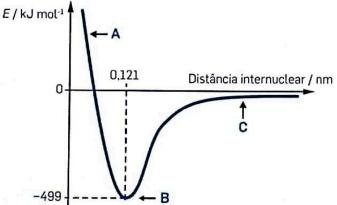
ESCOLA BÁSICA E SECUNDÁRIA DA CALHETA Física e Química A - 10.º Ano

Teste Q2.1 n.º 1 - V2

Nome:	N.º:	Turma:	Data: _	_//
Classificação:	Professor:	Enc. Educaç	ão:	

2.1 - Ligação Química


Nos itens de escolha múltipla escreva a letra da única opção que permite obter uma afirmação correta ou que responda corretamente à questão.

Nos itens de construção que envolvam cálculos é obrigatório apresentar todas as etapas de resolução.

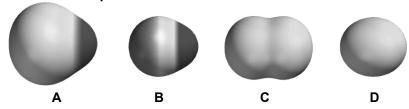
Dados:

 $N_{\Delta} = 6.022 \times 10^{23} \text{ mol}^{-1}$

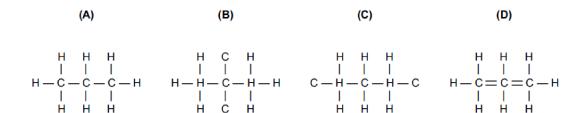
- 1. O diagrama seguinte representa a variação de energia potencial de dois átomos de oxigénio em função da sua distância internuclear. A molécula de O2 forma-se para a distância internuclear à qual corresponde a energia mínima.
 - 1.1. (4p) Qual é a energia necessária para quebrar uma mole de ligações de O₂?
 - (4p) Qual é o comprimento de ligação da 1.2. molécula de oxigénio?
 - 1.3. (6p) Em que zona (A, B ou C) é maior a força atrativa núcleo-eletrão? Justifique.

1.4. (6p) Exprima o valor de 499 KJ/mol em J/molécula.

2. (12p) Estabeleça a correta correspondência entre as informações das colunas relativamente às ligações

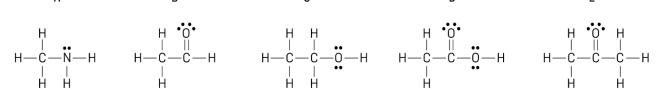

covalentes, iónicas e metálicas,

Tipos de ligação	Características						
I. Ligações covalentes	A. Caracteriza-se por intensas forças de atração eletrostática entre iões de carga contrária.	1. Na					
II. Ligações Iónicas	B. Caracterizam-se por uma partilha mútua, entre os átomos que constituem uma molécula, de um ou mais pares de eletrões de valência.	2. Fe ₂					
III. Ligações metálicas	C. Caracteriza-se por forças estabelecidas entre todos os átomos (depois de perderem eletrões, transformando-se em partículas de carga positiva) e os eletrões que se deslocam livremente entre eles, formando uma nuvem eletrónica comum.	3. NO					


3. Numa transformação química as substâncias reagem entre si e originam novas substâncias. Neste processo rompem-se e formam-se novas ligações como é o exemplo da combustão do metano:

$$CH_4(g) + 2 O_2(g) \rightarrow CO_2(g) + 2 H_2O(I)$$

- 3.1. (12p) Escreva as fórmulas de estrutura de Lewis das moléculas de **metano** e **oxigénio**. **Dados:** ₁**H**; ₆**C** e ₈**O**.
- 3.2. (8p) Indique a geometria das duas moléculas anteriormente representadas.
- 3.3. (6p) Quantos pares de eletrões não-ligantes constituem a molécula O₂?
 - A. 4 pares de eletrões não ligantes
 - B. 2 pares de eletrões não ligantes
 - C. 6 pares de eletrões não ligantes
 - D. 8 pares de eletrões não ligantes
- 3.4. (12p) Complete corretamente as frases seguintes.
 - A. Quanto maior é energia de uma ligação _____(menor/maior) o comprimento dessa ligação.
 - **B.** Quanto _____ (menor/maior) o número de eletrões ligantes maior a ordem de ligação.
 - C. Quanto menor o número de eletrões partilhados entre dois átomos, numa molécula, _____ (menor/maior) é a energia de ligação e _____ (menor/maior) é a estabilidade da molécula.
- **4.** Também as moléculas HX, e X₂, em que X é um elemento químico da família dos halogéneos, são diatómicas como a molécula de hidrogénio, H₂.
 - **4.1.** (12p) Associe cada um dos <u>mapas</u> de <u>potencial</u> eletrostático, **A**, **B**, **C** e **D**, a uma das moléculas, **H**₂, **F**₂, **HF** e **HCℓ**. **Justifique a sua escolha**.



- **4.2.** (8p) Tendo em conta as letras representadas nos mapas de potencial eletrostático, indique as moléculas diatómicas que são apolares e as que são polares. **Justifique a sua escolha.**
- **5.** Os hidrocarbonetos estão presentes em muitas atividades diárias como nos transportes, no combustível para a preparação dos alimentos, aquecimento, etc.
 - **5.1.** (6p) Selecione a única opção que corresponde à representação correta de uma molécula de propano. **Justifique a sua escolha.**

- **5.2.** (6p) Comparando as ligações C−C e C=C, a ligação C≡C apresenta:
 - A. menor energia de ligação e maior comprimento de ligação.
 - B. maior energia de ligação e menor comprimento de ligação.
 - C. menor energia de ligação e menor comprimento de ligação.
 - D. maior energia de ligação e maior comprimento de ligação.
- 5.3. (16p) As substâncias (a), (b), (c) e (d) são alcanos. Indique os nomes IUPAC das substâncias.

- **5.4.** (8p) Escreva a fórmula de estrutura do seguinte composto:
 - 4-etil-2,4-dimetil-hexano.
- **6.** (15p) Observe as fórmulas de estrutura de Lewis de cinco substâncias: A, B, C, D e E.

Associe a cada uma das estruturas, os grupos funcionais: álcool, aldeído, cetona, ácido carboxílico e amina.

7. (9p) As ligações de van der Waals dependem da natureza das partículas ligadas, nomeadamente da sua polaridade. Selecione a opção que estabelece a correta associação entre as informações das duas colunas.

Tipo de ligação	Caracterização							
Dipolo permanente – dipolo permanente	 A. Estabelecem-se entre unidades estruturais apolares. Resulta na deformação da sua nuvem eletrónica induzindo a criação de dipolos. 							
II. Dipolo permanente – dipolo induzido	 Resultam da interação de uma molécula polar com uma unidade estrutural apolar, provocando nesta a formação de um dipolo 							
III. Dipolo instantâneo – dipolo induzido	induzido. C. Fazem-se sentir entre moléculas polares por estas apresentarem uma distribuição assimétrica da nuvem eletrónica.							

8. Considere as substâncias representadas pelas seguintes fórmulas moleculares:

H₂ HCI CO₂ H₂O CH₄ HCOOH

Indica as substâncias:

8.1. (8p) Apolares e polares.

- **8.2.** (6p) Onde predominam ligações de hidrogénio.
- **8.3.** (6p) Onde predominam ligações entre moléculas polares (dipolo permanente dipolo permanente).
- 8.4. (6p) Onde predominam forças de London (dipolo instantâneo dipolo induzido).
- **9.** (6p) O benzeno (C₆H₆) é geralmente usado como solvente de compostos orgânicos, enquanto a água (H₂O) é usada geralmente como solvente de compostos inorgânicos por serem respetivamente:
 - A. molécula polar e molécula polar.
 - B. molécula apolar e molécula apolar.
 - C. molécula polar e molécula apolar.
 - D. molécula apolar e molécula polar.
- 10. (6p) Dos compostos abaixo, qual é mais solúvel em água?

$$C$$
. H_3C — CH_2 — CH_3

D.
$$H_2C = CH - CH_3$$

11. (12p) O etano (CH₃-CH₃) é o hidrocarboneto correspondente ao álcool etanol (H₃C—CH₂—OH). O primeiro é muito pouco solúvel em água, ao contrário do álcool. Explique porquê o etano é muito pouco solúvel e porquê o etanol se dissolve bem em água.

Cotação	4	4	6	6	12	12	8	6	12	12	8	6	6	16	8
pergunta	1 1	12	1 2	1 /	2	2 1	2 2	2 2	2 /	11	12	5 1	5.2	5.2	5 /

15	9	8	6	6	6	6	6	12	200
6.	7.	8.1	8.2	8.3	8.4	9.	10.	11.	Total

FIM