
In the long run, only the fundamentals matter 
Before I argue for this hypothesis, I’ll try to motivate the line of reasoning I’ll be taking. 
 
One line of reasoning I’ve heard recently is that you should “just believe straight lines on a 
graph”, i.e. that empirical progress made consistently in the past will continue. I think this is a 
bad way of making predictions about AGI. 
 
Here’s an anecdote: When I joined OpenAI in 2020, I thought scaling up LLMs might be on the 
path to AGI. There seemed to be new interesting empirical capabilities emerging from GPT-1 -> 
GPT-2 -> GPT-3, as well as very predictable scaling laws, so I thought GPT-7 could be 
something like AGI. But in hindsight this is a very silly line of reasoning -- not only will you run 
out of data well before GPT-7, but even GPT-1000 would still lack important capabilities due to 
the fundamental limitations of transformers and autoregressive modeling. You didn’t need to 
follow the scaling laws to the end and spend billions of dollars to realize this (though it’s worth 
doing for other reasons); you could have just reasoned about it from first principles. 
 
In the short run, straight lines always stay straight, but in the long run fundamentals are the only 
thing that matters. 
 

 

Position summary 
I’ll make this argument by considering a number of other AGI hypotheses that prominent ML 
researchers have had over the years, and accepting them or rejecting them based on the 
evidence in 2024. This will greatly narrow down the search space for AGI and, I claim, provide 
support for the “convergent evolution hypothesis”. 
 
TODO table 
 

 
 
Before we talk about AGI, we first need to define intelligence. 

(1)​ Accept: intelligence is data efficiency, not capabilities 
 
Claim: There is a distinction between capabilities and intelligence, which are often confused. 
Capability (or skill) is your performance level on any particular task. Intelligence is the rate at 
which you improve your capabilities, with respect to how much data you’ve trained on. On a plot 
where capability is the y-axis, and amount of data is the x-axis, it is the slope, not the y-axis, 
that determines whether one model is more intelligent than another. 



 

 
 
A machine being superhuman on any particular task does not necessarily indicate anything 
about its intelligence (AlphaGo could be considered a system that is highly capable, but less 
intelligent than even GPT-2 due to its lack of general learning ability). Intelligence, data 
efficiency, generalization ability, and learning ability are all the same thing. 
 
In humans, we can find this distinction between intelligence and capabilities in the difference 
between fluid intelligence (IQ, basically), and crystallized intelligence (skills gained after 
experience). In deep learning, fluid intelligence corresponds to the training process (DNNs + 
SGD), and crystalized intelligence corresponds to the trained model (the resulting DNN). 
 
The gaps and brittleness we frequently see with deep learning based methods cannot be fixed 
with increased scale or reinforcement learning; we need to fundamentally increase the 
generalization ability of our methods. 
 



 
 
Supporters: François Chollet 
 
My view: It’s correct. 
 
Rationale: This is really definitional, but it’s easy to see why this is the correct definition. 

(1.1) The data-limited Chinese room 
Consider a thought experiment: let’s say the internet had 10^10^10 tokens (as arbitrary a 
number as the 10^13 on our internet). We could plausibly train an N-gram model on it that could 
win a gold medal at the IMO and be so useful it would generate $1T a year in revenue. While 



such a system is certainly useful and would excel at a wide range of capabilities, it’s obviously 
less intelligent than GPT-4 because it’s unable to generalize beyond the data it was trained on. 
 
(Note that this is a data limited version of John Searle’s “Chinese room” argument. He wasn’t 
totally correct, but had an interesting point, which I’ll expand on in section (?)) 
 
We can see that generalization ability and data efficiency are the same thing: generalization is 
the result of squeezing every bit of information out of your datapoints, understanding all 
correlations and causations, and connecting all the dots. “Squeezing every bit of information” is 
meant literally: generalization is the result of compression, as I’ll describe in section (?). 
 
It’s also much easier to understand the “lumpiness” of GPT-4’s “intelligence” in this lens. Why 
can it pass the Bar exam but fail to win at tic-tac-toe? In reality, GPT-4’s intelligence isn’t lumpy 
-- it’s fixed, and its capabilities are lumpy because its training distribution is lumpy. 

(1.2) The spectrum of generalization 
Zooming out, I think intelligence / data efficiency / generalization ability fall on a spectrum: 
 
Level 1 = memorization based methods (e.g. N-gram models, nearest-neighbor classifiers) 
Level 2 = shallow learners (e.g. word embedding models, SVMs) 
Level 3 = deep learners (e.g. LLMs, resnets) 
 
I’ll speculate that human-level data efficiency is at “level 4”. Solomonoff induction, an 
uncomputable procedure which has theoretically optimal generalization ability, could be seen as 
“level infinity”. As we go up the levels, a number of things increase together: 

-​ generalization ability 
-​ data efficiency 
-​ computation spent per datapoint 
-​ “unwieldiness” of the method 
-​ emergent complexity from the data 
-​ expressive power 

 
So I’ll speculate that the “level 4” paradigm will, compared to deep learning, use significantly 
more computation per datapoint, be even more “unwieldy”, have even more emergent 
complexity from the data, and even more expressive power -- on the order of how deep learning 
compares to shallow learning. 
 
 

Generalization 
level 

Name Examples Training FLOPs/token  
(very approximate) 

Visual example of emergent 
complexity from the data 



1 Memorization N-gram models, 
nearest-neighbor 
classifiers 

~1 

 
Decision boundary of a 
nearest-neighbor classifier. 

2 Shallow 
learning 

Word embedding 
models, SVMs 

~10^4 

 
Decision boundary of a SVM with the 
RBF kernel. 

3 Deep learning LLMs, ResNets ~10^11 

 
Emergent feature detectors in 
Inception-v1. 



4 ? The human brain ~10^15 

 
Speculative: the emergent complexity 
of “level 4” may look more like the 
emergent complexity shown in 
cellular automata than the complexity 
shown in a fixed feedforward DNN, 
for reasons I’ll discuss in section (?). 
The Turing-complete rule 110 shown 
here. 

∞ Optimal 
generalization 

Solomonoff 
induction 

∞ ? 
 

 
 

 
 
I’ve made the claim that humans are more intelligent and have better data efficiency than LLMs 
in a way that is general and universal. Some would argue against this, so let’s discuss it next. 

(2)​ Reject: human intelligence is specialized and not general 
 
Claim: Humans evolved in a specific evolutionary environment, and we are built to solve 
problems that were found in this evolutionary environment. We come with many priors 
“hard-coded” by evolution -- “Core Knowledge” about the physics of our world, basic counting 
abilities, the ability to reason about agents and goal-directedness, as well as priors about the 
syntax of language. While we can use and combine these priors in novel ways, we are not 
general in any universal sense. 
 
It’s also unfair to compare the data efficiency of LLMs to the data efficiency of humans because 
we come with these priors. These priors give us an initial “leg-up” against LLMs, but do not 
indicate LLMs are less intelligent. 
 
Supporters: François Chollet, Yann LeCun 
 



My view: It’s incorrect. 
 
Rationale: This is an understandable argument; in many ways it feels like deep learning 
methods like LLMs, having fairly lax priors, are in an unfair fight against billions of years of 
evolution. But we must reject it for many reasons: 

(2.1) Language is recent 
It’s often claimed that humans acquire language more quickly than LLMs because we have lots 
of language-specific priors built into us by evolution. The implicit claim being: while we could in 
principle hard-code these priors into our LLMs, they are not general and do not indicate an 
intelligence gap. 
 
But on evolutionary timescales, language is too recent to have substantial amounts of 
hard-coding dedicated to it (estimates of when language originated vary widely, but are 
generally between 50,000 to 2 million years ago). Most likely, our language-learning abilities are 
based on a more general learning algorithm, and the differences between us and our primate 
ancestors are of low description length (more along the lines of “minor algorithmic tweaks + 
large amounts of scaling”). 
 
 

 
 



(2.2) We’ve been down this road before 
In previous eras of AI, it was debated whether the structure of language could be learned at all 
or whether it was innate and hard-coded (the latter being the camp of Noam Chomsky, which 
has largely been rejected by the child language acquisition research community). The success 
of LLMs has now made it seem completely obvious that language can be learned, the question 
is just how efficiently. It seems silly to think that LLMs, with their glaring failures of generalization 
(like hallucinations and the reversal curse), are as good as it’s going to get. 
 
There’s a name for this cognitive bias towards thinking the complex behaviors of the mind must 
be hard-coded instead of learned: the bitter lesson. 

(2.3) It’s not about language, it’s about everything 
The claim that “humans are more data-efficient than LLMs” is not just a claim about the syntax 
of language; it is a claim about everything. I don’t think anyone would seriously claim LLMs 
generalize as well as humans, but generalization is exactly the result of data efficiency. It’s 
precisely this generalization ability that makes us special -- why else can we learn programming 
languages, or the “language” of mathematics, or come up with the theory of relativity, when 
none of these things were even remotely in our evolutionary environment? General intelligence 
is real; we are not just a big bag of hacks. 

(2.4) Specialization is for insects 
It’s undeniable that many aspects of our intelligence are specialized and hard-coded by 
evolution (our ability to recognize faces, our priors about the world being 3D, etc.). But 
specialization is not particularly interesting (it is, after all, for insects). What is interesting about 
human intelligence is its generality. 
 
Specialization and generality are fundamentally at odds. A baby horse is typically walking 
around within an hour, but it takes human babies around a year to do the same. This is the 
result of the corticalization of motor control: moving motor control from primitive parts of the 
brain based on hard-coding (like the brainstem) to the newer cerebral cortex (which favors 
learning from experience). As a result, we have far greater capability to pick up new motor skills, 
but it comes at the cost of having the longest childhood period amongst all the animal kingdom.  
 
Human intelligence may ultimately come from nature learning the bitter lesson: that while 
specialized methods can win in the short run, general methods that leverage computation 
through learning (our big, expensive brains) win in the long run (after our long childhood). It’s 
bitter for a reason: most evolutionary environments won’t allow for such a long investment 
period of childhood or have much incentive for general intelligence, but our evolutionary 
environment was special. 
 
To the extent we care about having AGI solve problems that are far outside our evolutionary 
environment (e.g. discovering the cure for cancer or a unified theory of physics), and exceeding 



our capabilities in the long run, we should focus on generality and not specialization. In the long 
run, specialized intelligence is vestigial. 

(2.5) Psychometrics indicates that general intelligence is real 
TODO 

 
 

 
 

(2.6) General intelligence is possible theoretically 
TODO 

(2.7) Big blobs of compute win in the end 
Implicit in the idea that “humans only learn language quickly because of evolutionary 
hard-coding” is the assumption that we could make LLMs learn language as quickly as humans 
if we wanted to, but the hard-coding wouldn’t be general. Is that really true? 
 
Could the hard-coding be in the weights? Encoding Innate Ability through a Genomic Bottleneck 
tries this approach: compressing weights by several orders of magnitude, which could 
conceivably be “hard-coded” in the genome, and then using it as a subsequent initialization. 
This improves the initial performance with no data substantially, but does nothing for final model 
performance. Moreover, the maximum 8MB of genomic difference we have to work with would 
be a compression factor of 22,000 for GPT-3 -- well over the factor of 361 tried in the paper. 
This isn’t plausible. 

https://www.biorxiv.org/content/10.1101/2021.03.16.435261v2.full.pdf


 
 
Could the hard-coding be in the architecture? There was a Cambrian explosion of architectures 
after AlexNet in 2012 -- including attempting to hard-code linguistic priors into neural networks -- 
and which eventually culminated in the Neural Architecture Search line of research. What 
actually ended up working? A giant, relatively homogenous blob of compute, with no linguistic 
priors, which was not evolved but carefully designed: the Transformer. Even the Transformer is 
basically a constant factor improvement from LSTMs -- the state of the art from 1997. It’s a great 
constant factor, for sure, but does not really improve data efficiency (the slope). A colleague 
from OpenAI summed it up best: trained on the same dataset for long enough, pretty much 
every model with enough weights and training time converges to the same point. Architecture 
won’t help us here. 
 
What does that leave? Learning. Weight priors can give us a constant offset. Architecture can 
give us a constant multiplier. Learning is responsible for the slope. There must be a problem 
with the combination of DNNs + SGD leading to this lack of data efficiency and poor 
generalization. How fundamental will this problem be? We should remember this basic formula 
has gone essentially unchanged since 1986; whatever the problem may be, it’s not likely to be 
an easy fix like “just use more dropout”. I’ll discuss the fundamental problems more in section 
(?). 
 
This datapoint should update us twice, that: 

(1)​There is a fundamental problem DNNs + SGD leading to their poor data efficiency and 
lack of generalization. 

https://aclanthology.org/D13-1170.pdf
https://arxiv.org/abs/1611.01578
https://nonint.com/2023/06/10/the-it-in-ai-models-is-the-dataset/
https://nonint.com/2023/06/10/the-it-in-ai-models-is-the-dataset/


(2)​Big blobs of compute win in the end. As long as your architecture is reasonably well 
suited for your learning algorithm, lots of things work basically the same and 
task-specific priors add unnecessary complexity. In the case of SGD, the main 
requirements are not having exploding or vanishing gradients, being numerically stable, 
and “letting the gradients flow” between different parts of the architecture -- as long as 
those are true, optimization will take care of the rest. 

 
TODO - the neocortex is also very uniform and “blob like” 

 
 
An occasional argument for why humans are more intelligent than LLMs is that humans are 
embodied and take actions in the world, and also have rich multimodal inputs. In 2024, I think 
we know enough to say this is not the reason why humans are more intelligent than LLMs. 

(3)​ Reject: intelligence needs to be embodied or multimodal 
 
Claim: Humans can move and take physical actions in an environment, and this drives our 
intelligent behavior. So AGI needs to be embodied and take actions in a physical environment. 
 
Also, humans receive far more bits of information through visual input than the total bits of 
information an LLM is exposed to during training. LLMs can’t have human-level intelligence 
without being exposed to a similar visual stream of information. 
 
Supporters: Yann LeCun 
 
My view: It’s incorrect. 
 
Rationale: I think we should be pretty skeptical of this argument a priori. While it’s often true 
that humans use our intelligence to take physical actions in our environment, we also use our 
intelligence for things that are fairly disembodied -- like writing code -- and it seems unclear why 
motor movement would be the bottleneck for intelligence there. 
 
It seems similarly unclear why visual input or the number of bits of information would matter for 
a task like writing code. We could certainly turn our text input into visual input by, e.g. using a 
screenshot of an IDE instead of text tokens, but this doesn’t fundamentally change the 
information content. We could also add noise to our screenshots to increase the information 
content, but that doesn’t make the task any easier. 
 
Empirical evidence seems pretty strong against this hypothesis. Helen Keller was deafblind 
since the age of 19 months, losing substantial amounts of embodiment and multimodal input 
during the vast majority of her childhood development, but still turned out perfectly intelligent. 
Also, most foundation models these days are multimodal, and could easily be hooked up to a 
robot to make them embodied. It’s pretty obvious that this has not made them AGI, and making 



them embodied will just expose their generalization failures instead of turning them into AGI. It 
also seems clear that text-only foundation models are intelligent to some degree, without having 
any embodiment or multimodality, which is unexplained by this hypothesis. 
 
I think embodiment and multimodality are best thought as additional surface area for 
intelligence, not the bottleneck to intelligence itself. 
 

 
 
The closest thing we have to AGI today are agents built on top of LLMs, like ChatGPT. I’d argue 
such systems are a proto-AGI -- they fit the right shape, though they’re clearly not yet 
human-level intelligence. But it’s remarkable how similar the process of creating ChatGPT looks 
to a process of “designing” a brain, and I think this should provide some intuition for what the 
path to AGI looks like going forward. 

(4)​ Accept: building AGI will be like building a brain 
 
Claim: It’s silly to ignore the only example of general intelligence we have -- the human brain -- 
in creating AGI. While AGI won’t be an exact replica of the human brain, we should expect it to 
follow the same basic principles. In particular, we should expect it to involve a lot of 
unsupervised learning, some supervised learning, and a little reinforcement learning (Yann 
LeCun’s cake). 
 

 
 



We should also expect it to be made entirely of neural networks, and in the case of general 
intelligence, acquire behaviors mostly from learning and experience using a large, relatively 
homogenous “blob of compute” (analogous to the neocortex). 
 
It should be highly data efficient from birth and efficiently form internal models of the world. It 
may also involve large amounts of discrete, recurrent computations like those performed by 
neurons in the brain. 
 
Supporters: DeepMind, Yann LeCun 
 
My view: It’s correct. 
 
Rationale: At first glance, “building AGI will be like building a brain” seems deeply pessimistic, 
because the brain is extremely complex and it could take centuries of study to fully understand 
it. But the most intelligent systems we have today (agents built on top of LLMs) are already quite 
a bit like the brain, and while they are sophisticated, their basic principles are actually pretty 
simple. 
 

(4.1) LLMs and the brain 
We can view the similarities between agents built on top of LLMs and the brain with the 
following set of Venn diagrams: 
 



 
 
Alan Turing first noted the similarities between how evolution constructed the biological brain 
and how we could construct machine intelligence in his famous paper Computing Machinery 
and Intelligence; since then the similarities have only deepened. 
 
Now we can also begin to reject a common argument justifying the data inefficiency of LLMs: 
that pretraining is like evolution, and in-context learning is the “real” sample efficient learning. 
We can reject it twice: 
 
One, pretraining is nothing like evolution. Evolution learns a short program -- the genome -- that 
describes the learning procedure and architecture for a neural network. The genome is far more 
analogous to the training codebase of an LLM and not the trained LLM itself. The shortness of 



the genome is a necessary ingredient for generalization: it’s impossible to store the specific 
words or situations our ancestors were exposed to directly through the genome; evolution is 
forced to create general learning algorithms because of the information bottleneck. 
 
Two, in-context learning is not general, and depends highly on the training dataset, unlike the 
general formula of transformers + SGD. Obviously, if our training dataset only contains 
documents of 10 tokens, we aren’t going to see magical generalization to documents of 10,000 
tokens. In-context learning is just the model using its context with its normal generalization 
abilities, and its normal generalization abilities are sub-human precisely because of its 
sub-human pretraining data efficiency. While it’s sometimes thought that in-context learning is a 
“meta-learning” algorithm with extra generalization power, this is not true, and the fact that the 
per-token loss decreases in-context does not imply any form of “learning” is happening (a 
sufficiently large N-gram model will show the same behavior). I’ll expand on this in section (6.2), 
but the correct way to think of in-context learning is that it is quick pattern-matching based on 
prior experience -- a form of crystallized intelligence, not the fluid intelligence that we’re missing. 

(4.2) Building the brain 
“Like building the brain” is a phrase with a lot of ambiguity. The reality is that the brain has a lot 
of complexity we don’t need to worry about for AGI:  

-​ complexity from vestigial specialized intelligence (e.g. face recognition) 
-​ complexity from evolution optimizing for resource and energy consumption 
-​ emergent complexity from simple learning algorithms applied to complex data 

 
There’s a lot of truth in the idea that we don’t need to make planes fly like birds -- evolution 
creates organisms with a lot of complexity, and we can skip most of the complexity in creating 
intelligent machines. But birds and planes operate on the same basic principles of flight --  lift, 
weight, drag, and thrust -- and engineers and scientists need to deeply understand these 
principles before they’re able to build an F35. F35s do not “emerge” from a magical optimization 
process; they’re very carefully designed according to these principles, and similarly we should 
expect to build AGI by deeply understanding the principles of intelligence and carefully 
designing an intelligent machine. 
 
The principles of intelligence are already well-understood at a high level; they’re the three 
paradigms of machine learning: unsupervised learning, supervised learning, and reinforcement 
learning. The fundamental problem we have is that our methods are far too data inefficient. We 
can begin to diagnose the problem by understanding the origins of data efficiency, which I’ll 
discuss later in section (?). 
 
There is definitely an antipattern to avoid here though, which is blindly copying the brain or 
trying to reverse engineer it. The brain is better thought of as a proof of existence than a 
template: like birds are a proof of existence that flight is possible, brains are a proof of existence 
that general intelligence is possible. 
 

 



 
We can build further intuition that “building a brain” is the right approach by considering all the 
other approaches to AGI that have worked considerably less well. One broad class of these 
approaches is the idea that we should “evolve” a brain instead of building one directly. 

(5)​ Reject: intelligence should emerge from an outer 
optimization loop 

 
Claim: While the human brain is the only example of general intelligence we have today, it is 
also hopelessly complex to understand. We’re better off simulating a simpler optimization 
process, like evolution, and having intelligent agents emerge from that optimization process -- 
like nature did. 
 
The extreme version of this hypothesis is having AGI emerge from artificial life, while softer 
versions of this hypothesis include the “scaling hypothesis” and the “reward is enough” 
hypothesis, which I’ll discuss in sections (6) and (7). 
 
Supporters: OpenAI, Deepmind (partly) 
 
My view: It’s incorrect. 
 
Rationale: This is wrong for many reasons. 
 
One, as established in section (4), the brain being complex does not imply AGI will be complex, 
and we are already on our way to designing a brain. 
 
Two, evolution operates on the space of short, highly expressive programs -- the genome. Both 
the shortness and the expressivity of the program are necessary to represent learning 
algorithms that generalize. We have no idea how to optimize over something as flexible as the 
space of Python programs. The closest attempts like Neural Architecture Search pale in 
expressivity and are horrendously expensive. Ironically, our best bet to optimize over the space 
of Python programs is to have humans write them, and in a process of intelligence-guided 
trial-and-error, write the source code to AGI. That’s exactly consistent with section (4.2), placing 
humans in the role of an evolutionary process that designs the brain. 
 
Three, evolution is not really a “simple optimization procedure”, but a deeply open-ended 
process. It’s often abstracted away that evolution “optimizes fitness”, but if fitness were all 
evolution was about, bacteria would be the pinnacle of evolution. Evolution produces infinite 
novelty and complexity, in turn producing self-play environments, curriculum learning, the 
evolution of evolvability, etc. -- all of which are necessary ingredients for intelligence to emerge. 
We have no idea how to simulate such an open-ended process, and due to computational 
irreducibility, there may not be a shortcut other than simulating our entire universe. 
 



The empirical results of the “purist” form of this approach, artificial life, speak for themself (there 
are no results). Softer versions of this hypothesis that are willing to go further in the brain-like 
direction (using neural networks and some form of unsupervised or reinforcement learning) 
show some signs of life, precisely because they’re willing to be more like the brain. 
 

 
 
The “scaling hypothesis” is one variant of an “outer optimization loop” procedure to create AGI. 
It’s often claimed the GPT series is a vindication of the scaling hypothesis, but ironically it’s 
actually a rejection of it. 

(6)​ Reject: the “scaling hypothesis” / scale is the bottleneck 
 
Claim: Although initially poor at generalization, neural networks can increase their 
generalization ability by meta-learning new algorithms with superior generalization ability, when 
trained on a large set of sufficiently diverse tasks. So training large neural networks on a broad 
variety of tasks is sufficient for AGI to emerge from the optimization process. 
 
Supporters: OpenAI 
 
My view: It’s incorrect. 
 
Rationale: This is a pretty specific hypothesis, so it’s worth understanding where it came from. 
It is essentially the mode-averaging of two correct statements: 
 

(1)​Brains are sophisticated neural networks and can learn new algorithms when applied to 
data 

(2)​Evolution is a simple learning algorithm and “meta-learned” the algorithm of the brain 
when “optimizing” across a broad spectrum of “tasks” 

 
So maybe if we take our current neural networks, and train them on a broad set of tasks, we’ll 
also meta-learn the algorithm for AGI? 
 



 
 
It almost sounds plausible, but it’s wrong for two reasons: 

(6.1) Meta-learning a level-up in generalization is impossible 
One question should give us immediate pause: obviously not any learning algorithm is sufficient 
for the “scaling hypothesis” to be true -- we couldn’t scale up SVMs and get AGI. Why is our 
current formula of DNNs + SGD sufficient? 
 
The reality is that it’s not. Algorithms of lower level of generalization cannot simulate or 
meta-learn algorithms of higher levels of generalization. SVMs will never be able to simulate 
DNNs, no matter how much data you throw at them, for basic fundamental reasons. And for 
similar fundamental reasons I’ll discuss in section (?), DNNs (“level 3”) will not be able to 
simulate human-level generalization (“level 4”). 
 
Also, note that the brain does not actually do any “meta-learning” of generalization abilities, it 
gains crystallized intelligence (aka capabilities) by the application of its fluid intelligence (aka 
generalization abilities). While crystallized intelligence grows with experience, fluid intelligence 
does not. In general, the idea that learning from experience can drastically multiply learning 
ability is an infinite recursion that does not hold. 
 
Evolution in some sense did “meta-learn” human-level generalization, but nothing we do is like 
evolution, as described in section (5). All we’re doing is training neural networks. 



(6.2) Neural networks don’t meta-learn 
There’s another question that should give us pause. The diversity and scale of tasks apparently 
matters. How much diversity do we need? How much scale? Do we need diversity and scale on 
the level of evolution, or does a collection of tasks on the internet happen to be perfectly enough 
to AGI? 
 
The reality is the diversity of tasks only matters insofar as we want to fool ourselves into thinking 
the breadth of our training distribution is the breadth of our model's intelligence. There is no 
“meta-learning”, there is only learning. Evolution is disanalogous to multitask training because 
there is no separate short-program genome when we train neural networks; there’s only the 
model weights and SGD, which makes no distinction between “meta-learning” and “learning”. 
And even in cases where DNN architectures can technically simulate sophisticated algorithms, 
there is no reason SGD will find them (technically, an infinite-precision RNN is Turing-complete, 
but this doesn’t matter at all). 

(6.3) What actually happens with scale 
So what is really happening with the “scaling hypothesis” is much more boring than having 
“meta-learned algorithms emerge from the data” -- we’re just training a neural network with 
sub-human (“level 3”) generalization on a lumpy set of data, and seeing a lumpy set of 
capabilities result. There’s no improvement in generalization. 
 

 
 
This is fully born out empirically: AGI did not “emerge” from the training of GPT-4 -- a large DNN 
trained the largest, most diverse data source we have access to. Instead, what we got was an 
unreliable lump of capabilities that’s human-level where its training data is dense (e.g. academic 
practice exams) but still fails to win at tic-tac-toe. This is a crappy brain trained on a big pile of 
data, and not particularly interesting. 

(6.4) A caveat 
To be fair, there are some plausible signs of life for increased generalization at scale: 



-​ Chinchilla scaling laws indicate that an infinite-parameter LLM would be ~9x data 
efficient compared to an LLM that was trained compute-efficiently 

-​ Transfer learning between datasets sometimes gets better with scale 
-​ Generalization benchmarks like the Abstraction and Reasoning Corpus (ARC) improve 

with scale 
 
It’s debatable whether any of these “truly” signifies increased generalization, but it’s not worth 
debating anyway -- even if it were true, the rate of improvement is glacial, and would never 
reach human-level generalization for fundamental reasons. 
 

 
 

(7)​ Reject: “reward is enough” / RL is the bottleneck 
 
Claim:  

(1)​All intelligent behavior in an agent is for the purpose of maximizing its reward signal. 
(2)​Therefore, if we train an agent to maximize its reward signal via reinforcement learning, 

intelligent behavior will emerge.  
(3)​Similarly, generalization will come from training in a wide diversity of environments, 

which will require general intelligence to emerge. 
 
Supporters: OpenAI, DeepMind 
 
My view: It’s incorrect. 
 
Rationale: Like the “scaling hypothesis”, this hypothesis also comes from the mode-averaging 
of two correct statements: 
 

(1)​Evolution created intelligent agents. 
(2)​ Intelligent agents maximize reward with reinforcement learning. 

 
So if we use reinforcement learning to maximize reward with an agent, maybe it will become 
intelligent? No, this is just backwards causality, and as discussed in section (6), intelligence 
won’t “emerge” from the optimization of a neural network. 
 
But we can actually make an even stronger statement here: in many cases, reinforcement 
learning on an objective is a poor way of optimizing the objective itself. 

(7.1) The myth of the objective 
One intuition commonly held in deep learning is that SGD on a DNN can produce incredible 
results on a wide variety of objective functions, because local minima in high dimensional 



spaces are rare -- it’s much more likely you’ll end up on a saddle point, and and can go down 
one end to continually make progress. 
 
This intuition is completely wrong in RL. Here’s a simple example: consider an agent in a maze, 
where we would like to minimize the distance of our agent from the endpoint of the maze. A 
naive loss function could just be ||x_agent - x_endpoint||. 
 

 
 
We could plausibly do gradient descent to minimize this objective, but it will obviously just get 
stuck in a corner. It doesn’t matter if our agent has a 100b parameter neural network to control 
its position. What’s going on here? The fundamental problem is that although we’re optimizing in 
a high-dimensional space, the intrinsic dimensionality of that space is low, and still has the 
original local minima of the maze. Neural networks and SGD won’t save us here. 
 
An RL maximalist might describe this as an “exploration problem”, but in a maze, exploration is 
the entire problem. It requires intelligence to be built in the first place, and won’t emerge from 
getting stuck in a corner. 
 
Note that the claim here is not that we can’t get a computer agent to solve a maze. Of course 
we can, if we as a programmer are willing to program in various heuristics about exploration and 
backtracking. But this is missing the point: we want agents that can discover like we can, not 
which contain what we have discovered. 
 
What problems in life are like a maze? Again, the ones that actually require intelligence. 
 
Fermat’s last theorem was not solved step-by-step or with simple backtracking search. First 
posed in 1637, Fermat’s last theorem withstood thousands of failed attempts to prove it over 
literal centuries. In the meantime, entire branches of mathematics sprouted and grew -- not 
motivated by Fermat’s last theorem, but by the intrinsic pursuit of interestingness and novelty. In 
1955, mathematicians Goro Shimura and Yutaka Taniyama conjectured a connection between 



two previously disconnected branches of mathematics -- elliptic curves and modular forms -- 
and in 1986 it was shown that this conjecture implied that FLT was true. Andrew Wiles, seeing 
this, realized his childhood dream and finally proved the theorem true in 1995. It is true that the 
proof of FLT required some goal-driven behavior at the end, but the vast majority of the process 
was driven by the pursuit of whatever mathematicians found interesting. Reaching the goal was 
just the cherry on the cake. 
 
It is this pursuit of novelty that separates us from the rest of the animal kingdom, equally as 
much as it is our intelligence. Intelligence and the pursuit of novelty go hand in hand: it’s 
impossible to pursue novelty without intelligence, and having intelligence without pursuing 
novelty is pointless -- it’s just walking into the corner of a maze. 

(7.2) Formalizing novelty 
It’s obvious that humans follow their own interests and creativity in a way that’s unexplained by 
the direct maximization of the utilitarian reward that evolution hard-coded into us. How can we 
formalize this? 
 
What is the principled way of solving a maze with no a priori knowledge of mazes? An agent, 
dropped into a maze, should first wander around a little and bump into the walls. Then it should 
realize it’s in a hallway and proceed all the way down. Then it may take a fork in the road, and 
arrive at a dead end. Then it may go back and take the other fork in the road, and also arrive at 
a dead end. Eventually it should realize the general winding structure of the maze that it’s in. 
Only then can it begin to more rigorously devise methods of backtracking search, and eventually 
find its way out of the maze. Planning, search, and “System 2” are also the cherry on the cake -- 
the cake itself comes from repeatedly forming and breaking an internal model of the world. 
 
Forming an internal model of the world will be done with probabilistic modeling and 
compression, as I’ll discuss in section (?). “Breaking” this model is the part that drives this 
curiosity-based exploration. As you might expect, Schmidhuber already solved this problem in 
1991.  
 
Let p_i(d_{1:j}) be the probability of all the data our agent has seen from t=1 to t=j, using its 
model of the world formed at t=i. We can define the novelty reward: 
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Informally speaking, the novelty reward is the rate of change of our ability to compress our past 
observations at a particular time. Understanding is compression, so it is the rate of change of 
our understanding of the world, with respect to time. The total amount of novelty reward will then 
correspond to the total increase of our understanding of the world over our initial predictions. 
 



Suppose our understanding of the data d_{1:i-1} had converged (i.e. additional time without data 
would not change p). We observe d_i, and think about it until t=inf. One way of writing the 
novelty due to observing d_i is: 
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Which is a formalization of the notion that something interesting is some combination of 
something that: 

(1)​ Initially seems hard to predict, but is something we can later recognize patterns and 
structure in. 

(2)​Helps us better connect the dots in our previous understanding of the world. 
 

 
 
Why is the snowflake-automata in the middle more interesting than static noise or a plain 
square? Because we can continually find patterns and better compress it with time. Its low 
Kolmogorov complexity makes it like a bone for us to chew on. 
 
What makes for an interesting book? Often not because of the content itself, but because it 
helps you reinterpret and better understand experiences in your own life. It’s no wonder reading 
classic novels is so boring in high school; they can only be interesting in the light of experience 
(but they can at least make later experiences more interesting). 
 
Why are jokes funny? Because when we get to the punchline, we actually didn’t predict it (if we 
knew what the punchline was going to be, it wouldn’t be funny!). But after hearing the punchline, 
we quickly connect the dots and have a burst of interest. Note that the novelty reward here 
actually does require an initial autoregressive prediction. But the deeper understanding of the 
joke requires non-autoregressive compression, which I’ll formalize in section (?). 
 
We enjoy art, books, and jokes fundamentally because this novelty reward is hardwired into our 
dopaminergic pathways through temporal difference learning (a technique first invented by 
Arthur Samuel in 1959 to make a checkers-playing program; it was later found to be consistent 
with the reward pathways in the brain -- convergent evolution!). 

https://en.wikipedia.org/wiki/Temporal_difference_learning#In_neuroscience


 
We can visualize the different types of novelty as follows: 
 

 
 
With the novelty reward, we can solve the maze in a general way. We can define the final 
reward 
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to interpolate between the agent’s utility reward u_{i} (for example, how much closer or further it 
got from the end of the maze) and its novelty reward. 
 
Simple, straightforward problems can be solved with smaller alpha and less intelligence. But 
harder problems will require larger alpha and greater intelligence. 

(7.3) The origins of reasoning 
One of the most confused concepts in machine learning is reasoning. There are an infinite 
number of ways humans reason: 

-​ deductive reasoning 
-​ inductive reasoning  
-​ abductive reasoning 
-​ causal reasoning 
-​ reasoning by thought experiment 
-​ reasoning by analogy 
-​ reasoning by search 

 



Or even stranger forms of reasoning, like Terrence Tao reasoning by writhing on the floor: 
 
“There was one time when I was trying to understand a very complicated geometric 
transformation in my head involving-- I was rotating a lot of spheres at the same time. And the 
way I actually ended up visualizing this was actually lying down on the floor, closing my eyes, 
and rolling around. And I was staying at my aunt's place at the time. And she found me rolling 
on the floor with my eyes closed. And she asked me what I was doing. And I said, I was thinking 
about a math problem, and she didn't believe me.” 
 
These are all crystallized forms of reasoning; they should not be hardcoded into our agents. 
Reasoning is the result of an agent pursuing its own novelty rewards --  it is a learned behavior. 
The pursuit of novelty is how we will get agents that can develop new reasoning methods like 
we can - not merely applying the reasoning methods we have already developed. 

(7.4) Psychoanalyzing novelty and understanding 
In humans, I think we could say that an individual’s value of  determines whether they will α
become an engineer or a mathematician; a designer or an artist. That is: to what extent they 
prefer to maximize their evolutionary utility reward (preferring goal-driven behavior like resource 
acquisition), or to what extent they maximize their novelty reward (pursuing their own notion of 
interestingness, usually at the cost of resource acquisition). This is not to say that lower alpha 
indicates lower intelligence, but that higher alpha offers a higher capacity to express 
intelligence. 
 
I think we can go further and say there are two modes of understanding: 

(1)​Unconscious understanding (from the “id”) - a nonverbal, intuitive, and instinctive form of 
understanding, most active when e.g. listening to an interesting song and understanding 
its patterns and structure. It’s often been said that deep learning is well-suited for this 
type of intuitive reasoning, and I think that’s true. Deep learning could be seen as the 
learning of circuits, so this type of understanding seems suited to an analog computer. 

(2)​Conscious understanding (from the “ego”) - a highly verbal, symbolic, and logical form of 
understanding, most active e.g. when understanding a mathematical proof and 
understanding it logically. This type of understanding seems suited to a digital computer. 

 
We could roughly formalize this by saying we have two probabilistic models: p_analogue(x) and 
p_digital(x) corresponding to these conscious and unconscious modes of understanding. Our 
final model p(x) will be a product of these two experts: 
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and we could imagine a hyperparameter , where , determining what proportion of β 0 ≤ β ≤ 1
computation to spend on digital computing instead of analogue computing. I think it’s interesting 
to characterize human behavior by an individual’s value of  and . For example, classifying job α β
occupation: 

https://distill.pub/2020/circuits/zoom-in/


 

 
 
We could also determine an AI researcher’s preference for connectionist or symbolic methods 
by their personal value of beta (and similarly, to what degree they believe techniques like 
“chain-of-thought” are related to “thinking”). 
 
I don’t mean to suggest there are literally two probabilistic models p_analogue(x) and 
p_digital(x). But beta is a helpful hyperparameter to think about, and I’ll formalize it in section 
(?). The reality is that logical reasoning and intuitive reasoning are inseparably intertwined. My 
favorite example of this is Ramanujan’s “reasoning by having a goddess reveal elliptic integrals 
to you in a dream”: 
 
“While asleep I had an unusual experience. There was a red screen formed by flowing blood as 
it were. I was observing it. Suddenly a hand began to write on the screen. I became all attention. 
That hand wrote a number of results in elliptic integrals. They stuck to my mind. As soon as I 
woke up, I committed them to writing.” 
 
It may be tempting to dismiss Ramanujan as a deeply alien form of intelligence that we can 
ignore. But Ramanujan and the average Joe share 99.9% of their DNA -- it’s the same algorithm 
with a few hyperparameter tweaks. These extreme cases aren’t a different form of intelligence - 
they elucidate the way our intelligence really works under the hood. Clearly, some 
hyperparameters must be highly sensitive; I think beta is among these. I think there is another 
hyperparameter for that fine line between ignorance, genius, and madness, which I’ll formalize 
further in section (?). 


	In the long run, only the fundamentals matter 
	Position summary 
	(1)​Accept: intelligence is data efficiency, not capabilities 
	(1.1) The data-limited Chinese room 
	(1.2) The spectrum of generalization 

	(2)​Reject: human intelligence is specialized and not general 
	(2.1) Language is recent 
	(2.2) We’ve been down this road before 
	(2.3) It’s not about language, it’s about everything 
	(2.4) Specialization is for insects 
	(2.5) Psychometrics indicates that general intelligence is real 
	(2.6) General intelligence is possible theoretically 
	(2.7) Big blobs of compute win in the end 

	(3)​Reject: intelligence needs to be embodied or multimodal 
	(4)​Accept: building AGI will be like building a brain 
	(4.1) LLMs and the brain 
	(4.2) Building the brain 

	(5)​Reject: intelligence should emerge from an outer optimization loop 
	(6)​Reject: the “scaling hypothesis” / scale is the bottleneck 
	(6.1) Meta-learning a level-up in generalization is impossible 
	(6.2) Neural networks don’t meta-learn 
	(6.3) What actually happens with scale 
	(6.4) A caveat 

	(7)​Reject: “reward is enough” / RL is the bottleneck 
	(7.1) The myth of the objective 
	(7.2) Formalizing novelty 
	(7.3) The origins of reasoning 
	(7.4) Psychoanalyzing novelty and understanding 


