestamp
https://w3c.github.io/media-source/#presentation-timestamp
https://w3c.github.io/media-source/#coded-frame-duration
https://w3c.github.io/mse-byte-stream-format-isobmff/
https://w3c.github.io/mse-byte-stream-format-isobmff/#iso-init-segments
https://w3c.github.io/media-source/index.html#init-segment
https://w3c.github.io/media-source/index.html#sourcebuffer-append-error

The user agent MUST support codec configurations stored out-of-band in the sample entry, and for
codecs which allow codec configurations stored inband in the samples themselves, the user agent
SHOULD support codec configurations stored inband.

NOTE: For example, for codecs which include SPS and PPS parameter sets, for maximum content
interoperability, user agents are strongly advised to support both inband (e.g., as defined for avc3/avc4)
and out-of-band (e.g., as defined for avc1/2) storage of the SPS and PPS.

Valid top-level boxes such as pdin, free, and sidx are allowed to appear before the moov box. These
boxes MUST be accepted and ignored by the user agent and are not considered part of the initialization
segment in this specification.

The user agent MUST source attribute values for id, kind, label and language for AudioTrack,
VideoTrack and TextTrack objects as described for MPEG-4 ISOBMFF in the in-band tracks spec
[INBANDTRACKS].

4. Media Segments

An ISO BMFF media segment is defined in this specification as one optional Segment Type Box (styp),
followed by zero or more Event Message Boxes (emsg), followed by a single Movie Fragment Box
(moof), followed by one or more Media Data Boxes (mdat). If the Segment Type Box is not present, the
segment MUST conform to the brands listed in the File Type Box (ftyp) in the initialization segment.

Valid top-level boxes other than ftyp, moov, styp, emsg, moof, and mdat are allowed to appear
between the end of an initialization segment or media segment and before the beginning of a new media
segment. These boxes MUST be accepted and ignored by the user agent and are not considered part of
the media segment in this specification.

Note: ftyp, moov, styp, moof, and mdat are defined ISO/IEC 14496-12. emsg is defined in
[MPEG-DASH].

The user agent MUST run the append error algorithm if any of the following conditions are met:

1.​ A box or field in the Movie Fragment Box is encountered that violates the requirements mandated
by the major_brand or one of the compatible_brands in the Segment Type Box in this media
segment or the File Type Box in the initialization segment if a Segment Type Box is not present.

2.​ This media segment contains a Segment Type Box that is not compatible with the File Type Box
in the initialization segment.

3.​ The Movie Fragment Box does not contain at least one Track Fragment Box (traf).
4.​ The Movie Fragment Box does not use movie-fragment relative addressing.
5.​ External data references are being used.
6.​ At least one Track Fragment Box does not contain a Track Fragment Decode Time Box (tfdt)
7.​ The Media Data Boxes do not contain all the samples referenced by the Track Fragment Run

Boxes (trun) of the Movie Fragment Box.
8.​ Inband parameter sets are not present in the appropriate samples and parameter sets are not

present in the last initialization segment appended.

https://w3c.github.io/media-source/index.html#init-segment
https://w3c.github.io/media-source/index.html#init-segment
https://www.w3.org/TR/html51/semantics-embedded-content.html#audiotrack-audiotrack
https://www.w3.org/TR/html51/semantics-embedded-content.html#videotrack-videotrack
https://www.w3.org/TR/html51/semantics-embedded-content.html#texttrack-texttrack
https://w3c.github.io/mse-byte-stream-format-isobmff/#bib-inbandtracks
https://w3c.github.io/mse-byte-stream-format-isobmff/#iso-media-segments
https://w3c.github.io/media-source/index.html#media-segment
https://w3c.github.io/media-source/index.html#init-segment
https://w3c.github.io/media-source/index.html#init-segment
https://w3c.github.io/media-source/index.html#media-segment
https://w3c.github.io/media-source/index.html#media-segment
https://w3c.github.io/media-source/index.html#media-segment
https://w3c.github.io/media-source/index.html#media-segment
http://standards.iso.org/ittf/PubliclyAvailableStandards/c061988_ISO_IEC_14496-12_2012.zip
https://w3c.github.io/media-source/index.html#sourcebuffer-append-error
https://w3c.github.io/media-source/index.html#media-segment
https://w3c.github.io/media-source/index.html#media-segment
https://w3c.github.io/media-source/index.html#init-segment
https://w3c.github.io/media-source/index.html#media-segment
https://w3c.github.io/media-source/index.html#init-segment
https://w3c.github.io/mse-byte-stream-format-isobmff/#dfn-movie-fragment-relative-addressing

A Movie Fragment Box uses movie-fragment relative addressing when the first Track Fragment
Run(trun) box in each Track Fragment Box has the data-offset-present flag set and either of the
following conditions are met:

●​ Every Track Fragment Box in a Movie Fragment Box has the default-base-is-moof flag set.​
NOTE​
This implies that the base-data-offset-present flag is not set.

●​ The Movie Fragment Box contains a single Track Fragment Box and that box does not have the
base-data-offset-present flag set.

5. Random Access Points

A random access point as defined in this specification corresponds to a Stream Access Point of type 1 or
2 as defined in Annex I of ISO/IEC 14496-12.

Sourcing In-band Media Resource Tracks from Media
Containers into HTML
https://dev.w3.org/html5/html-sourcing-inband-tracks/

2. MPEG-DASH
MIME type/subtype: application/dash+xml

[MPEGDASH] defines formats for a media manifest, called MPD (Media Presentation Description), which
references media containers, called media segments. [MPEGDASH] also defines some media segments
formats based on [MPEG2TS] or [ISOBMFF]. Processing of media manifests and segments to expose
tracks to Web applications can be done by the user agent. Alternatively, a web application can process
the manifests and segments to expose tracks. When the user agent processes MPD and media
segments directly, it exposes tracks for AdaptationSet and ContentComponent elements, as defined in
this document. When the Web application processes the MPD and media segments, it passes media
segments to the user agent according to the MediaSource Extension [MSE] specification. In this case,
the tracks are exposed by the user agent according to [MSE]. The Web application may set default track
attributes from MPD data, using the trackDefaults object, that will be used by the user agent to set
attributes not set from initialization segment data.

1.​ Track Order​
If an AdaptationSet contains ContentComponents, a track is created for each
ContentComponent. Otherwise, a track is created for the AdaptationSet itself. The order of tracks
specified in the MPD (Media Presentation Description) format [MPEGDASH] is maintained when
sourcing multiple MPEG DASH tracks into HTML.

2.​ Determining the type of track​
A user agent recognises and supports data from a MPEG DASH media resource as being
equivalent to a HTML track using the content type given by the MPD. The content type of the
track is the first present value out of: The ContentComponents's "contentType" attribute, the
AdaptationSet's "contentType" attribute, or the main type in the AdaptationSet's "mimeType"
attribute (i.e. for "video/mp2t", the main type is "video").

https://w3c.github.io/mse-byte-stream-format-isobmff/#iso-random-access-points
https://w3c.github.io/media-source/index.html#random-access-point
http://standards.iso.org/ittf/PubliclyAvailableStandards/c061988_ISO_IEC_14496-12_2012.zip
https://dev.w3.org/html5/html-sourcing-inband-tracks/
https://dev.w3.org/html5/html-sourcing-inband-tracks/#bib-MPEGDASH
https://dev.w3.org/html5/html-sourcing-inband-tracks/#bib-MPEGDASH
https://dev.w3.org/html5/html-sourcing-inband-tracks/#bib-MPEG2TS
https://dev.w3.org/html5/html-sourcing-inband-tracks/#bib-ISOBMFF
https://dev.w3.org/html5/html-sourcing-inband-tracks/#bib-MSE
https://dev.w3.org/html5/html-sourcing-inband-tracks/#bib-MSE
https://dev.w3.org/html5/html-sourcing-inband-tracks/#bib-MPEGDASH

○​ text track:
■​ the content type is "application" or "text"
■​ the content type is "video" and the AdaptationSet contains one or more ISOBMFF

CEA 608 or 708 caption services.
○​ video track: the content type is "video"
○​ audio track: the content type is "audio"

3.​ Track Attributes for sourced Text Tracks​
Data for sourcing text track attributes may exist in the media content or in the MPD. Text track attribute
values are first sourced from track data in the media container, as described for text track attributes in
MPEG-2 Transport Streams and text track attributes in MPEG-4 ISOBMFF. If a track attribute's value
cannot be determined from the media container, then the track attribute value is sourced from data in the
track's ContentComponent. If the needed attribute or element does not exist on the ContentComponent
(or if the AdaptationSet doesn't contain any ContentComponents), then that attribute or element is
sourced from the AdaptationSet:

Attribute How to source its value

id The track is:

●​ An ISOBMFF CEA 608 caption service:
the string "cc" concatenated with the
value of the 'channel-number' field in the
Accessibility descriptor in the
ContentComponent or AdaptationSet.

●​ An ISOBMFF CEA 708 caption service:
the string "sn" concatenated with the
value of the 'service-number' field in the
Accessibility descriptor in the
ContentComponent or AdaptationSet.

●​ Otherwise, the content of the 'id' attribute
in the ContentComponent, or
AdaptationSet.

kind The track:

●​ Represents a ContentComponent or
AdaptationSet containing a Role
descriptor with schemeIdURI attribute =
"urn:mpeg:dash:role:2011":
○​ "captions": if the Role descriptor's

value is "caption"
○​ "subtitles": if the Role descriptor's

value is "subtitle"
○​ "metadata": otherwise

●​ Is an ISOBMFF CEA 608 or 708 caption
service: "captions".

label The empty string.

https://dev.w3.org/html5/html-sourcing-inband-tracks/#mp4avcceacaption
https://dev.w3.org/html5/html-sourcing-inband-tracks/#mp4avcceacaption
https://dev.w3.org/html5/html-sourcing-inband-tracks/#mpeg2tstta
https://dev.w3.org/html5/html-sourcing-inband-tracks/#mpeg2tstta
https://dev.w3.org/html5/html-sourcing-inband-tracks/#mpeg4tta
https://dev.w3.org/html5/html-sourcing-inband-tracks/#mp4avcceacaption
https://dev.w3.org/html5/html-sourcing-inband-tracks/#mp4avcceacaption
https://dev.w3.org/html5/html-sourcing-inband-tracks/#mp4avcceacaption
https://dev.w3.org/html5/html-sourcing-inband-tracks/#mp4avcceacaption

language The track is:

●​ An ISOBMFF CEA 608 708 caption
service: the value of the 'language' field
in the Accessibility descriptor, in the
ContentComponent or AdaptationSet,
where the corresponding
'channel-number' or 'service-number' is
the same as this track's 'id' attribute. The
empty string if there is no such
corresponding 'channel-number' or
'service-number'.

●​ Otherwise: the content of the 'lang'
attribute in the ContentComponent or
AdaptationSet element.

inBandMetadataTrackDispatch
Type

If kind is "metadata", an XML document containing the
AdaptationSet element and all child Role descriptors
and ContentComponents, and their child Role
descriptors. The empty string otherwise.

mode "disabled"
4.​ ​
Track Attributes for sourced Audio and Video Tracks​
Data for sourcing audio and video track attributes may exist in the media content or in the MPD. Audio
and video track attribute values are first sourced from track data in the media container, as described for
audio and video track attributes in MPEG-2 Transport Streams and audio and video track attributes in
MPEG-4 ISOBMFF. If a track attribute's value cannot be determined from the media container, then the
track attribute value is sourced from data in the track's ContentComponent. If the needed attribute or
element does not exist on the ContentComponent (or if the AdaptationSet doesn't contain any
ContentComponents), then that attribute or element is sourced from the AdaptationSet:
Attribute How to source its value

id Content of the id attribute in the ContentComponent or AdaptationSet
element. Empty string if the id attribute is not present on either element.

kind

Given a Role scheme of "urn:mpeg:dash:role:2011", determine the
kind attribute from the value of the Role descriptors in the
ContentComponent and AdaptationSet elements.

●​ "alternative": if the role is "alternate" but not also "main" or
"commentary", or "dub"

●​ "captions": if the role is "caption" and also "main"
●​ "descriptions": if the role is "description" and also

"supplementary"
●​ "main": if the role is "main" but not also "caption",

"subtitle", or "dub"
●​ "main-desc": if the role is "main" and also "description"
●​ "sign": not used

https://dev.w3.org/html5/html-sourcing-inband-tracks/#mp4avcceacaption
https://dev.w3.org/html5/html-sourcing-inband-tracks/#mp4avcceacaption
https://dev.w3.org/html5/html-sourcing-inband-tracks/#mpeg2tsavta
https://dev.w3.org/html5/html-sourcing-inband-tracks/#mpeg4avta
https://dev.w3.org/html5/html-sourcing-inband-tracks/#mpeg4avta

●​ "subtitles": if the role is "subtitle" and also "main"
●​ "translation": if the role is "dub" and also "main"
●​ "commentary": if the role is "commentary" but not also

"main"
●​ "": otherwise

label The empty string.

language Content of the lang attribute in the ContentComponent or AdaptationSet
element.

5.​ ​
Mapping Text Track content into text track cues​
TextTrackCue objects may be sourced from DASH media content in the WebVTT, TTML, MPEG-2 TS or
ISOBMFF format.​
Media content with the MIME type "text/vtt" is in the WebVTT format and should be exposed as a
VTTCue object as defined in [WEBVTT].​
Media content with the MIME type "application/ttml+xml" is in the TTML format and should be exposed
as an as yet to be defined TTMLCue object. Alternatively, browsers can also map the TTML features to
VTTCue objects [WEBVTT]. Finally, browsers that cannot render TTML [ttaf1-dfxp] format data should
expose them as DataCue objects [HTML51]. In this case, the TTML file must be parsed in its entirety and
then converted into a sequence of TTML Intermediate Synchronic Documents (ISDs). Each ISD creates
a DataCue object with attributes sourced as follows:

Attribute How to source its value

id Decimal representation of the id attribute of the head element in the
XML document. Null if there is no id attribute.

startTime Value of the beginning media time of the active temporal interval of the
ISD.

endTime Value of the ending media time of the active temporal interval of the
ISD.

pauseOnE
xit

"false"

data The (UTF-16 encoded) ArrayBuffer composing the ISD resource.

6.​ ​
Media content with the MIME type "application/mp4" or "video/mp4" is in the [ISOBMFF] format
and should be exposed following the same rules as for ISOBMFF text track.​
Media content with the MIME type "video/mp2t" is in the MPEG-2 TS format and should be
exposed following the same rules as for MPEG-2 TS text track.

4. MPEG-4 ISOBMFF
MIME type/subtype: audio/mp4, video/mp4, application/mp4

1.​ Track Order​
The order of tracks specified by TrackBox (trak) boxes in the MovieBox (moov) container
[ISOBMFF] is maintained when sourcing multiple MPEG-4 tracks into HTML.

2.​ Determining the type of track​
A user agent recognises and supports data from a TrackBox as being equivalent to a HTML track

https://dev.w3.org/html5/html-sourcing-inband-tracks/#bib-WEBVTT
https://dev.w3.org/html5/html-sourcing-inband-tracks/#bib-WEBVTT
https://dev.w3.org/html5/html-sourcing-inband-tracks/#bib-ttaf1-dfxp
https://dev.w3.org/html5/html-sourcing-inband-tracks/#bib-HTML51
https://dev.w3.org/html5/html-sourcing-inband-tracks/#bib-ISOBMFF
https://dev.w3.org/html5/html-sourcing-inband-tracks/#ISOBMFF-TT
https://dev.w3.org/html5/html-sourcing-inband-tracks/#MPEG2TS-TT
https://dev.w3.org/html5/html-sourcing-inband-tracks/#bib-ISOBMFF

based on the value of the handler_type field in the HandlerBox (hdlr) of the MediaBox (mdia) of
the TrackBox:

○​ text track:
■​ the handler_type value is "meta", "subt" or "text"
■​ the handler_type value is "vide" and an ISOBMFF CEA 608 or 708 caption

service is encapsulated in the video track as an SEI message as defined in
[DASHIFIOP].

○​ video track: the handler_type value is "vide"
○​ audio track: the handler_type value is "soun"

3.​ Track Attributes for sourced Text Tracks
Attribute How to source its value

id

For ISOBMFF CEA 608 closed captions, the
string "cc" concatenated with the decimal
representation of the channel_number.

For ISOBMFF CEA 708 closed captions, the
string "sn" concatenated with the decimal
representation of the service_number field in
the 'Caption Channel Service Block'.

Otherwise, the decimal representation of the
track_ID of a TrackHeaderBox (tkhd) in a
TrackBox (trak).

https://dev.w3.org/html5/html-sourcing-inband-tracks/#bib-DASHIFIOP
https://dev.w3.org/html5/html-sourcing-inband-tracks/#mp4avcceacaption
https://dev.w3.org/html5/html-sourcing-inband-tracks/#mp4avcceacaption

kind
●​ "captions":

○​ WebVTT caption:
handler_type is "text" and
SampleEntry format is
WVTTSampleEntry
[ISO14496-30] and the VTT
metadata header Kind is
"captions"

○​ SMPTE-TT caption:
handler_type is "subt" and
SampleEntry format is
XMLSubtitleSampleEntry
[ISO14496-30] and the
namespace is set to
"http://www.smpte-ra.org/sche
mas/2052-1/2013/smpte-tt#ce
a708" [SMPTE2052-11].

○​ An ISOBMFF CEA 608 or 708
caption service.

○​ 3GPP caption: handler_type
is "text" and the SampleEntry
code (format field) is "tx3g".​
NOTE​
Are all sample entries of this
type "captions"?

●​ "subtitles":
○​ WebVTT subtitle:

handler_type is "text" and
SampleEntry format is
WVTTSampleEntry
[ISO14496-30] and the VTT
metadata header Kind is
"subtitles"

○​ SMPTE-TT subtitle:
handler_type is "subt" and
SampleEntry format is
XMLSubtitleSampleEntry
[ISO14496-30] and the
namespace is set to a TTML
namespace that does not
indicate a SMPTE-TT caption.

●​
●​ "metadata": otherwise

label Content of the name field in the HandlerBox.

https://dev.w3.org/html5/html-sourcing-inband-tracks/#bib-ISO14496-30
https://dev.w3.org/html5/html-sourcing-inband-tracks/#bib-ISO14496-30
https://dev.w3.org/html5/html-sourcing-inband-tracks/#bib-SMPTE2052-11
https://dev.w3.org/html5/html-sourcing-inband-tracks/#mp4avcceacaption
https://dev.w3.org/html5/html-sourcing-inband-tracks/#mp4avcceacaption
https://dev.w3.org/html5/html-sourcing-inband-tracks/#bib-ISO14496-30
https://dev.w3.org/html5/html-sourcing-inband-tracks/#bib-ISO14496-30
https://dev.w3.org/html5/html-sourcing-inband-tracks/#SMPTETTcaption

language If the track is an ISOBMFF CEA 608 or 708 caption
service then the empty string ("").

Otherwise, the content of the language field in
the MediaHeaderBox.

NOTE

No signaling is currently defined for specifying
the langaugae of CEA 608 or 708 captions in
ISOBMFF. MPEG DASH MPDs may specify
caption track metadata, including language
[DASHIFIOP]. The user agent should set the
language attribute of CEA 608 or 708
caption text tracks to the empty string so that
script may use the media source extensions
[MSE] TrackDefault object to provide a
default for the language attribute.

inBandMetadataTrackDispatch
Type ●​ kind is "metadata":

○​ if a
XMLMetaDataSampleEntry
box is present the
concatenation of the string
"metx", a U+0020 SPACE
character, and the value of
the namespace field

○​ if a
TextMetaDataSampleEntry
box is present the
concatenation of the string
"mett", a U+0020 SPACE
character, and the value of
the mime_format field

○​ otherwise the empty string
●​ otherwise the empty string

mode "disabled"
4.​ ​
Track Attributes for sourced Audio and Video Tracks
Attribute How to source its value

id Decimal representation of the track_ID of a TrackHeaderBox (tkhd) in a
TrackBox (trak).

https://dev.w3.org/html5/html-sourcing-inband-tracks/#mp4avcceacaption
https://dev.w3.org/html5/html-sourcing-inband-tracks/#mp4avcceacaption
https://dev.w3.org/html5/html-sourcing-inband-tracks/#bib-DASHIFIOP
https://dev.w3.org/html5/html-sourcing-inband-tracks/#bib-MSE

kind
●​ "alternative": not used
●​ "captions": not used
●​ "descriptions"

○​ For E-AC-3 audio [ETSI102366] if the bsmod field
is 2 and the asvc is 1 in the EC3SpecificBox

●​ "main": first audio (video) track
●​ "main-desc

○​ For AC-3 audio [ETSI102366] if the bsmod field is
2 in the AC3SpecificBox

○​ For E-AC-3 audio [ETSI102366] if the bsmod field
is 2 and the asvc is 0 in the EC3SpecificBox

●​ "sign": not used
●​ "subtitles": not used
●​ "translation": not first audio (video) track
●​ "commentary": not used
●​ "": otherwise

label Content of the name field in the HandlerBox.

language Content of the language field in the MediaHeaderBox.
5.​ ​
Mapping Text Track content into text track cues for MPEG-4 ISOBMFF​
[ISOBMFF] text tracks may be in the WebVTT or TTML format [ISO14496-30], 3GPP Timed Text format
[3GPP-TT], or other format.​
[ISOBMFF] text tracks carry WebVTT data if the media handler type is "text" and a WVTTSampleEntry
format is used, as described in [ISO14496-30]. Browsers that can render text tracks in the WebVTT
format should expose a VTTCue [WEBVTT] as follows:

Attribute How to source its value

id The cue_id field in the CueIDBox.

startTime The sample presentation time.

endTime The sum of the startTime and the sample duration.

pauseOnExit "false"

cue setting attributes The settings field in the CueSettingsBox.

text The cue_text field in the CuePayloadBox.
6.​ ​
ISOBMFF text tracks carry TTML data if the media handler type is "subt" and an
XMLSubtileSampleEntry format is used with a TTML-based name_space field, as described in
[ISO14496-30]. Browsers that can render text tracks in the TTML format should expose an as yet to be
defined TTMLCue. Alternatively, browsers can also map the TTML features to VTTCue objects. Finally,
browsers that cannot render TTML [ttaf1-dfxp] format data should expose them as DataCue objects
[HTML51]. Each TTML subtitle sample consists of an XML document and creates a DataCue object with
attributes sourced as follows:

Attribute How to source its value

id Decimal representation of the id attribute of the head element in the
XML document. Null if there is no id attribute.

startTime Value of the beginning media time of the top-level temporal interval of
the XML document.

https://dev.w3.org/html5/html-sourcing-inband-tracks/#bib-ETSI102366
https://dev.w3.org/html5/html-sourcing-inband-tracks/#bib-ETSI102366
https://dev.w3.org/html5/html-sourcing-inband-tracks/#bib-ETSI102366
https://dev.w3.org/html5/html-sourcing-inband-tracks/#bib-ISOBMFF
https://dev.w3.org/html5/html-sourcing-inband-tracks/#bib-ISO14496-30
https://dev.w3.org/html5/html-sourcing-inband-tracks/#bib-3GPP-TT
https://dev.w3.org/html5/html-sourcing-inband-tracks/#bib-ISOBMFF
https://dev.w3.org/html5/html-sourcing-inband-tracks/#bib-ISO14496-30
https://dev.w3.org/html5/html-sourcing-inband-tracks/#bib-WEBVTT
https://dev.w3.org/html5/html-sourcing-inband-tracks/#bib-ISO14496-30
https://dev.w3.org/html5/html-sourcing-inband-tracks/#bib-ttaf1-dfxp
https://dev.w3.org/html5/html-sourcing-inband-tracks/#bib-HTML51

endTime Value of the ending media time of the top-level temporal interval of the
XML document.

pauseOnE
xit

"false"

data The (UTF-16 encoded) ArrayBuffer composing the XML document.

7.​ ​
TTML data may contain tunneled CEA708 captions [SMPTE2052-11]. Browsers that can render
CEA708 data should expose it as defined for MPEG-2 TS CEA708 cues.​
3GPP timed text data is carried in [ISOBMFF] as described in [3GPP-TT]. Browsers that can
render text tracks in the 3GPP Timed Text format should expose an as yet to be defined
3GPPCue. Alternatively, browsers can also map the 3GPP features to VTTCue objects.

8. Mapping Event message content into DataCue for MPEG-4 ISOBMFF

MPEG-DASH defines the EventMessageBox as an extension of [ISOBMFF].

TODO: Define where the emsg box can appear in the ISOBMFF

Attribute How to source its value

id Decimal representation of the id attribute of the DASHEventMessageBox.

startTime Value of the starting media time of the event message

For DASHEventMessageBox version 0:

TODO

For DASHEventMessageBox version 1:

TODO

endTime Value of the ending media time of the event message

For DASHEventMessageBox version 0:

TODO

For DASHEventMessageBox version 1:

TODO

pauseOnE
xit

"false"

data An Object containing data from the message_data and value
DASHEventMessageBox fields:

https://dev.w3.org/html5/html-sourcing-inband-tracks/#bib-SMPTE2052-11
https://dev.w3.org/html5/html-sourcing-inband-tracks/#CEA708Cue
https://dev.w3.org/html5/html-sourcing-inband-tracks/#bib-ISOBMFF
https://dev.w3.org/html5/html-sourcing-inband-tracks/#bib-3GPP-TT
https://dev.w3.org/html5/html-sourcing-inband-tracks/#bib-ISOBMFF

data An ArrayBuffer containing the message_data bytes from the
DASHEventMessageBox.

value A DOMString containing the value from the
DASHEventMessageBox.

type The scheme_id_uri value from the DASHEventMessageBox.

HTML
https://html.spec.whatwg.org/multipage/media.html#sourcing-in-band-text-tracks

4.8.12.11.2 Sourcing in-band text tracks

A media-resource-specific text track is a text track that corresponds to data found in the media
resource.

Rules for processing and rendering such data are defined by the relevant specifications, e.g. the
specification of the video format if the media resource is a video. Details for some legacy
formats can be found in Sourcing In-band Media Resource Tracks from Media Containers into
HTML. [INBAND]

When a media resource contains data that the user agent recognizes and supports as being
equivalent to a text track, the user agent runs the steps to expose a media-resource-specific
text track with the relevant data, as follows.

1.​ Associate the relevant data with a new text track and its corresponding new TextTrack
object. The text track is a media-resource-specific text track.

2.​ Set the new text track's kind, label, and language based on the semantics of the relevant
data, as defined by the relevant specification. If there is no label in that data, then the
label must be set to the empty string.

3.​ Associate the text track list of cues with the rules for updating the text track rendering
appropriate for the format in question.

4.​ If the new text track's kind is chapters or metadata, then set the text track in-band
metadata track dispatch type as follows, based on the type of the media resource:​
If the media resource is an Ogg file​
The text track in-band metadata track dispatch type must be set to the value of the Name
header field. [OGGSKELETONHEADERS]​
If the media resource is a WebM file​
The text track in-band metadata track dispatch type must be set to the value of the
CodecID element. [WEBMCG]​
If the media resource is an MPEG-2 file​
Let stream type be the value of the "stream_type" field describing the text track's type in

https://html.spec.whatwg.org/multipage/media.html#sourcing-in-band-text-tracks
https://html.spec.whatwg.org/multipage/media.html#sourcing-in-band-text-tracks
https://html.spec.whatwg.org/multipage/media.html#text-track
https://html.spec.whatwg.org/multipage/media.html#media-resource
https://html.spec.whatwg.org/multipage/media.html#media-resource
https://html.spec.whatwg.org/multipage/media.html#media-resource
https://html.spec.whatwg.org/multipage/references.html#refsINBAND
https://html.spec.whatwg.org/multipage/media.html#media-resource
https://html.spec.whatwg.org/multipage/media.html#text-track
https://html.spec.whatwg.org/multipage/media.html#found-a-media-resource-specific-timed-track
https://html.spec.whatwg.org/multipage/media.html#text-track
https://html.spec.whatwg.org/multipage/media.html#texttrack
https://html.spec.whatwg.org/multipage/media.html#text-track
https://html.spec.whatwg.org/multipage/media.html#media-resource-specific-text-track
https://html.spec.whatwg.org/multipage/media.html#text-track
https://html.spec.whatwg.org/multipage/media.html#text-track-kind
https://html.spec.whatwg.org/multipage/media.html#text-track-label
https://html.spec.whatwg.org/multipage/media.html#text-track-language
https://html.spec.whatwg.org/multipage/media.html#text-track-label
https://html.spec.whatwg.org/multipage/media.html#text-track-list-of-cues
https://html.spec.whatwg.org/multipage/media.html#rules-for-updating-the-text-track-rendering
https://html.spec.whatwg.org/multipage/media.html#text-track
https://html.spec.whatwg.org/multipage/media.html#text-track-kind
https://html.spec.whatwg.org/multipage/media.html#dom-texttrack-kind-chapters
https://html.spec.whatwg.org/multipage/media.html#dom-texttrack-kind-metadata
https://html.spec.whatwg.org/multipage/media.html#text-track-in-band-metadata-track-dispatch-type
https://html.spec.whatwg.org/multipage/media.html#text-track-in-band-metadata-track-dispatch-type
https://html.spec.whatwg.org/multipage/media.html#media-resource
https://html.spec.whatwg.org/multipage/media.html#media-resource
https://html.spec.whatwg.org/multipage/media.html#text-track-in-band-metadata-track-dispatch-type
https://html.spec.whatwg.org/multipage/references.html#refsOGGSKELETONHEADERS
https://html.spec.whatwg.org/multipage/media.html#media-resource
https://html.spec.whatwg.org/multipage/media.html#text-track-in-band-metadata-track-dispatch-type
https://html.spec.whatwg.org/multipage/references.html#refsWEBMCG
https://html.spec.whatwg.org/multipage/media.html#media-resource

the file's program map section, interpreted as an 8-bit unsigned integer. Let length be the
value of the "ES_info_length" field for the track in the same part of the program map
section, interpreted as an integer as defined by Generic coding of moving pictures and
associated audio information. Let descriptor bytes be the length bytes following the
"ES_info_length" field. The text track in-band metadata track dispatch type must be set to
the concatenation of the stream type byte and the zero or more descriptor bytes bytes,
expressed in hexadecimal using ASCII upper hex digits. [MPEG2]​
If the media resource is an MPEG-4 file​
Let the first stsd box of the first stbl box of the first minf box of the first mdia box of
the text track's trak box in the first moov box of the file be the stsd box, if any. If the file
has no stsd box, or if the stsd box has neither a mett box nor a metx box, then the text
track in-band metadata track dispatch type must be set to the empty string. Otherwise, if
the stsd box has a mett box then the text track in-band metadata track dispatch type
must be set to the concatenation of the string "mett", a U+0020 SPACE character, and
the value of the first mime_format field of the first mett box of the stsd box, or the
empty string if that field is absent in that box. Otherwise, if the stsd box has no mett box
but has a metx box then the text track in-band metadata track dispatch type must be set
to the concatenation of the string "metx", a U+0020 SPACE character, and the value of
the first namespace field of the first metx box of the stsd box, or the empty string if that
field is absent in that box. [MPEG4]

5.​ Populate the new text track's list of cues with the cues parsed so far, following the
guidelines for exposing cues, and begin updating it dynamically as necessary.

6.​ Set the new text track's readiness state to loaded.
7.​ Set the new text track's mode to the mode consistent with the user's preferences and the

requirements of the relevant specification for the data.​
For instance, if there are no other active subtitles, and this is a forced subtitle track (a
subtitle track giving subtitles in the audio track's primary language, but only for audio that
is actually in another language), then those subtitles might be activated here.

8.​ Add the new text track to the media element's list of text tracks.
9.​ Fire an event named addtrack at the media element's textTracks attribute's

TextTrackList object, using TrackEvent, with the track attribute initialized to the
text track's TextTrack object.

4.8.12.11.3 Sourcing out-of-band text tracks

When a track element is created, it must be associated with a new text track (with its value set
as defined below) and its corresponding new TextTrack object.

https://html.spec.whatwg.org/multipage/media.html#text-track-in-band-metadata-track-dispatch-type
https://infra.spec.whatwg.org/#ascii-upper-hex-digit
https://html.spec.whatwg.org/multipage/references.html#refsMPEG2
https://html.spec.whatwg.org/multipage/media.html#media-resource
https://html.spec.whatwg.org/multipage/media.html#text-track
https://html.spec.whatwg.org/multipage/media.html#text-track-in-band-metadata-track-dispatch-type
https://html.spec.whatwg.org/multipage/media.html#text-track-in-band-metadata-track-dispatch-type
https://html.spec.whatwg.org/multipage/media.html#text-track-in-band-metadata-track-dispatch-type
https://html.spec.whatwg.org/multipage/media.html#text-track-in-band-metadata-track-dispatch-type
https://html.spec.whatwg.org/multipage/references.html#refsMPEG4
https://html.spec.whatwg.org/multipage/media.html#text-track
https://html.spec.whatwg.org/multipage/media.html#text-track-list-of-cues
https://html.spec.whatwg.org/multipage/media.html#guidelines-for-exposing-cues-in-various-formats-as-text-track-cues
https://html.spec.whatwg.org/multipage/media.html#text-track
https://html.spec.whatwg.org/multipage/media.html#text-track-readiness-state
https://html.spec.whatwg.org/multipage/media.html#text-track-loaded
https://html.spec.whatwg.org/multipage/media.html#text-track
https://html.spec.whatwg.org/multipage/media.html#text-track-mode
https://html.spec.whatwg.org/multipage/media.html#text-track
https://html.spec.whatwg.org/multipage/media.html#media-element
https://html.spec.whatwg.org/multipage/media.html#list-of-text-tracks
https://dom.spec.whatwg.org/#concept-event-fire
https://html.spec.whatwg.org/multipage/media.html#event-media-addtrack
https://html.spec.whatwg.org/multipage/media.html#media-element
https://html.spec.whatwg.org/multipage/media.html#dom-media-texttracks
https://html.spec.whatwg.org/multipage/media.html#texttracklist
https://html.spec.whatwg.org/multipage/media.html#trackevent
https://html.spec.whatwg.org/multipage/media.html#dom-trackevent-track
https://html.spec.whatwg.org/multipage/media.html#text-track
https://html.spec.whatwg.org/multipage/media.html#texttrack
https://html.spec.whatwg.org/multipage/media.html#sourcing-out-of-band-text-tracks
https://html.spec.whatwg.org/multipage/media.html#the-track-element
https://html.spec.whatwg.org/multipage/media.html#text-track
https://html.spec.whatwg.org/multipage/media.html#texttrack

	DataCue MSE Integration for DASH Event Message Boxes
	ISO BMFF and CMAF
	Architecture
	HTMLMediaElement and Media Source Extensions APIs

	
	Media Source Extensions
	1. Introduction
	1.2 Definitions

	2. MediaSource Object
	2.4 Algorithms
	2.4.1 Attaching to a media element
	2.4.2 Detaching from a media element
	2.4.3 Seeking
	2.4.4 SourceBuffer Monitoring
	2.4.5 Changes to selected/enabled track state
	2.4.6 Duration change
	2.4.7 End of stream algorithm

	3. SourceBuffer Object
	3.1 Attributes
	3.5 Algorithms
	3.5.1 Segment Parser Loop
	3.5.2 Reset Parser State
	3.5.3 Append Error Algorithm
	3.5.4 Prepare Append Algorithm
	3.5.5 Buffer Append Algorithm
	3.5.6 Range Removal
	3.5.7 Initialization Segment Received
	3.5.8 Event Message Box Processing
	3.5.8 Coded Frame Processing
	3.5.9 Coded Frame Removal Algorithm
	3.5.10 Coded Frame Eviction Algorithm
	3.5.11 Audio Splice Frame Algorithm
	3.5.12 Audio Splice Rendering Algorithm
	
	3.5.13 Text Splice Frame Algorithm

	MSE ISO BMFF Byte Stream Format
	3. Initialization Segments
	4. Media Segments
	5. Random Access Points

	Sourcing In-band Media Resource Tracks from Media Containers into HTML
	2. MPEG-DASH
	4. MPEG-4 ISOBMFF

	HTML
	4.8.12.11.2 Sourcing in-band text tracks
	4.8.12.11.3 Sourcing out-of-band text tracks

