ALICE O2 time frame and metadata
model

O2Message object:

e An O2Message object is a collection of annotated data payloads (O2DataBlock
objects).

e An O2Message object travels atomically between O2 Devices: an O2Message object
appears atomically in the O2Device. It is the job of the framework and transport to
enable this.

e Each aggregate type in the O2 system (e.g. a time frame, a sub-time frame) is
represented by O2Message and differs only by contents.

O2DataBlock:

e Self sufficient (self describing): the object contains full descriptor (HeaderStack) and
the associated data payload.
The associated payload is a contiguous byte array.
The payload is immutable.
The contents of the byte array in the payload are reinterpreted based on metadata
contained in the header stack (HeaderStack).

HeaderStack:

The header stack is a collection of headers describing the associated data payload.
The header stack shall contain at least the DataHeader struct which provides the
information necessary to decode the payload.

The header stack may contain other O2 headers to carry additional metadata.

The header stack occupies a contiguous sequence of bytes.

There shall be no byte padding between the headers.

02 compliant headers:

e Each O2 header shall start with a metaheader (BaseHeader) followed by a header
body; the BaseHeader contains information needed to navigate the stack and decode
individual O2 headers.

e The BaseHeader member shall be initialized with values appropriate for the header it
is used in.

The header body shall be POD or a serialized object.
The binary layout of the BaseHeader is fixed to the following definition in C:
struct BaseDataHeader

{

uint32_ t

uint32_t

uint32_ t

uint32_t

uinté64_t

uintée4_t
}s

fMagicNumber;
fHeaderSize;

fFlags;
fHeaderVersion;
fHeaderDescription;
fHeaderSerialization;

//
//
//
//
//
//

4 bytes
4 bytes
4 bytes
4 bytes
8 bytes
8 bytes

e The DataHeader required by the HeaderStack has the following layout:
struct DataHeader

{

BaseDataHeader baseHeader;

uinté64_t

uint32_t

uint32_ t

uintée4_t

uinté64_t

uintée4_t
}s

fDataDescription[2];
fDatalOrigin;
fReserved;
fDataSerialization;
fSpecification;
fPayloadSize;

//
//
//
//
//
//
//

32 bytes
16 bytes
4 bytes
4 bytes
8 bytes
8 bytes
8 bytes

e fDataDescription member identifies the data type of the
payload.

e fDataOrigin member identifies the global origin (producer) of
the data: e.g. a detector or software subsystem.

e fDataSerialization member identifies the data serialization
scheme used to encode the data (if any), e.g. ROOT.

e Each data type (in the associated payload) is uniquely
identified by the fDataDescription, fDataOrigin and

fDataSerialization members.

e fSpecification holds a data type dependent fine-grained
specification, e.g. a link number for raw data.

Data layout per data block

Flat data types

For transient and raw data the default data representation is flat to keep the possibility open
of direct access without serialization and deserialization overhead.
e A flat data type shall be a self contained POD; self containment means
independence of the address space. In particular it means no pointer data members
(no absolute addreses), this does not exclude internal referencing using other

methods.

e A flat data type shall be annotated in DataHeader::fDataSerialization as “NONE”.

References to data in other data blocks (e.g. relation between tracks and clusters)
are based on index mapping.

Serialized data types

Serialization and deserialization incur a performance penalty. In data flows where the cost is
acceptable, the following serialization schemes are in principle allowed.

ROOT objects

ROOT objects are allowed; serialization and deserialization into/out of the payload
handled by framework.

A serialized ROOT object shall be annotated in DataHeader::fDataSerialization as
“‘ROOT".

ROOQOT containers shall own their content after deserialization.

The use of ROOT objects of non-fixed size in the reconstruction data chain is
discouraged.

Raw data

A raw data block is annotated with DataDescription “RAW” with DataOrigin set to the
corresponding detector and Specification set to the corresponding link number.

A raw data block payload consists of a sequence of annotated raw data payloads.
Raw data payloads are annotated with the raw data header (RDH) placed directly in
front of the data.

Raw data payloads have maximum size of 8KB

A table with a pointer to each HB ID can be generated by the software after the
superpage has been filled with data

A summary lookup table is provided.

B HEADER (RDH) —
HB ID POINTER
DATA HB ID POINTER
HB ID POINTER
- HB ID POINTER
HEADER (RDH)
DATA Every block is MAX 8KB
. HEADER (RDH)
DATA
HEADER (RDH)
DATA

MEMORY layout 1.0: every Raw data payload starts at 8KB boundary. There could be holes
between 2 consecutive Raw data payload

HEADER (RDH) ——
=" HB ID POINTER
DATA HB ID POINTER
HEADER (RDH) HB ID POINTER
- HB ID POINTER
ey DATA
HEADER (RDH) Every block is MAX 8KB
- DATA
=" HEADER (RDH)
DATA

dma page
BB

dma page

MEMORY layout 1.1: every Raw data payload is consecutive and there are no holes
between 2 of them (this model is under studies)

GBT detector data in the memory of the FLP will look like (reading 32 bit words)

32 bit Mem word 0
WIDE Mem word 1
RDH WORDO [63:32] Mem word 2
RDH WORDO [31:0] Mem word 3
32 bit Mem word ...
WIDE

RDH WORD1 [63:32]
RDH WORD1 [31:0]
32 bit
WIDE
RDH WORD2 [63:32]
RDH WORD2 [31:0]
32 bit
WIDE
RDH WORD3 [63:32]
RDH WORD3 [31:0]

16 bit WIDE 0x0
WIDE 0x0 DATA WORD 0
DATA WORD 0
DATA WORD 0
16 bit WIDE 0x0
WIDE 0x0 DATA WORD 1
DATA WORD 1

DATA WORD 1

DDL detector data in the memory of the FLP will look like

0x0
0x0
RDH WORDO0[63:32]
RDH WORDO[31:0]
0x0
0x0
RDH WORD1[63:32]
RDH WORD1[31:0]
0x0
0x0
RDH WORD2[63:32]
RDH WORD2[31:0]
0x0
0x0
RDH WORD3[63:32]
RDH WORD?3[31:0]
DATA WORDO
DATA WORD1
DATA WORD2
DATA WORD3

Raw data header V1

Every word in the RDH is 64 bit long, to be compatible between GBT and DDL based

detectors.
HEADER
ZERO 12 bitC Header Size 8 bit Link 1D 8 bit FEE ID 16 bit Block Length 16 bit | VERSION 0
4 bit
HB ORBIT 32 bit TRG ORBIT 32 bit 1
ZERO 8 bit HB BC 12 bit TRG TYPEs 32 bit TRG BC 12 bit 2
B ; . STOP .
ZERO 12 bit PAR 16 bit DETECTOR FIELD 16 bit 4 bit PAGES COUNTER 16 bit 3

Reserved for future use

Must be filled by det FEE (can be filled by CRU if FEE can’t fill it properly)

Must be filled by CRU

Raw data header V2

ZERO8bitC | Header Size 8 bit Link ID 8 bit FEE ID 16 bit Block Length 16 bit HEADER VERSION
HB ORBIT 32 bit TRG ORBIT 32 bit

ZERO 8 bit HB BC 12 bit TRG TYPESs 32 bit TRG BC 12 bit
ZERO 8 bit PAR 16 bit DETECTOR FIELD 16 bit S PAGES COUNTER 16 bit

Main changes:
e Header version is 8 bit now to be byte aligned
e STOP BIT is 8 bit to be byte aligned

RDH fields description (still work in progress)

- Block Length [16 bit] : the length of the page (can be OxFFFF if detector can’t fill it
properly).

- FEE ID [16 bit] : unique ID assigned to the FEE to know from which section of the
detector data is coming (at least 18 bit).

- The link ID [8 bit] : used to identify from which GBT link in the CRU data is coming
(0 - 23).

- Header version [8 bit] : version number to identify the header when new fields are
added

- Header Size [8 bit] : number of 64 bit words composing the header

- BC [12 bit] and Orbit [32 bit] : the Trigger and HB identification.

- TRG type [32 bit] : trigger type set by CTP

- Detector field [16 bit] : detector specific field used by detector.

- PAR[16 bit] : field used by detector to trigger a configuration of the FEE

These 2 fields are needed only if the MEMORY DATA MODEL 1 is selected.
- Pages counter [16 bit] : counter to keep track of the different pages belonging to the
same trigger.
- STOP bit [8 bit] : 1 bit to identify the last page (if there are more pages of 8KB
belonging to the same trigger).

Data types in reconstruction

Base track model

e The result of reconstruction in different detectors which participate in tracking is
non-virtual and pointers-less class containing as a data members
o The track parametrization (final) class 02::Base::TrackParCov, providing track
kinematics and its covariance matrix and methods for their propagation.
o Extra general (like chi*2, nclusters used etc.) and detector specific (de/dx,
TOF etc.) information to be defined by detector.

e For the exchange between different components of the same detectors experts may
prefer transient data formats customized for their needs.

Transient data

e Transient data is temporary data used by intermediate reconstruction steps and it is
never stored to disk (unless for debugging reasons).

e Transient data is produced and consumed on-the-fly by consecutive O2 devices (or
within one device) by the same software version without schema evolution.
Transient data types may change with new software versions.

Transient data types shall be optimized for performance during reconstruction: they
shall be flat data types, they shall favor short representations using data types
supported by the processor natively (e.g. float versus double but no compressed
custom precision floating point format).

e Transient data types may define an internal version number in it's metadata if
multiple versions can be produced by the same software version.

e An example of a chain of transient data types used in the reconstruction is:

o Input: TPC clusters (either from raw clusters or decompressed clusters)

o 1st transient type: Spacial coordinates of TPC clusters with dummy
z-coordinate to facilitate seeding:

m floaty, z;
o 2nd transient type: Cluster links found in the cellular automaton phase:
m int upwardLinkClusterID;

o 3rd transient type: Sector tracks consisting of track parameters (X, Y, Z,
SinPhi, DzDs, Pt), SignCosPhi, chi?, number of clusters, array with one
cluster index per TPC pad row or -1 otherwise, diagonal entries of cov. matrix
plus selected off-diagonal entries (all 32 bit float or int).

o 4th transient type: Fully reconstructed TPC track, same as 3rd type with
following change:

m Variable length lists of clusters, one with one cluster per row per leg of
looper.

m Additional list of (unassigned) clusters close to the trajectory used for
track-model-compression.

https://github.com/AliceO2Group/AliceO2/blob/dev/Detectors/Base/include/DetectorsBase/Track.h

m Online dE/dx information per track.

o Output: Final track as defined in the output data type below, dE/dx used for
online gain monitoring histogram, list of clusters is used by the data
compression device.

The intermediate data types are subject to change during development to meet
optimizations needs. Input and output remains fixed.

Output data

Output data types is output data of the reconstruction that may be stored to disk.
They may support schema evolution, new software versions shall be backward
compatible with previous output data type versions.
e Such data types are:
o Hardware clusters consist of:

m Header with version, number of clusters, and possibly time offset.

m Array clusters as produced by the hardware cluster finder. C-struct
with to be defined data types, can be either 32 bit float or custom
length integers.

m Cluster properties: row, pad, time, width in Y and Z, charge (total and
max), flags for split and border clusters.

o Compressed clusters consist of:

m Compressed bitstream of encoded clusters produced by Huffman or
arithmetic compression or likewise.

m \Version, data size in bits, and CRC contained in the metadata.

Data layout per detector

The table below links to the definitions of the data types (classes in the O2 repository).

detector RAW Intermediate Reconstructed
(clusters,...)

ACO

CPV

CTP

EMC

FIT

HMP

ITS

MCH

MFT

MID

PHS

TOF

TPC

TRD

ZDC

AOD format

Preliminary work done in CWG4 is summarized in AOD TWiki.

https://twiki.cern.ch/twiki/bin/viewauth/ALICE/AOD

	ALICE O2 time frame and metadata model
	O2Message object:
	O2DataBlock:
	HeaderStack:
	O2 compliant headers:

	Data layout per data block
	Flat data types
	Serialized data types
	ROOT objects

	Raw data
	
	
	
	Raw data header V1
	Raw data header V2
	RDH fields description (still work in progress)
	
	Data types in reconstruction
	Base track model
	Transient data
	Output data
	Data layout per detector
	AOD format

