
Estimating training compute of Deep
Learning models

by Jaime Sevilla, Lennart Heim, Marius Hobbhahn, Tamay Besiroglu, Anson Ho and Pablo Villalobos

In short:
To estimate the compute used to train a Deep Learning model we can either: 1) directly
count the number of operations needed or 2) estimate it from GPU time.

Method 1: Counting operations in the model

Method 2: GPU time

We are uncertain about what utilization rate is best, but our recommendation is 30% for
Large Language Models and 40% for other models.

You can read more about method 1 here and about method 2 here.

Other parts of interest of this article include:
● We argue that the ratio of operations of backward and forward pass of neural

networks is often close to 2:1. More.
● We discuss how the formula of method 1 changes for recurrent models. More.
● We argue that dropout does not affect the number of operations per forward and

backward pass. More.
● We have elaborated a table with parameter and operation counts for common neural

network layers. More.
● We give a detailed example of method 1. More.
● We discuss commonly used number representation formats in ML. More.
● We share an estimate of the average performance of GPU cards each year. More.
● We share some reported GPU usages in real experiments. More.
● We give a detailed example of method 2. More.
● We compare both methods and conclude they result in similar estimates. More.
● We discuss the use of profilers to measure compute. More.

Introduction
In this article we will explain (with examples) how to estimate the amount of compute used to
train an AI system. We will explain two procedures, one based on the architecture of the
network and number of training batches processed; and another based on the hardware
setup and amount of training time.

This is largely based on AI and Compute, where the authors use these two methods to
estimate the training compute of several milestone AI systems. We explain the methods in
more detail.

Our final goal is to produce an estimate in terms of the number of floating point operations
(FLOP) used to train the system. Other units exist - we discuss two other popular units in the
table below.

Multadds / FMAs
Some authors measure the number of
multiplications-and-additions (multadds)
that happen during training. Often those
make up the bulk of the computation, and
since one multadd is two FLOP we can
often estimate FLOP in terms of multadds
by multiplying by 2.

Confusingly, some profilers consider a
multadd as a single FLOP, since they are
usually implemented as the single
instruction Fused Multiply-Add (FMA) in the
hardware. Since peak performance
numbers of GPU specs usually consider a
FMA as 2 FLOP1 we opt for that convention
as well.

Petaflops-day
Another popular option is measuring in
terms of petaflops-day, which is equivalent
to the number of floating point operations
that can be done by a machine operating at
a speed of one petaFLOP per second in a
day; that is, 1e20 FLOP.

PetaFLOP-day levels of training compute
for ML models were first reported around
~2016, so this unit makes more sense
when working with models from that date
onwards.

1 On their website, NVIDIA states “The peak single-precision floating-point performance of a CUDA
device is defined as the number of CUDA Cores times the graphics clock frequency multiplied by two.
The factor of two stems from the ability to execute two operations at once using fused multiply-add
(FFMA) instructions”. We interpret this statement to mean that NVIDIA used the FMA=2FLOP
assumption.

https://openai.com/blog/ai-and-compute/
https://colab.research.google.com/drive/11m0AfSQnLiDijtE1fsIPqF-ipbTQcsFp#scrollTo=lwiOHOM8Qwd9
https://colab.research.google.com/drive/11m0AfSQnLiDijtE1fsIPqF-ipbTQcsFp#scrollTo=lwiOHOM8Qwd9
https://docs.nvidia.com/gameworks/content/developertools/desktop/analysis/report/cudaexperiments/kernellevel/achievedflops.htm

Method 1: Counting operations in the model

The first method is quite straightforward, and can be summarized as:

training_compute = (ops_per_forward_pass + ops_per_backward_pass) * n_passes

Where ops_per_forward_pass is the number of operations in a forward pass,
ops_per_backward_pass is the number of operations in a backward pass and n_passes is
the number of full passes (a full pass includes both the backward and forward pass) made
during training.

n_passes is just equal to the product of the number of epochs and the number of examples:

n_passes = n_epochs * n_examples

If the number of examples is not directly stated, it sometimes can be computed as the
number of batches per epoch times the size of each batch n_examples = n_batches *
batch_size.

The ratio of ops_per_backward_pass to the number of ops_per_forward_pass is
relatively stable, so if we summarize it as fp_to_bp_ratio = ops_per_backward_pass /
ops_per_forward_pass we end up with the formula:

training_compute = ops_per_forward_pass * (1 + fp_to_bp_ratio) * n_passes

We estimate the value of fp_to_bp_ratio as 2:1 (see box below). The final formula is
then:

training_compute = ops_per_forward_pass * 3 * n_epochs * n_examples

This formula is a heuristic. Depending on the exact architecture and training details it can be
off2. We have found it to be a reasonable approximation in practice3.

The ratio of backward pass operations to forward pass operations
Computing the backward pass requires for each layer to compute the gradient with
respect to the weights and the error gradient of each neuron with respect to the layer input
to backpropagate. Each of these operations requires compute roughly equal to the amount
of operations in the forward pass of the layer. So the fp_to_bp_ratio is about 2:1.

The weight update can often be ignored, since it is common to use large batch sizes and
update the weights using the accumulated gradient of many passes at once. This is also
the case when weights are shared, as with CNNs.

A more precise relation can be found in the following table:

3 In appendix E we discuss the effect of dropout in the training compute. We find that in a popular
implementation of dropout it does not affect the amount of operations in the forward nor backward
pass.

2 In appendix D we discuss how the formula changes when considering recurrent models.

Most compute-intensive
layers

Compute-intensity of the
weight update Backward-forward ratio

First layer
Large batch size OR
compute-intensive
convolutional layer

1:1

First layer
Small batch size AND no

compute-intensive
convolutional layers

2:1

Other layers
Large batch size OR
compute-intensive
convolutional layer

Other layers
Small batch size AND no

compute-intensive
convolutional layers

3:1

You can read more about the backward-to-forward pass operation ratio in (Hobbhahn and
Sevilla, 2021).

Forward pass compute and parameter counts of common layers
The remaining part is computing the number of operations per forward pass. Sometimes the
authors are kind enough to provide this information in their papers. Most often, they do not,
and we need to infer it from the architecture.

To help you do this, we have put together a table of common neural network layers,
estimating their number of parameters and the number of floating point operations needed
for a forward pass of the layer.

Note in many layers that the amount of FLOP in a forward pass is approximately equal to
twice the amount of parameters. This suggests a reasonable alternative approximation of the
number of operations if we already know the number of parameters and we know there is no
parameter sharing. Reciprocally, this gives us a way to estimate the number of parameters
from the amount of operations in a forward pass.

There are however many exceptions to this rule - for example CNNs have fewer parameters
because of parameter sharing, and word embeddings make no operations.

A more precise heuristic is that the amount of operations in the forward pass is roughly
twice the number of connections in the model. This is also satisfied by CNNs.

In addition, there are some software tools that can be used to automatically compute the
number of parameters and the number of FLOP for the forward pass in an architecture. See
appendix A for discussion on using these profilers.

Layer # parameters # floating point operations

https://www.alignmentforum.org/posts/fnjKpBoWJXcSDwhZk/what-s-the-backward-forward-flop-ratio-for-neural-networks
https://www.alignmentforum.org/posts/fnjKpBoWJXcSDwhZk/what-s-the-backward-forward-flop-ratio-for-neural-networks

Fully connected layer from N
neurons to M neurons

N*M + M ≈ N*M 2*N*M+M+M ≈ 2*N*M

WEIGHTS BIASES NONLINEARITIES

CNN from a tensor of shape
HxWxC with D filters of shape
KxKxC, applied with stride S
and padding P

D*K*K*C + K*K*C
≈ D*K*K*C

2*HxWxC*H’xW’xD +
H’xW’xD+H’xW’xD ≈

2*H2*W2*C*D/S2

where
H’=[(H−K+2P+1)/S]
W’=[(W−K+2P+1)/S]

WEIGHTS BIASES NONLINEARITIES

Transpose CNN from a tensor
of shape HxWxC with D filters
of shape KxKxC, applied with
stride S and padding P

D*K*K*C + K*K*C
≈ D*K*K*C

2*D*HxWxC*KxKxC +
D*HxWxC+W’*H’ ≈
2*D*HxWxC*KxKxC

where
H’=S*(H-1)+K-2*P
W’=S*(W-1)+K-2*P

WEIGHTS BIASES NONLINEARITIES

RNN with bias vectors taking
an input of size N and
producing an output of size M

(N+M)*M+M ≈
(N+M)*M 2*(N+M)*M+M+M ≈ 2*(N+M)*M

WEIGHTS BIASES NONLINEARITIES

Fully gated GRU with bias
vectors taking an input of size
N and producing an output of
size M

(N+M)*M+M +
(N+M)*M+M +
(N+M)*M+M ≈
3*(N+M)*M

3*[2*(N+M)*M+M+M]+5*M ≈ 3*2*(N+M)*M

UPDATE GATE RESET GATE CANDIDATE WEIGHTS BIASES NONLINEARITIES GATE COMBINATION

LSTM with bias vectors taking
an input of size N and
producing an output of size M

(N+M)*M+M+(N+M)*M+M+(N+M)*M+M+(N+M)*M+M
≈ 4*(N+M)*M

4*[2*(N+M)*M+M+M]+5*M ≈
4*2*(N+M)*M

FORGET GATE INPUT GATE CANDIDATE OUTPUT GATE WEIGHTS BIASES NONLINEARITIES GATE COMBINATION

Word Embedding for
vocabulary size V and
embedding dimension W

W*V 0

Self attention layer with
sequence length L, inputs of
size W, key of size D and
output of size N

W*D+D+W*D+D+W*N+N
≈ W*(2*D+N)

(2*W*D+2*D)+(2*W*D+2*D)+(2*W*N+2*N)+L*(2*D+1
)+L+2*L*N ≈ 2*W*(2*D+N)+2*L*(D+N)

QUERY KEY VALUE ATTENTION SOFTMAX OUTPUT

Multi-headed attention layer
with sequence length L, inputs
of size W, key of size D, head
output of size N, output of size
M and H attention heads

H*(W*D+D+W*D+D+W*N
+N)+(H*N*M+M)≈

H*(W*(2*D+N)+N*M)

H*((2*W*D+2*D)+(2*W*D+2*D)+(2*W*N+2*N)+L*(2*
D+1)+L+2*L*N)+(2*H*N*M+M+M) ≈
2*H*(W*(2*D+N)+L*(D+N)+N*M)

QUERY KEY VALUE ATTENTION SOFTMAX OUTPUT MULTIATTENTION

Table 1: Parameter count and number of operations for some common neural network layers4.

4 References: A guide to convolution arithmetic for deep learning, Illustrated Guide to LSTMs and
GRUs , Understanding LSTMs , The Illustrated Transformer

https://arxiv.org/abs/1603.07285
https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21
https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://jalammar.github.io/illustrated-transformer/

Example: CNN-LSTM-FCN model
For example, suppose that we have a CNN-LSTM-FCN architecture such that:

● The input is a sequence of images of shape [400x400x5].
● The average length of each input sequence is 20 images.
● The CNN has 16 filters of shape 5x5x5 and is applied with stride 2 and padding 2
● The LSTM is a many-to-one layer with 256 output units and bias vectors
● The fully connected layer has 10 output units
● The training process takes 10 epochs, where each epoch consists of 100 batches of

size 128 sequences each.

Figure 1: Diagram of the many-to-one CNN-LSTM-FCN from the example. Source.

Then we have that the recurrent part is the CNN and LSTM, and the FC is the non recurrent
part of the network.

The CNN takes a 400*400*5 input and produces an output of width and height
H’=W’=(W−K+2P)/S]+1=[(400−5+2*2+1)/2]=200 and 16 channels. In total, the forward
pass of the CNN takes about 2*H2*W2*C*D/S2 = 2*4004*5*16/22 =1.024e12 FLOP.

Before feeding the input into the LSTM the output of the CNN is rearranged into a
200*200*16=640000 unit input. Then the amount of operations per token in the sequence
of the LSTM is about 4*2*(N+M)*M=4*2*(640000+256)*256~=4*2*640000*256=1.310e9
FLOP. Finally, the FC layer takes about 2*N*M=2*256*10=5120 FLOP.

The non-recurrent part of the network is very small compared to the recurrent part, so we
can approximate the number of total operations as

training_compute ~= ops_per_forward_pass_recurrent * 3 * n_epochs * n_batches *
batch_size * avg_tokens_per_sequence ~= 1.024e12 FLOP * 3 * 10 * 100 * 128 * 20 =
7.86432e+18 FLOP.

When the architecture is too complex or we lack details of some of the layers we may want
to use a method based on estimating the amount of operations from the amount of training
time and the hardware used for training. We will cover that in the next section.

https://eprints.ucm.es/id/eprint/56622/1/1138296178-324499_JAIME_SEVILLA_MOLINA_TFG_-_Deep_Learning_for_the_classification_of_events_from_Imaging_Atmospheric_Cherenkov_Telescopes_-_Jai_2139595281.pdf

Example: Transformer
Let’s take a look at the Transformer architecture in Attention is all you need.

Figure 2: Diagram of the example Transformer architecture. Source.

● The input is a sequence of tokens, with an average length of 20 and a vocabulary
size of 30,000.

● Each token is embedded and represented as a vector of size 1024.
● There are six encoder and decoder layers.
● Each encoder-decoder pair has a total of 3 multi-headed attention (MHA) sublayers,

and 2 fully connected (FCN) sublayers.
● At the end there is a final linear layer and a softmax.

Each MHA sublayer has the following parameters:
- Input size W=64
- Head output size N=64
- Key size D=64
- Number of heads H=16
- Final output size M=1024

So the FLOPs per token for a single MHA sublayer are 2*H*(W*(2*D+N)+L*(D+N)+N*M) =
2*16*(64*(2*64+64)+20*(64+64)+64*1024) ~= 2.6e6. Each FCN sublayer has an input size
of 1024, output size of 1024, and a single hidden layer with 4096 units. So the FLOPs per
token for each sublayer are 2*2*N*M = 4 * 1024 * 4096 = 1.7e7.

Without taking into account the Add & Norm sublayers (they are negligible), the whole
encoder-decoder stack has a total per-token FLOPs of 6 * (3 * 2.6e6 + 2 * 1.7e7) ~=

https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

2.5e8. The FLOPs per token of the final linear layer (matrix multiplication) are 2 * 1024 *
3e4 = 6.1e7. The final softmax is negligible too, so a single forward pass of a full sequence
takes 2.5e8 + 6.1e7 = 3.1e8 FLOPs per token.

The paper says they use batches of 25,000 tokens, and run the training for 300,000 steps.
So the total training FLOPs would be 2.5e4 * 3e5 * 3 * 3.1e9 = 6.97e18 FLOPs.

Method 2: GPU time
Instead of a detailed understanding of the forward pass compute, we can also use the
reported training time and GPU model performance to estimate the training compute.

GPU-days describe the accumulated number of days a single GPU has been used for the
training. If the training lasted 5 days and a total of 4 GPUs were used, that equals 20
GPU-days.

This metric has the obvious downside that it does not account for the computing hardware
used. 20 GPU-days today are equivalent to more FLOPs than 20 GPU-days ten years ago.5

In this section we will see how to correct for this. The final estimate will be:

Estimating the number of FLOPs from the GPU time

Step 1: Reading the paper
Extract the following information from the paper/reference:
1. Number of GPU-days
2. The computing system/GPU used

○ When in doubt, one could go for the most common system used in same year
publications or the geometric average of FLOP/s of computing systems in the
same year.

3. The number representations used during the training run: FP32, FP16, BF16, INT8,
etc.
○ When in doubt, I’d recommend defaulting to FP32, as this is the default option in

most frameworks. However, in recent years FP16 has become more prominent.

5 You might want to compare this to “travel-days” as a measure. Eventually, you would be interested in
the distance — the quantity — so you can adjust to your means of transportations: walking, a horse, a
car, etc.. Especially with computing hardware we have seen tremendous improvements in
computational power over the years, so it’s relevant.

Which number representation is used?

When looking up specifications sheets of computation hardware, you usually find the
computational performance divided into different brackets based on the number
representation, such as FP32, FP32, FP16, bfloat16, int16, or int8. This leads to the
question: which performance metric should you pick?

Ideally you find the number representation used in the training process in the paper.
Otherwise, we would recommend to rely on two heuristics:

1. In which years was the model trained?

Depending on the year trained and the framework used, the framework might have taken
care of optimizing the training process by using the superior FP16. Starting in mid 2020,
PyTorch does this automatically with supported hardware.
Work earlier than 2019 rarely used FP16, we’d suggest to default to FP32.

2. Who trained the model and how big is it?

Big models require more computational resources to train which leads to higher costs.
This incentives to optimize the deployment. However, this optimization is not trivial. Given
the high costs and non-trivial optimizations, we have seen big models usually emerging
from corporate actors. They have dedicated ML engineers which can help with the
deployment.
Consequently, for big models from corporations, we’d also default to use the number
representations with the best computational performance (FP16 or bfloat16).

Anecdotally, we asked a couple of PhD students and most of them did not actively try to
optimize their training run. Their answer was along the lines of “I press the train button and
wait”. Therefore, we’d suggest referring to the default settings of the framework used for
training (which depend on the version, and therefore publication year).

NVIDIA’s Tensor cores

NVIDIA often lists tensor cores in their specifications. The tensor core usually refers to
FP16 computation and leveraging the highly parallelized architecture to a maximum.

However, this often requires certain architectural features and/or a special selection of
hyper-parameters, for example that the dimensions of certain tensors be multiples of 8.

We would rarely expect that the architecture is matching and would probably still default to
the normal FP16 computational power or reduce the utilization factor.

https://www.tensorflow.org/guide/mixed_precision#ensuring_gpu_tensor_cores_are_used

Step 2: Reading the hardware specifications
Learn about the computational performance of the GPU/system by extracting it from the
specifications. Search for the system on Google and access a specifications sheet from the
manufacturer.

Those datasheets usually list the peak performance (more on this in the utilization
information box below) for a given number representation. Most GPUs come in different
variants of memory bandwidth and system architecture. In general, I’d recommend using the
non-PCIe version, and rather, e.g. the NVLink version — assuming that the model is trained
on a server-cluster.

Here is an example for a NVIDIA A100:

Figure 3: Specification sheet of NVIDIA A100 Tensor Core GPU. Source. The asterisk
indicates the performance assuming sparsity (which is only relevant for inference).

If you cannot find the used hardware or the specifications of the mentioned hardware, we
suggest referring to our sheet (HARDWARE_DATA) with estimates on the average
computing capability in a given year. You can also find a chart with peak performance per
year in the box below.

https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet-us-nvidia-1758950-r4-web.pdf
https://blogs.nvidia.com/blog/2020/05/14/sparsity-ai-inference/
https://docs.google.com/spreadsheets/d/1AAIebjNsnJj_uKALHbXNfn3_YsT6sHXtCU0q7OIPuc4/edit#gid=1503579905

Imputing GPU performance when the hardware model is not known

In more cases than one might expect, authors fail to report the model of GPU used in
training. Unless there is no context from which we might be able to infer what hardware
the authors may be using (e.g. Google tends to use TPUs), we impute missing hardware
performance numbers with the averages of the peak performance numbers of GPUs used
in papers published that year that meet our inclusion criteria.

Figure X: Typical peak performance of commonly used hardware over time.

In particular, we recommend imputing missing hardware values with those in the following
table, which is based on an analysis of hardware use from 35 publications in our dataset.

Year
Average FP64

Performance (FLOPS)
Average FP32

Performance (FLOPS)
Average FP16

Performance (FLOPS)

2012 1.98E+11 1.58E+12 na

2013 1.98E+11 1.58E+12 na

2014 9.54E+11 3.35E+12 na

2015 5.08E+11 4.96E+12 9.43E+12

2016 2.81E+12 6.83E+12 na

2017 2.26E+12 5.82E+12 1.87E+13

2018 2.91E+12 9.37E+12 1.10E+14

2019 3.89E+12 6.79E+13 4.20E+14

2020 7.45E+12 5.81E+13 4.20E+14

2021 1.05E+13 6.47E+13 3.66E+14

You can find the raw data in our sheet (subsheet “PAPERS AND HARDWARE MODELS”).

https://docs.google.com/spreadsheets/d/1AAIebjNsnJj_uKALHbXNfn3_YsT6sHXtCU0q7OIPuc4/edit#gid=1503579905

Step 3: Perform the estimate
Using the extracted information from the paper and the specifications of the hardware, we
can now calculate an estimate of the training compute.

As the datasheet lists peak performance, we need to correct this by assuming a non-perfect
utilization rate (< 100%). We suggest using a utilization rate of 0.3 for large language
models, and a utilization rate of 0.4 for other networks.

About GPU utilization rates
The performance estimates on datasheets are usually theoretical peak performances —
assuming full utilization and an optimal distributed workload. This is unrealistic for various
reasons:

● For data intensive applications the limiting factor is the memory bandwidth and not the
processing speed. Consequently, the processing speed is bottlenecked by the
available bandwidth.

● When multiple GPUs are used the data needs to propagate through the network and
pass through different hierarchies of memory (which come with higher latency, such
as network connections).

● Memory access speed has not been improving at the same rate as processing
performance. This is known as the processor-memory speed gap. Consequently, we
can assume a higher utilization for smaller models (especially if they fit within the
memory of a single processing unit). Whereas for bigger models where memory
needs to be propagate through the network, we should assume a smaller utilization.

● Not every workload can be optimally parallelized and fully utilize the different cores of
the GPU. For an optimal distribution a specific batch size, layer size, etc. is required.

Consequently, especially in multi-GPU settings, utilization rates will be much lower than 1,
e.g. around 0.3. But even in simple single-GPU settings, it is very unlikely to reach
utilizations over 0.75.

Data points for real-world utilization estimates are:

● In our experiments on different convolutional neural networks with single GPUs we
observe utilization rates between 30% and 75%.

● OpenAI assumed a utilization of 33% in their piece “AI and Compute”. They assume a
setup with multiple GPUs.

● A team of researchers from NVIDIA, Stanford and Microsoft achieves utilization rates
between 44% and 52% for training large language models on distributed systems.
This paper actively tries to maximize utilization rates. Thus, prior to 2021 rates larger
than 0.5 might be hard to achieve for multi-GPU settings in LLMs. That said, there is

http://gec.di.uminho.pt/discip/minf/ac0102/1000Gap_Proc-Mem_Speed.pdf
https://www.lesswrong.com/posts/jJApGWG95495pYM7C/how-to-measure-flop-s-for-neural-networks-empirically
https://openai.com/blog/ai-and-compute/
https://arxiv.org/pdf/2104.04473.pdf
https://arxiv.org/pdf/2104.04473.pdf

evidence that utilization rates at top labs are rapidly improving; GSPMD reportedly
yields rates as high as 62% at scale, and was recently used by Google to train
LaMDA at a utilization rate of 56.5%.

● Stella Rose Biderman from EleutherAI suggests a utilization rate of around 0.4 can be
achievable when training large language models on A100 GPUs.

● In the appendices of the draft report on transformative AI timelines, a 10% utilization is
assumed when one “doesn’t optimize hard”, and 25%, as a reasonable ballpark, for
large-scale projects where one actually tries to optimize. These are reported as
subjective estimates.

● In figure 5 of (Patterson et al, 2021) the authors report GPU usage rates between
25% for GPT-3 and 39% for GShard.

To measure utilization we usually resort to a profiler. The profiler hooks onto the
architecture and tries to estimate all FLOP of the network to yield a theoretical estimate. In
practice however, low-level optimization routines change the training procedure in ways
that differ from the theoretical setting. Thus, the true FLOP value can differ from the
estimated one.

Furthermore, we found that profilers can yield very inaccurate estimates. They tend to
over- or undercount and some operations are just not implemented and thus ignored. We
would advise to be cautious with profiler estimates. Further comments can be found in this
post.

For further discussion around metrics and utilization look at Lennart’s “Compute Research
Questions and Metrics - Transformative AI and Compute [4/4]”.

Example: Image GPT
As an example we will show how to estimate the training computing of Image GPT.

In the blogpost, we find the following:

“[..]iGPT-L was trained for roughly 2500 V100-days [...]“

Unfortunately, we cannot find any information about the number representation in the
blogpost or paper. However, given the size, date of publication and author of this model
(corporation), we assume FP16 performance.

As a next step, we need to learn about the specifications of the NVIDIA V100. We can find
the datasheet easily by googling for it: NVIDIA V100 Specifications.

https://arxiv.org/pdf/2105.04663.pdf
https://arxiv.org/pdf/2201.08239.pdf
https://docs.google.com/document/d/1qjgBkoHO_kDuUYqy_Vws0fpf-dG5pTU4b8Uej6ff2Fg/edit#heading=h.xi6z3buznjb7
https://arxiv.org/abs/2104.10350
https://www.lesswrong.com/posts/jJApGWG95495pYM7C/how-to-measure-flop-s-for-neural-networks-empirically
https://www.lesswrong.com/posts/jJApGWG95495pYM7C/how-to-measure-flop-s-for-neural-networks-empirically
https://forum.effectivealtruism.org/posts/3wEaFqKKeEgeYDss6/compute-research-questions-and-metrics-transformative-ai-and#B__Metrics
https://forum.effectivealtruism.org/posts/3wEaFqKKeEgeYDss6/compute-research-questions-and-metrics-transformative-ai-and#B__Metrics
https://openai.com/blog/image-gpt/
https://images.nvidia.com/content/technologies/volta/pdf/volta-v100-datasheet-update-us-1165301-r5.pdf

Figure 4: Specification sheet of NVIDIA V100 GPU (Source).

In the datasheet, we find three different versions of the GPU. The NVIDIA NVLink systems
interface is usually used in datacenters, and I’d recommend defaulting to this option —
assuming the model was authored by a company. However, the selection of which version is
not that crucial, as the performance differences are rather minimal (compared to our
estimates).

We find 125 TFLOPS for the tensor core (FP16) performance. However, making full use of
the tensor performance requires next to FP16 and various properties of the network
architecture. See here for more on this. We should take this into consideration for the
utilization.

By default, we would assume a utilization of 30% to 40%. However, given the special
requirements for achieving full tensor core performance, we pick 30%.

30% × 125𝑒12 𝐹𝐿𝑂𝑃
𝑠 × 2500 𝑑𝑎𝑦𝑠 × 86400 𝑠

𝑑𝑎𝑦 = 8. 1𝑒21

For more examples on estimating the compute used from the GPU time, see the Appendix of
the blogpost AI and Compute.

https://images.nvidia.com/content/technologies/volta/pdf/volta-v100-datasheet-update-us-1165301-r5.pdf
https://docs.nvidia.com/deeplearning/performance/mixed-precision-training/index.html#opt-tensor-cores
https://openai.com/blog/ai-and-compute/

Conclusion
In this article we have explained two methods for estimating the training compute in FLOP of
neural network models - one based on counting the number of operations in a forward pass
and another one based on GPU time.

Generally we recommend defaulting to the first method when possible - it is more exact, as
GPU utilization is hard to estimate. Ideally, one would perform the estimate both ways and
compare, as a sanity check6.

Over the course of this article we have produced some novel insights:

● a precise estimation of the ratio of operations between the forward and backward
pass in a neural network,

● an analysis of how recurrency affects the estimation of compute,

● a table with parameter counts and forward pass FLOP for some common NN layers,

● a method of how we can estimate the training compute FLOPs from the commonly
shared metric GPU-days, and

● shared a best guess on the average computing capability in a given year for a single
GPU.

We hope this article will help readers starting their journey into scaling laws, and help
provide a reference to standardize estimations of training compute.

Acknowledgements
Thank you to Sylvain Viguier, Sasha Luccioni, Matthew Carrigan, Danny Hernandez, Girish
Sastry and Stella Rose Biderman for their help answering our questions on estimating
compute and GPU utilization rate.

Jean-Stanislas Denain helped us amass data about GPUs.

Thank you to Gwern Branwen and Jojo Lee for comments on the report.

Bibliography
● Alammar, Jay. 2018. “The Illustrated Transformer.” June 27, 2018.

https://jalammar.github.io/illustrated-transformer/.
● Amodei, Dario, and Danny Hernandez. 2018. “AI and Compute.” OpenAI. May 15,

2018. https://openai.com/blog/ai-and-compute/.
● Chen, Mark, Alec Radford, Rewon Child, Jeff Wu, Heewoo Jun, David Luan, and Ilya

Sutskever. n.d. “Generative Pretraining from Pixels,” 13.

6 In appendix B we show a comparison of the estimates resulting from both methods. We conclude
that they are reasonably similar, and tend to be within a factor of 2 of each other.

https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/
https://openai.com/blog/ai-and-compute/

● Cotra, Ajeya. 2020. “Draft Report on AI Timelines.” September 19, 2020.
https://www.alignmentforum.org/posts/KrJfoZzpSDpnrv9va/draft-report-on-ai-timeline
s.

● Dumoulin, Vincent, and Francesco Visin. 2018. “A Guide to Convolution Arithmetic
for Deep Learning.” ArXiv:1603.07285 [Cs, Stat], January.
http://arxiv.org/abs/1603.07285.

● Narayanan, Deepak, Mohammad Shoeybi, Jared Casper, Patrick LeGresley, Mostofa
Patwary, Vijay Anand Korthikanti, Dmitri Vainbrand, et al. 2021. “Efficient Large-Scale
Language Model Training on GPU Clusters Using Megatron-LM.” ArXiv:2104.04473
[Cs], August. http://arxiv.org/abs/2104.04473.

● NVIDIA. 2020. “NVIDIA V100 Datasheet.” January 2020.
https://images.nvidia.com/content/technologies/volta/pdf/volta-v100-datasheet-updat
e-us-1165301-r5.pdf.

● ———. n.d. “NVIDIA A100 | Tensor Core GPU.”
● NVIDIA Documentation. n.d. “Taining With Mixed Precision - 4. Optimizing For Tensor

Cores.” Concept. Training. Accessed January 19, 2022.
http://docs.nvidia.com/deeplearning/frameworks/mixed-precision-training/index.html.

● Olah, Christopher. 2015. “Understanding LSTM Networks -- Colah’s Blog.” August
27, 2015. https://colah.github.io/posts/2015-08-Understanding-LSTMs/.

● Patterson, David, Joseph Gonzalez, Quoc Le, Chen Liang, Lluis-Miquel Munguia,
Daniel Rothchild, David So, Maud Texier, and Jeff Dean. n.d. “Carbon Emissions and
Large Neural Network Training,” 22.

● Phi, Michael. 2020. “Illustrated Guide to LSTM’s and GRU’s: A Step by Step
Explanation.” Medium. June 28, 2020.
https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-e
xplanation-44e9eb85bf21.

● Salvator, Dave. 2020. “What Is Sparsity in AI Inference and Machine Learning? |
NVIDIA Blog.” The Official NVIDIA Blog. May 14, 2020.
https://blogs.nvidia.com/blog/2020/05/14/sparsity-ai-inference/.

● Srivastava, Nitish, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. n.d. “Dropout: A Simple Way to Prevent Neural Networks from
Overfitting,” 30.

● TensorFlow Documentation. n.d. “Mixed Precision | TensorFlow Core.” TensorFlow.
Accessed January 19, 2022. https://www.tensorflow.org/guide/mixed_precision.

https://www.alignmentforum.org/posts/KrJfoZzpSDpnrv9va/draft-report-on-ai-timelines
https://www.alignmentforum.org/posts/KrJfoZzpSDpnrv9va/draft-report-on-ai-timelines
https://www.alignmentforum.org/posts/KrJfoZzpSDpnrv9va/draft-report-on-ai-timelines
http://arxiv.org/abs/1603.07285
http://arxiv.org/abs/1603.07285
http://arxiv.org/abs/2104.04473
https://images.nvidia.com/content/technologies/volta/pdf/volta-v100-datasheet-update-us-1165301-r5.pdf
https://images.nvidia.com/content/technologies/volta/pdf/volta-v100-datasheet-update-us-1165301-r5.pdf
https://images.nvidia.com/content/technologies/volta/pdf/volta-v100-datasheet-update-us-1165301-r5.pdf
http://docs.nvidia.com/deeplearning/frameworks/mixed-precision-training/index.html
http://docs.nvidia.com/deeplearning/frameworks/mixed-precision-training/index.html
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21
https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21
https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21
https://blogs.nvidia.com/blog/2020/05/14/sparsity-ai-inference/
https://blogs.nvidia.com/blog/2020/05/14/sparsity-ai-inference/
https://www.tensorflow.org/guide/mixed_precision

Appendices

Appendix A: Profiler
In addition to the two discussed methods, one could use a profiler. A profiler is an analysis
tool to measure metrics of interest. While the measurement of the number of FLOPs
executed is theoretically and technically possible, none of the profilers we tried (NVIDIA
Nsight, PyTorch: main package and autograd) could fulfill our requirements for the training7

— many of them focus on the profiling of inference8.

Consequently, our two methods below are the method of choice, as (i) none of the existing
profilers fulfills the required criteria and (ii) we require methods to estimate the compute of
already published models based on the available data.

Profilers that only measure the forward pass, e.g. PyTorch’s fvcore, ptflops or pthflops, work
and do their job. Our problems only arose when we tried to measure anything but the
forward pass.

Appendix B: Comparing the estimates of different methods
To check whether both methods provide estimates that are consistent with one another, we
compute both estimates for a few models for which this is feasible. The results (See figure
below) confirm that the estimates are generally very similar (they differ by no more than a
factor of 1.7).

8 There is a strong interest in the use of profilers to optimize inference, as inference makes up the
majority of total compute and therefore the costs (70% to 90% (Patterson et al. 2021)).

7 Marius goes into more details in the post “How to measure FLOP/s for Neural Networks
empirically?”. It is easier to profile the forward pass but as soon as you add the backward pass, most
profilers give wrong estimates.

https://docs.nvidia.com/deeplearning/frameworks/pyprof-user-guide/profile.html
https://docs.nvidia.com/deeplearning/frameworks/pyprof-user-guide/profile.html
https://pytorch.org/docs/stable/profiler.html
https://pytorch.org/docs/stable/autograd.html#profiler
https://detectron2.readthedocs.io/en/latest/modules/fvcore.html
https://github.com/sovrasov/flops-counter.pytorch/tree/master/ptflops
https://github.com/1adrianb/pytorch-estimate-flops
https://arxiv.org/ftp/arxiv/papers/2104/2104.10350.pdf
https://www.alignmentforum.org/posts/jJApGWG95495pYM7C/how-to-measure-flop-s-for-neural-networks-empirically
https://www.alignmentforum.org/posts/jJApGWG95495pYM7C/how-to-measure-flop-s-for-neural-networks-empirically

Details of these estimates may be found here.

Appendix C: Pre-training and architecture search
It is common to pre-train a large model on a large dataset and then fine-tune it on a smaller
dataset. Similarly, it is common for researchers to manually train and tweak multiple versions
of a system before they find the final architecture they use for training.

We recommend counting the pre-training compute as part of the total training compute.

However we do not recommend counting the tweak runs.

While these are important, for reproducibility purposes it is the pre-training and fine-tuning of
the final architecture that matters most. And pragmatically speaking information on the
compute used to train previous versions while finding the right architecture is seldom
reported.

https://docs.google.com/document/d/1CN4E42sJBQ4pIhBg2yJK3ae_KLwnVmwMVsSoq53CZmA/edit?usp=sharing

Appendix D: Recurrent models

The formula is more complex for recurrent models, depending on the type of recurrency.

Adjusting for recurrent units

This is the easiest case. Since every part is repeated for each input
token, we just need to adjust n_passes by a factor equal to the
average amount of tokens in the set of training sequences.

n_passes = n_epochs * n_batches * batch_size *
avg_tokens_per_sequence

training_compute = ops_per_forward_pass * 3.5 * n_epochs *
n_examples

In these cases we will need to distinguish between the recurrent
and non recurrent parts of the network.

training_compute = ops_per_forward_pass_recurrent * 3.5 *
n_epochs * n_batches * batch_size * avg_tokens_per_sequence
+ ops_per_forward_pass_non_recurrent * 3.5 * n_epochs *
n_examples =
(ops_per_forward_pass_recurrent * avg_tokens_per_sequence +
ops_per_forward_pass_non_recurrent)* 3.5 * n_epochs *
n_examples

We will often have that either the recurrent or non recurrent part of
the network will dominate the amount of operations. In that case
the formula can be suitably approximated.

For example, if the non recurrent part is comparatively small, then
we can approximate the compute as:

training_compute ~= ops_per_forward_pass_recurrent *
avg_tokens_per_sequence * 3.5 * n_epochs * n_examples

An encoder-decoder architecture can be treated as the combination
of a one-to-many and many-to-one architecture.

training_compute = (ops_per_forward_pass_encoder *
avg_tokens_per_input +
ops_per_forward_pass_decoder*avg_tokens_per_output)* 3.5 *
n_epochs * n_examples

Image source

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Appendix E: Dropout
In method 1, we determined the training compute by counting the FLOPs per parameter for
the forward and backward passes, in order to determine the fp_to_bp_ratio. However in
practice, this value is likely to vary due to regularization techniques. In this section we
specifically consider the effect of dropout. This involves setting individual neurons to having
a value of (“dropping out”) with probability , effectively yielding a thinned network with0 𝑝
fewer parameters.

[Image source: Srivastava et al] (a) shows a standard neural network without dropout, (b)
shows a thinned network, where crossed units have been “dropped out”.

Clearly this can cause the number of FLOPs in a forward to decrease quite significantly,
depending on the value of , but how much exactly? In a standard neural network, the𝑝
forward pass is an affine transformation and compute is dominated by the dot product if the
number of neurons per layer is sufficiently large:

,𝑧
𝑖
(𝑙+1) = 𝑤

𝑖
(𝑙+1) · 𝑦(𝑙) + 𝑏

𝑖
(𝑙+1)

,𝑦
𝑖
(𝑙+1) = 𝑓 𝑧

𝑖
(𝑙+1)()

where the symbols have their usual meanings (see for instance Srivastava et al). With
dropout, the neuron value is instead a random sample drawn from a Bernoulli distribution:

Bernoulli ,𝑟
𝑗
(𝑙)~ (𝑝)

,𝑦
(𝑙)

= 𝑟(𝑙) ∗ 𝑦(𝑙)

,𝑧
𝑖
(𝑙+1) = 𝑤

𝑖
(𝑙+1) · 𝑦

(𝑙)
+ 𝑏

𝑖
(𝑙+1)

,𝑦
𝑖
(𝑙+1) = 𝑓 𝑧

𝑖
(𝑙+1)()

where denotes the Hadamard element-wise product. If we assume that the number of∗
neurons is small relative to the number of parameters, then we ignore the contributions from
the first two steps (random sampling and the Hadamard product), to yield roughly 2 FLOPs
per parameter.

https://en.wikipedia.org/wiki/Dilution_(neural_networks)
https://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf
https://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf

What happens in the backward pass? The architecture still stays as a thinned network, and
the previous consideration still holds - there are 5 FLOPs per parameter in backpropagation
(with the same assumptions as previously). Thus with dropout we should expect roughly the
same value of 2.5 for the fp_to_bp_ratio, although perhaps adjusted slightly upward
compared to the standard neural network.

Note that in addition to the fp_to_bp_ratio staying the same after dropout,
ops_per_forward_pass doesn’t change by very much either. This is because dropout is
typically implemented as in the equations above - by multiplying a neuron by if it is to be0
dropped out (see for instance the TensorFlow implementation of dropout). Thus, dropout
doesn’t reduce the number of operations (as one might expect if the neurons were truly
removed from the network), but in fact increases it slightly, but probably not significantly. This
consideration suggests that we should expect the compute implications of dropout to be
quite minimal.

The inference compute is also largely unchanged - at most it is slightly increased. Generally
this is implemented by multiplying the weights corresponding to the connections of a neuron
by the probability at which the neuron was dropped out. This corresponds to the same𝑝
standard neural network but with a number of additional initial calculations at test time, less
than or equal to the number of parameters (depending on how many neurons are dropped
out).

[Image source: Srivastava et al] (a) Shows dropout being implemented during training,
where a neuron is dropped out with probability . This is implemented by multiplying the𝑝
neuron value by 0 if it is dropped out, and 1 otherwise. (b) Shows the same neuron at test

time, where the weights of its outgoing connections are multiplied by .𝑝

In short, it seems that other methods of regularization like using an L1 norm are likely to
have a larger impact on the training compute.

https://github.com/tensorflow/tensorflow/blob/00fad90125b18b80fe054de1055770cfb8fe4ba3/tensorflow/python/ops/nn_ops.py#L4174
https://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf

